co2 capture within refining: case studies - rosa maria domenichini, foster wheeler

24
© Foster Wheeler 2013. All rights reserved CO 2 Capture within Refining: Case Studies 3 rd CCS Cost Workshop Paris, 6-7 November 2013 Rosa Maria Domenichini Director, Power Division Foster Wheeler

Upload: global-ccs-institute

Post on 12-Jun-2015

762 views

Category:

Economy & Finance


4 download

DESCRIPTION

A presentation from the 2013 CCS Costs Workshop.

TRANSCRIPT

Page 1: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

CO2 Capture within Refining: Case Studies

3rd CCS Cost Workshop Paris, 6-7 November 2013

Rosa Maria Domenichini Director, Power Division Foster Wheeler

Page 2: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

•  Contribution of refining to world CO2 emissions

•  Refining processes

•  Major refinery CO2 emission sources

•  Applying carbon capture to the refinery: case studies

•  Conclusions

1

Agenda

CO2 capture within refining processes

Page 3: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

Introduction

2

Contribution of refining to CO2 emissions

Source: NETL DOE website (2013) http://netldev.netl.doe.gov/research/coal/carbon-storage/carbon-storage-natcarb/co2-stationary-sources

Source: concawe report 07/11 https://www.concawe.eu/DocShareNoFrame/docs/4/AKPHIDGDCMEBKOOKOOLLCGBDVEVCWY939YBYW3B6AYW3/CEnet/docs/DLS/Rpt_11-7-2011-03321-01-E.pdf

Ø  Refining contribution: 6%

Ø  Annual CO2 emissions up to 4-5 million tons/year for the largest refineries (400,000 BPSD equivalent to approx 20,000,000 tons/year of crude oil)

Page 4: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

Ø  Most carbon entering the refinery leaves again with the hydrocarbon products; CO2 emissions related to the chemistry and mostly to the energy demand of the refinery processes

Ø  Typically 5-10% of thermal power entering is lost, increasing trend due to more stringent product specs, heavier crude oils, need to reduce/eliminate heavy products

Ø  Multiple dispersed sources over large areas

Reduction of refining carbon footprint Ø  Efficiency improvements/flaring reduction Ø  Feedstocks/fuels substitution Ø  Modifications to refinery configuration Ø  Carbon capture and storage

3

Contribution of refining to CO2 emissions

CO2 capture within refining processes

Page 5: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

Modern refinery simplified scheme

4

Topping  

Vacuum  

Delayed  Coker  

HDT  (naphtha)  

HDCK  

FCC  

GPL  

gasoline  

HDS  (Kerosene)  

kerosene  

GasificaBon  

HDS  (Gasoil)  

gasoil  

CCR  

products  

H2  

H2  

H2  

H2  

H2  

Page 6: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

CO2 capture within refining processes

5

CO2 sources

Chemicals  producBon  via  boGom  of  the  barrel  

gasificaBon  •   heavy  liquid  residue  •   petcoke  

Refinery   Hydrogen  via  steam  reformer  

Process  heaters  &  al  Topping/Vacuum,  CCR,  

HDS,  HCK,  TGT  incinerator,    FCC  regenerator,  etc)  

Refining  

Power  plant  

Hydrogen  

Methanol  

SNG  

Others    (GTL,  ferLlizers…)  

Flare  (no  capture)  

Page 7: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved 6

Example of rough split of major CO2 emitters

CO2 capture within refining processes

Process heaters / FCC regenerator

55%

Power/steam generation

20%

H2 production 25%

Page 8: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

CO2 capture from process heaters flue gas

7

More emitters, same area/different sizes, to the same stack

Process  unit  

Fuel  gas  absorber  

Heat  recovery  

H2S  to  SRU  

Flue  gas  to  atm  

Compressed  CO2  

CO2  capture  plant  

Fuel  oil  Fuel  gas  NG  

NEW  UNIT  

Main  process  heaters  joint:  

crude  disBllaBon  unit,  catalyBc  reforming,    

HDS  

Page 9: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

CO2 capture from process heaters flue gas

8

CCU utility requirements: two scenarios…

CO2  capture  plant  

CO2  compression  

Utilities available from refinery Utilities NOT available from refinery (fit for purpose) Compressed  CO2  

Flue  gas  

EE  LP  steam  

Boiler  

Power  to  CO2  compressor  

Power  to  AGR  

Deaerator  

Condensate   Make-­‐up  

Page 10: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

CO2 capture from process heaters flue gas

9

Bases  for  the  analysis  

LocaLon   -­‐   Central  Europe  

Total  capital  requirement   -­‐   TIC  +  20%  

IRR   %   10  

Plant  life     years   25  

Financial  leverage     %  debt     100  

InflaLon  rate     %   No  inflacLon  

Electricity  price   €/MWh   70  

Steam  price   €/t   Equivalent  to  loss  of  power  producLon  

NG  cost   $/MMBtu   12  

CO2  condiLons  @  BL   -­‐   110  bar,  liquefied  

CO2  transport  and  storage  cost   €/t   10  

Page 11: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

CO2 capture from process heaters flue gas

10

Case study: refinery heaters Case       UBliBes  from  refinery   Dedicated  power  plant  

Refinery  size       300,000  bpd  

Origin  of  emission       Common  stack  on  furnaces  in  crude  disLllaLon  unit,  catalyLc  reforming,  HDS  

CO2  balance              

CO2  produced  (process)   t/h   100   100  

CO2  captured  (process)   t/h   91   91  

CO2  emiced  (uLlity  plant)   t/h   -­‐   19  

CO2  abated  (total)  t/h  

(ktpa)  91  

(700)  72  

(555)  

UBlity  requirement              

Natural  gas   MWth   -­‐   98  

Electrical  consumpLons   MWe   12.1   (1)  

LP  Steam  consumpLon  (4  barg,  sat)   t/h   120   (1)  

Economic  data              

Total  capital  requirement   M€   153   181  (1)    Generated  internally              

Page 12: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

CO2 capture from process heaters flue gas

11

Case study: refinery heaters

Case       UBliBes  from  refinery   Dedicated  power  plant  

Refinery  size       300,000  bpd  

CO2  avoidance  cost              

Central  Europe  (NG  cost:  12  $/MMBtu  EE  cost:  70  €/MWh)  

€/t   72   103  

USA  (NG  cost:  4  $/MMBtu    EE  cost:  50  $/MWh)  

€/t   60   80  

Page 13: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

CO2 capture within H2 production process

12

Different alternatives available

Steam  reforming  

Feed   ShiX  

Fuel  

PSA  H2  

CO2  capture  OpLon  #3  

CO2  capture  OpLon  #1  

CO2  capture  OpLon  #2  

Flue  gas  

PSA  tail  gas  

Achievable  CO2  capture  90%    

Achievable  CO2  capture  60%    

Achievable  CO2  capture  55%    

Page 14: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

CO2 capture within H2 production process

13

Case study: option 1

Steam  reforming  

Feed  ShiX  

Fuel  

PSA  H2  CO2  capture  

OpLon  #1  

PSA  tail  gas  

CO2  capture  99.5%  

Flue  gas  

MDEA  absorber  

CO2  stripper  

CO2  drying/  compression  

Page 15: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

Hydrogen  from  steam  reformer          

Hydrogen  producLon   Nm3/h   150,000  

AGR  CO2  balance          

CO2  captured  kmol/h  (ktpa)  

1,702  (623)  

CO2  capture  rate   %   99.5  

AGR  +  compression  unit  consumpBon          

Electrical  consumpLons   MWe   10.1  

LP  Steam  consumpLon   t/h   20.2  

Hydrogen  losses   Nm3/h   175  

Economic  data          

Total  capital  requirement   M€   92  

CO2  capture  cost  (OpLon  #1)   €/t   47  

CO2  capture  cost  (OpLon  #3)   €/t   65  

CO2 capture within H2 production process

14

Case study: option 1

Page 16: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

Joint CO2 capture from different refinery processes

15

CO2 capture from process heaters flue gas and within H2 production process

CO2  capture  plant  

CO2  compression  

Compressed  CO2  

Flue  gas  

Boiler  

Power  to  CO2  compressor  

Power  to  AGRUs  

Deaerator  

Make-­‐up  

CO2  capture  plant  

Reformed  gas  

To  PSA  

Page 17: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved 16

Joint CO2 capture from different processes

CO2 capture from process heaters flue gas and within H2 production process

Refinery  size       300,000  bpd  

Hydrogen  from  steam  reformer   Nm3/h   150,000  

Origin  of  emission       Common  stack  on  furnaces  in  CDU,  reforming,  HDS,  steam  reformer  

CO2  balance          

CO2  produced   t/h   224.8  

CO2  captured   t/h   165.9  

CO2  emiced   t/h   24.1  

CO2  abated  t/h  

(ktpa)  141.8  (1093)  

UBlity  requirement          

Natural  gas   MWth   122  

Electrical  consumpLons   MWe   22.2  

LP  steam  consumpLon   t/h   140  

Economic  data          

Investment  cost   M€   284  

CO2  avoidance  cost   €/t   78  

Page 18: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

CO2 capture within an XTP plant

17

Hydrogen case

CO2  to  atm  

ASU  

CO  Shil  

Heavy  residue  70  t/h  

Raw  Syngas  

Oxygen  

SRU  &  TGT  

Sour  gas  

ULliLes  and  Offsites  

ShiXed  syngas   PSA  Clean  

syngas  GasificaLon   AGR  

Hydrogen  150,000  Nm3/h  

CO2  compression  

CO2  

CO2  TO  STORAGE  

CAPTURE  RATE  87%  

NEW  UNIT  

Page 19: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

CO2 capture within an XTP plant

18

Hydrogen case

Hydrogen  from  asphalt  

Liquid  heavy  residue  flowrate   t/h   70  

Raw  syngas  flowrate   kmol/h   22,000  

Hydrogen  producLon   Nm3/h   150,000  

CO2  balance  

CO2  captured  kmol/h  (ktpa)  

4,370  (1,430)  

CO2  capture  rate   %   87.3  

Compression  unit  

Compression  consumpLons  (up  to  110  bar)   MWe   13.3  

Total  capital  requirement   M€   35  

CO2  capture  cost   €/t   19  

Page 20: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

CO2 capture within an XTP plant

19

Methanol case

CO2  to  atm  

ASU  

CO  Shil  

Heavy  residue  148  t/h  

Raw  Syngas  

Oxygen  

SRU  &  TGT  

Sour  gas  

ULliLes  and  Offsites  

ShiXed  syngas  

Methanol  plant  

Clean  syngas  GasificaLon   AGR  

MeOH  4000  TPD  

CO2  compression  

CO2  

CO2  TO  STORAGE  

CAPTURE  RATE  43%  

NEW  UNIT  

Page 21: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved 20

CO2 capture within an XTP plant

Methanol case (*)

Methanol  from  asphalt  

Liquid  heavy  residue  flowrate   t/h   148  

Raw  syngas  flowrate   kmol/h   46,000  

MeOH  producLon  (*)   tpd   4,000  

CO2  balance  

Captured  CO2  kmol/h  (ktpa)  

4,490  (1,470)  

CO2  capture  rate   %   42.8  

Compression  unit  

Compression  consumpLons  (up  to  110  bar)   MWe   13.6  

Total  capital  requirement   M€   36  

CO2  capture  cost   €/t   19  

(*) or GTL process (LPG production 745 bpd, naphtha production 3,300 bpd, Diesel production 6,600 bpd)

Page 22: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved 21

•  Refineries are not larger CO2 emitters, but CO2 capture needs to be considered

•  Number of options available for applying carbon capture to most of the CO2 sources in a refinery

•  Post combustion CO2 capture in refining process still expensive

•  Both pre and post combustion CO2 capture applicable to Hydrogen process; pre-combustion capture fostered by the process itself (limiting capture rate)

•  CO2 capture in chemical production strongly convenient CO2 being already available at plant BL (limiting capture rate): only compression needed

•  Transportation economically attractive requires scale economy

•  Application of oxy-combustion to refining processes under R&D (FCC regenerator)

CO2 capture within refining processes

Summary findings

Page 23: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved 22

•  The most suitable options for each source to be determined by site-specific study (set the target, perform C balance, select optimal technologies, develop reliable site-specific cost estimate)

•  Impacts on an existing refinery:

Ø  Incremental steam generation / power consumption of CO2 capture may require a dedicated boiler

Ø  Increased consumption of fuel gas/ reduced CO2 abatement

Ø  Increase in service and cooling water withdrawal

Ø  Impact on plot plan (ducting, CO2 capture and compression units)

•  To make carbon capture economically attractive, the CO2 needs to have a value significantly higher than actual EU ETS, unless EOR is applicable.

Summary findings

CO2 capture within refining processes

Page 24: CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

© Foster Wheeler 2013. All rights reserved

www.fwc.com

[email protected] [email protected] [email protected]