cognitive radio experimentation with vesna...

40
Cognitive radio experimentation with VESNA platform Miha Smolnikar Jozef Stefan Institute ICTP School on Applications of Open Spectrum and White Spaces Technologies

Upload: lekhanh

Post on 15-Mar-2018

226 views

Category:

Documents


6 download

TRANSCRIPT

Cognitive radio experimentation with VESNA platform

Miha Smolnikar

Jozef Stefan Institute

ICTP School on Applications of Open Spectrum and White Spaces Technologies

Outline

1. VESNA platform

2. LOG-a-TEC testbed

3. CREW project

4. Demos

2

VESNA platform

3

Concept

• A HW/SW platform for wireless sensor networks• High processing power and low energy consumption• Sensor node & concentrator/gateway capability• Battery, solar or external power supply• Multiple communication technologies• Extensive portfolio of sensors and actuators• JTAG debug interface• OS ports: Contiki, NuttX, (RIOT)• Libraries ports: Arduino (Maple, Spark, …), panStamp, OpenWSN, Wiselib, SensLAB …• Arduino compatibility

• Development, prototyping and testbed platform

• Design files & source code• https://github.com/sensorlab/ 4

Supported …… sensors• Temperature

• Air pressure

• Pressure (absolute, differential)

• Humidity

• Luminance

• Acceleration

• Gyroskop

• GPS/position

• Microwave radar

• Lightning

• Microphone (intensity, spectrum)

• Radio spectrum (ISM, UHF)

• Voltage

… communication interfaces• IEEE 802.15.4

• ZigBee

• 6LoWPAN

• Wireless M-BUS

• Bluetooth 4.0

• Wi-Fi

• GSM/GPRS

• Ethernet

… peripherals• RS-232

• RS-422/485

• CAN

• USB (slave)

• SPI

• I2C

• 1wire

• SDIO

• 4…20 mA

• 1-10 V

…• Current (AC/DC, Hall,

resistor)

• Power quality (parametrization)

• RFID, NFC

• Ultrasound

• IR (PIR, on-off, distance, temperature)

• Capacitive/inductive touch/distance

• Color

• Reflectance

• Hall

• Load cell (weigh)

• Weather station• Rainfall rate

• Wind speed & direction

• Sun radiation (UV, VIS)

…• Gas / Particles

• CO2

• VOC

• NO, NO2, CO, O3, SO2

• PM, Pollen

• Camera

• …

5

Modularity

• VESNA=SNC+SNR+SNE• SNC = 7 cm x 5 cm

• SNR = 3 cm x 5 cm

• SNE = 7 (10) cm x 5 cm

• Existing modules• SNC-STM32

• SNR-TRX, SNR-MOD

• SNE-PROTO, SNE-WG, SNE-WLG, SNE-ISMTV, SNE-ESHTER, SNE-SENS, SNE-AQA, SNE-AMIO, SNE-SH, SNE-BEECO, SNE-PMC

Sensor Node Core (SNC)data acquisition and processing,versatile power supply

Sensor Node Radio (SNR)communication withinthe sensor network

Sensor connector

Power supply and RS-232

USB

SDIO

Battery / solar

Antenna

Radio connector

Sensor Node Expansion (SNE)application specific HW, firmware debugging over JTAG

6

SNC-STM32

• Microcontroller• ST STM32F103xx

• ST STM32L1zzxx

• MRAM

• Instrumentational amplifier

• External / battery / solar power supply + charger

• USB, RS232/UART, SPI, I2C, 12-bit DAC, 12-bit ADC

• SD card slot

7

SNR-TRX (transceiver)

• 315/433 MHz, 868/915 MHz• TI CC1101

• Atmel AT86RF212 (IEEE 802.15.4)

• 2.4 GHz• TI CC2500

• Atmel AT86RF231 (IEEE 802.15.4)

• nRF8001 (BLE)

• Range extenders• TI CC1190 (sub-GHz) / TI CC2590 (2.4 GHz)

8

SNR-MOD (OEM module)

• Digi XBee (ZigBee, proprietary)

• Atmel ATZB-900 (ZigBee)

• Atmel ATZB-24 (ZigBee)

• Telit • ME50-868, (ME50-169) (WMBUS)

• LExx, NEexx (pin compatible, proprietary)

• ZExx-2.4 (pin compatible, ZigBee)

9

SNE-WG (wired gateway)

• Lantronix Xport / Digi ConnectMe (Ethernet)

• Power over Ethernet

• CAN

• RS-485/422

10

SNE-WLG (wireless gateway)

• GainSpan GS1011 (WiFi)

• BlueRadio BR-LE4.0 (Bluetooth 4.0 )

• Telit GL865 (GSM/GPRS)

• uBlox MAX-6G (GPS)

• Power supply

11

SNE-ISMTV (spectrum sensing) 1/2

• SNE-CREWTV

• One PCB with several placement options1. VHF/UHF (TVWS)

• NXP TDA18219HN silicon tuner

• Analog devices AD8307 demodulating logarithmic amplifier

• RF input range: 420 – 870 MHz

• Bandwidth: 1.7 MHz, 8 MHz

• Linearity: ±1 dB

• Dynamic range: 60 dB

12

SNE-ISMTV (spectrum sensing) 2/2

2. Sub-GHz ISM (315, 433, 783, 868, 915 MHz)• TI CC1101

• Receiver sensitivity: -112 dBm @ 868 Mhz

• Programmable output power: 12 dBm

3. 2.4 GHz ISM• TI CC2500

• Receiver sensitivity: -104 dBm

• Programmable output power: 1 dBm

• IEEE 802.15.4 transceiver (ISM 868 MHz)• Atmel AT86RF212

13

SNE-ESHTER (spectrum sensing) – UNDER DEVELOPMENT

• Embedded Sensing Hardware for TVWS Experimental Radio (ESHTER)• http://www.tablix.org/~avian/blog/articles/talks/next_generation_tv_band_r

eceiver_for_vesna.pdf

• Motivation for redesign• Experiment with advanced spectrum sensing methods (require access to

signal magnitude and phase)

• Higher frequency resolution for energy detection (wireless microphones occupy ~200 kHz of spectrum, 1700 kHz narrowest TDA18219HN channel setting)

• Practical problems (form-factor, EMI noise cancellation)

14

SNE-ESHTER (spectrum sensing) – UNDER DEVELOPMENT

15

• Going beyond energy detection• Covariance Absolute Value detector

• Eigenvalue detector

• Information-theoretic detection

• Compressive sensing

• Block diagram

LOG-a-TEC testbed

16

Projects

• Photovoltaic power plant monitoring (Telekom Slovenije)• http://sensors.ijs.si/

• Air quality (FP7 CITI-SENSE)• http://www.citi-sense.eu/

• Sensor support for unexpected & temporary events (FP7 ABSOLUTE)• http://www.absolute-project.eu/

• Robust network infrastructure for smart distribution grids (FP7 SUNSEED)• TBD

• Spectrum sensing and cognitive radio (FP7 CREW)• http://www.crew-project.eu/

17

PV power plant monitoring

• Systematically investigate the pros and cons of different PV technologies (amorphous & crystalline silicon), effect of panels deployment (S, E, W orientation) and impact of environment (weather) conditions

• Sensorics on 5 sets of PV panels• Light intensity in different spectrum (UV/VIS/IR)• Solar pannel U/I characteristic • Performance of inverter MPP tracker• Temperature of a PN junction • Environment conditions (context)

• 7 VESNA sensor nodes, 1 VESNA gateway, ZigBee network @ 868 MHz

18

Air quality

19

• Static indoor unit (Wi-Fi)• T, rH, PM• Gas: CO2 (CO2-IRC-A1), VOC, NH3 (B1)

• Static outdoor unit (Wi-Fi)• Weather: T, rH, wind speed & direction, rainfall rate• Solar radiation: VIS, IR• Lightning • Gas: NO, NO2, SO2, O3, CO (ISB-B4)

• Portable unit (Wi-Fi / BLE)• VESNA SNE-AQA

• T, rH, accelerometer• Gas: NO2, O3, CO (AFE-A4)

Spectrum sensing testbed location

• Deployed in the city of Logatec, Slovenia

• Based on wireless sensor network

• Sensor nodes are (mostly) installed on public light poles

• Infrastructure rewiring ensures 24/7 power supply

• Used to support the experimentally-driven research20

Spectrum sensing VESNA nodesSNE-ISMTV

868 MHz TRX

CC1101

TV UHF RX

TDA18219HN

SPI, GPIO

2.4 GHz TRX

CC2500

868 MHz TRX

AT86RF212

SNC v1.0 SNR-MOD v1.0

ATZB-900-B0

custom code

or

Contiki + custom code

SP

I / UA

RT

21

Spectrum sensing VESNA nodes deployment

22

Spectrum sensing infrastructure

• 50+ sensor nodes are deployed in 3 clusters• City center (23)• Industrial zone (27)• JSI campus

• Management network ZigBee @ 868 MHz, Ethernet gateway

green – UHF, blue - ISM 868 MHz, red - ISM 2400 MHz, yellow - reserve locations23

CREW project

24

FP7 project CREW

• Cognitive Radio Experimentation World• http://www.crew-project.eu/• Establish an open federated test platform• Research on advanced spectrum sensing,

cognitive radio and cognitive networking • Horizontal and vertical spectrum sharing in

licensed and unlicensed bands

• LOG-a-TEC• Outdoor• ISM/TVWS• Spectrum sensing and

cognitive radio

25

LOG-a-TEC spectrumsensing infrastructure• 3 clusters

• Sensor nodes (23+27+1)• SNC-STM32

• SNR-MOD (ZigBee mesh @ 868 MHz)

• SNE-ISMTV

• Gateways • SNC-STM32

• SNR-MOD (ZigBee mesh @ 868 MHz)

• SNE-WG

Cit

y o

f Lo

gate

cJS

I Cam

pu

s /

Lju

blja

na

26

LOG-a-TEC spectrum sensing infrastructure

• Web access portal

• User administration and scheduling

• Python library

• SSL connection and protocol proxy

• GRAS-RaPlaT

27

LOG-a-TEC testbed access portal• Testbed access portal available

at www.log-a-tec.eu allows to• Show node status

• Choose particular cluster

• Perform an experiment • Described as a sequence of GET and POST requests

• Remote (over-the-air) reprograming

28

LOG-a-TEC testbed access portalSensor node clusters

29

LOG-a-TEC testbed access portalUHF, 868 MHz, 2.4 GHz spectrum sensing demos

30

LOG-a-TEC testbed access portalDirect interaction with nodes using GET and POST requests

31

LOG-a-TEC testbed access portalExecution of predefined experiments (sequence of GET and POST requests / Python script)

32

LOG-a-TEC testbed access portalGRASS-RaPlaT radio coverage simulations

33

VESNA spectrum sensing experimentation

• VESNA spectrum sensing software

• A batch of pre-prepared spectrum sensing profiles is available

• Once profile is selected VESNA sensor node is accordingly configured

• Experiment is run according to spectrum sensing specifications

• Results are saved locally on the SD card and sent in batches to the server

34

Sensing profile• Frequency band• Channel bandwidth• Averaging• …

GRASS-RaPlaT experimentation

• Integrated Radio Planning Tool (RaPlaT)based on open-source GIS system GRASS • Experiment planning• Tx radio coverage calculation • Visualization • Supporting REM estimation

• Incorporating • Digital Elevation Model• Clutter file• Six path loss prediction models• Ray-tracing approach for rural

and urban environments

35http://www-e6.ijs.si/en/software/grass-raplat

Experimentation in LOG-a-TEC

1. Remote experiments (RE)• Define your experiments• Ask for an account to LOG-a-TEC• Use the Python scripts https://github.com/sensorlab/vesna-alh-tools to develop

your own experiment• Use the web portal to run pre-defined experiments and simulations

https://crn.log-a-tec.eu/

2. On site experiments (OE)• If the experiments requires mobile equipment or a particular type of equipment to

be brought on site

3. A mix of remote and on-site experiments (ME)• A combination of the above

36

Demos

37

Demos

1. UHF coverage simulation

2. Context awareness in TVWS

38

Acknowledgements

• Thanks to colleagues in SensorLab who greatly contributed to this work.

• The work reported in this presentation has been partially funded by the European Community through the FP7 project CREW (FP7–258301).

40

Thanks for attention!

[email protected]

http://sensorlab.ijs.si/