cmb polarization results from the cosmic background imager

84

Upload: una

Post on 22-Jan-2016

53 views

Category:

Documents


2 download

DESCRIPTION

CMB Polarization Results from the Cosmic Background Imager. Steven T. Myers. National Radio Astronomy Observatory Socorro, NM. The Cosmic Background Imager. A collaboration between Caltech ( A.C.S. Readhead PI , S. Padin PS.) NRAO CITA Universidad de Chile University of Chicago - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: CMB Polarization Results from the   Cosmic Background Imager
Page 2: CMB Polarization Results from the   Cosmic Background Imager

2The Cosmic Background Imager – ATCA, 19 Oct 2004

CMB Polarization Results from the

Cosmic Background ImagerSteven T. Myers

National Radio Astronomy Observatory

Socorro, NM

Page 3: CMB Polarization Results from the   Cosmic Background Imager

3The Cosmic Background Imager – ATCA, 19 Oct 2004

The Cosmic Background Imager

• A collaboration between– Caltech (A.C.S. Readhead PI, S. Padin PS.)– NRAO– CITA– Universidad de Chile– University of Chicago

• With participants also from– U.C. Berkeley, U. Alberta, ESO, IAP-Paris, NASA-MSFC,

Universidad de Concepción

• Funded by– National Science Foundation, the California Institute of

Technology, Maxine and Ronald Linde, Cecil and Sally Drinkward, Barbara and Stanley Rawn Jr., the Kavli Institute, and the Canadian Institute for Advanced Research

Page 4: CMB Polarization Results from the   Cosmic Background Imager

4The Cosmic Background Imager – ATCA, 19 Oct 2004

The CMB Landscape

Page 5: CMB Polarization Results from the   Cosmic Background Imager

5The Cosmic Background Imager – ATCA, 19 Oct 2004

The Cosmic Microwave Background

• Discovered 1965 (Penzias & Wilson)– 2.7 K blackbody– Isotropic– Relic of hot “big bang”– 3 mK dipole (Doppler)

• COBE 1992– Blackbody 2.725 K– Anisotropies ≤10-5

Page 6: CMB Polarization Results from the   Cosmic Background Imager

6The Cosmic Background Imager – ATCA, 19 Oct 2004

The Expanding Universe• space is expanding with time

– measured by scale factor a – or “redshift” z ~ inverse scale factor– a = 1 now; a = 0 at “Big Bang”– all linear scales (like wavelengths) expand as a

• all else follows from this expansion!– radiation temperature T scales with 1/a – matter density 1/a3 ; radiation density 1/a4

• rate of expansion = H “Hubble constant”– controlled by matter and radiation density of Universe– H-1 “expansion time”, currently ~13 Gyr– expansion should be decelerating with time

• accelerating !? “dark energy” with negative pressure!

– speed of light c limits “horizon” of causality• isotropy of Universe suggests early phase of “inflation”

za

1

1

Page 7: CMB Polarization Results from the   Cosmic Background Imager

7The Cosmic Background Imager – ATCA, 19 Oct 2004

Thermal History of the Universe

Courtesy Wayne Hu – http://background.uchicago.edu

““First 3 minutes”:First 3 minutes”:very hot (10 million very hot (10 million °°K)K)like interior of Sunlike interior of Sunnucleosynthesis!nucleosynthesis!

After “recombination”:After “recombination”:cooler, transparent, cooler, transparent, neutral hydrogen gasneutral hydrogen gas

Before “recombination”:Before “recombination”:hot (3000hot (3000°°K)K)like surface of Sun like surface of Sun opaque, ionized plasmaopaque, ionized plasma

““Surface of last scattering” Surface of last scattering” TT≈≈30003000°°K zK z≈≈10001000THIS IS WHAT WE SEE AS THIS IS WHAT WE SEE AS THE CMB!THE CMB!

Page 8: CMB Polarization Results from the   Cosmic Background Imager

8The Cosmic Background Imager – ATCA, 19 Oct 2004

Matter History of the Universe

• we see “structure” in Universe now– density fluctuations ~1 on 10 Mpc scales– clusters of galaxies!

• must have been smaller in past (fluctuations grow)– in expanding Universe growth is approximately linear– CMB @ a = 0.001 density fluctuations ~ 0.001

• NOTE: density higher in past, but density fluctuations smaller!

Courtesy Wayne Hu – http://background.uchicago.edu

Page 9: CMB Polarization Results from the   Cosmic Background Imager

9The Cosmic Background Imager – ATCA, 19 Oct 2004

Angular Power Spectrum

• brightness fluctuations on surface of last scattering– due to the small (~0.1%) density variations– gravity causes flows (velocities)– radiation pressure resists compression bounces– acoustic waves!

• Fourier analysis– break angular ripple pattern into sine & cosine– look for power on particular angular frequencies– like a cosmic Spectrum Analyzer!– acoustic waves + expansion fundamental + overtones

• fundamental = scale of first compression since horizon crossing• scale set by sound crossing time at last scattering

Page 10: CMB Polarization Results from the   Cosmic Background Imager

10The Cosmic Background Imager – ATCA, 19 Oct 2004

CMB Acoustic Peaks

• Compression driven by gravity, resisted by radiation≈ “j ladder” series of harmonics + projection corrections

peaks: ~ peaks: ~ llss jjtroughs: ~ troughs: ~ llss ( (jj ±± ½½))

Page 11: CMB Polarization Results from the   Cosmic Background Imager

11The Cosmic Background Imager – ATCA, 19 Oct 2004

CMB Primary Anisotropies

• Low l (<100)– primordial power spectrum (+ S-W, tensors, etc.)

• Intermediate l (100-2000)– dominated by acoustic peak structure– position of peak related to sound crossing angular scale angular diameter distance to last scattering

– peak heights controlled by baryons & dark matter, etc.– damping tail roll-off with

• Large l (2000-5000+)– realm of the secondaries (e.g. SZE)

Courtesy Wayne Hu – http://background.uchicago.edu

Page 12: CMB Polarization Results from the   Cosmic Background Imager

12The Cosmic Background Imager – ATCA, 19 Oct 2004

only transverse only transverse polarization can be polarization can be transmitted on scattering!transmitted on scattering!

CMB Polarization

• Due to quadrupolar intensity field at scattering

Courtesy Wayne Hu – http://background.uchicago.edu

NOTE: polarization maximum NOTE: polarization maximum when velocity is maximum when velocity is maximum (out of phase with compression (out of phase with compression maxima)maxima)

Page 13: CMB Polarization Results from the   Cosmic Background Imager

13The Cosmic Background Imager – ATCA, 19 Oct 2004

CMB Polarization• E & B modes: translation invariance

– E (even parity, “gradient”) • from scalar density fluctuations predominant!

– B (odd parity, “curl”) • from gravity wave tensor modes, or secondaries

Courtesy Wayne Hu – http://background.uchicago.edu

Page 14: CMB Polarization Results from the   Cosmic Background Imager

14The Cosmic Background Imager – ATCA, 19 Oct 2004

Polarization Power Spectrum

Hu & Dodelson ARAA 2002

Planck “error boxes”Planck “error boxes”

Note: polarization peaks Note: polarization peaks out of phase w.r.t. out of phase w.r.t. intensity peaksintensity peaks

Page 15: CMB Polarization Results from the   Cosmic Background Imager

15The Cosmic Background Imager – ATCA, 19 Oct 2004

The Gold Standard: WMAP + “ext”WMAP

ACBAR

Page 16: CMB Polarization Results from the   Cosmic Background Imager

16The Cosmic Background Imager – ATCA, 19 Oct 2004

The Cosmic Background Imager

Page 17: CMB Polarization Results from the   Cosmic Background Imager

17The Cosmic Background Imager – ATCA, 19 Oct 2004

The Instrument

• 13 90-cm Cassegrain antennas– 78 baselines

• 6-meter platform– Baselines 1m – 5.51m

• 10 1 GHz channels 26-36 GHz– HEMT amplifiers (NRAO)

– Cryogenic 6K, Tsys 20 K

• Single polarization (R or L)– Polarizers from U. Chicago

• Analog correlators– 780 complex correlators

• Field-of-view 44 arcmin– Image noise 4 mJy/bm 900s

• Resolution 4.5 – 10 arcmin

Page 18: CMB Polarization Results from the   Cosmic Background Imager

18The Cosmic Background Imager – ATCA, 19 Oct 2004

CMB Interferometers

• CMB issues:– Extremely low surface brightness fluctuations < 50 K

• Large monopole signal 3K, dipole 3 mK

• Polarization less than 10% signal < 5 K

– No compact features, approximately Gaussian random field– Foregrounds both galactic & extragalactic

• Traditional direct imaging– Differential horns or focal plane arrays

• Interferometry– Inherent differencing (fringe pattern), filtered images– Works in spatial Fourier domain– Element-based errors vs. baseline-based signals– Limited by need to correlate pairs of elements– Sensitivity requires compact arrays

Page 19: CMB Polarization Results from the   Cosmic Background Imager

19The Cosmic Background Imager – ATCA, 19 Oct 2004

Traditional Inteferometer – The VLA• The Very Large Array (VLA)

– 27 elements, 25m antennas, 74 MHz – 50 GHz (in bands)– independent elements Earth rotation synthesis

Page 20: CMB Polarization Results from the   Cosmic Background Imager

20The Cosmic Background Imager – ATCA, 19 Oct 2004

CMB Interferometer – The CBI• The Cosmic Background Imager (CBI)

– 13 elements, 90 cm antennas, 26-36 GHz (10 channels)– fixed to 3-axis platform telescope rotation synthesis!

Page 21: CMB Polarization Results from the   Cosmic Background Imager

21The Cosmic Background Imager – ATCA, 19 Oct 2004

Other CMB Interferometers: DASI, VSA

• DASI @ South Pole

• VSA @ Tenerife

Page 22: CMB Polarization Results from the   Cosmic Background Imager

22The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI milestones• 1980’s

– 1984 OVRO 40m single-dish work (20 GHz maser Rx!)– 1987 genesis of idea for CMB interferometer

• 1990’s– 1992 OVRO systems converted to HEMTs– 1994 NSF proposal (funded 1995)– 1998 assembled and tested at Caltech– 1999 August shipped to Chile– 1999 November Chile first “light”

• 2000+– 2000 January routine observing begins– 2001 first paper; 2002 first year results; 2003 2yrs; 2004 pol– 2002 continued NSF funding to end of 2004– exploring funding prospects to operate until end of 2005

Page 23: CMB Polarization Results from the   Cosmic Background Imager

23The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI Operations

• Telescope at high site in Andes– 16000 ft (~5000 m) oxygen an issue!– Located on Science Preserve, co-located with ALMA– Now also ATSE (Japan) and APEX (Germany)– Future home of ACT, AT-25m, others?– Controlled on-site, oxygenated quarters in containers

• Operations base in San Pedro de Atacama– population ~900 (but lots of tourists, and now astronomers!)– “low” elevation 8000 ft. (2500m)– about 1 ½ hours to site, good highway access

Page 24: CMB Polarization Results from the   Cosmic Background Imager

24The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI Site – Northern Chilean Andes

• Elevation 16500 ft.!

Page 25: CMB Polarization Results from the   Cosmic Background Imager

25The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI Instrumentation

Page 26: CMB Polarization Results from the   Cosmic Background Imager

26The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI in Chile

Page 27: CMB Polarization Results from the   Cosmic Background Imager

27The Cosmic Background Imager – ATCA, 19 Oct 2004

The CBI Adventure…

• sunset

Page 28: CMB Polarization Results from the   Cosmic Background Imager

28The Cosmic Background Imager – ATCA, 19 Oct 2004

The CBI Adventure…

• Steve Padin wearing the cannular oxygen system– because you never know when you

need to dig the truck out!

Page 29: CMB Polarization Results from the   Cosmic Background Imager

29The Cosmic Background Imager – ATCA, 19 Oct 2004

The CBI Adventure…

• the snow in Chile falls mainly on the road! 2 winters/yr

Page 30: CMB Polarization Results from the   Cosmic Background Imager

30The Cosmic Background Imager – ATCA, 19 Oct 2004

The CBI Adventure…• Volcan Lascar (~30 km away) erupts in 2001

Page 31: CMB Polarization Results from the   Cosmic Background Imager

31The Cosmic Background Imager – ATCA, 19 Oct 2004

CMB Interferometry

Page 32: CMB Polarization Results from the   Cosmic Background Imager

32The Cosmic Background Imager – ATCA, 19 Oct 2004

The CMB and Interferometry

• The sky can be uniquely described by spherical harmonics– CMB power spectra are described by multipole l

• For small (sub-radian) scales the spherical harmonics can be approximated by Fourier modes– The conjugate variables are (u,v) as in radio interferometry

– The uv radius is given by |u| = l / 2• An interferometer naturally measures the transform of

the sky intensity in l space convolved with aperture

e)(~

)(~

e)()()(

22

)(22

p

p

i

ip

eIAd

eIAdV

xv

xxu

vvuv

xxxxu

Page 33: CMB Polarization Results from the   Cosmic Background Imager

33The Cosmic Background Imager – ATCA, 19 Oct 2004

The uv plane

• The projected baseline length gives the angular scale

multipole:multipole:

ll = 2 = 2B/B/λ λ = 2= 2uuijij||

shortest CBI baseline:shortest CBI baseline:

central hole 10cmcentral hole 10cm

Page 34: CMB Polarization Results from the   Cosmic Background Imager

34The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI Beam and uv coverage

• Over-sampled uv-plane– excellent PSF– allows fast gridded method (Myers et al. 2000)

primary beam transform:primary beam transform:

θθpripri= 45= 45' ' ΔΔll ≈ 4D/ ≈ 4D/λλ ≈ 360 ≈ 360

mosaic beam transform:mosaic beam transform:

θθmosmos= = nn××4545' ' ΔΔll ≈ 4D/ ≈ 4D/nnλλ

Page 35: CMB Polarization Results from the   Cosmic Background Imager

35The Cosmic Background Imager – ATCA, 19 Oct 2004

Mosaicing in the uv plane

offset & add

phase gradients

Page 36: CMB Polarization Results from the   Cosmic Background Imager

36The Cosmic Background Imager – ATCA, 19 Oct 2004

Polarization of radiation

• Electromagnetic Waves– Maxwell: 2 independent linearly polarized waves

– 3 parameters (E1,E2,) polarization ellipse

Rohlfs & Wilson

Page 37: CMB Polarization Results from the   Cosmic Background Imager

37The Cosmic Background Imager – ATCA, 19 Oct 2004

Polarization of radiation

• Electromagnetic Waves– Maxwell: 2 independent linearly polarized waves

– 3 parameters (E1,E2,) polarization ellipse

• Stokes parameters (Poincare Sphere):– intensity I (Poynting flux) I2 = E1

2 + E22

– linear polarization Q,U (m I)2 = Q2 + U2

– circular polarization V (v I)2 = V2

Rohlfs & Wilson

The Poincare SphereThe Poincare Sphere

Page 38: CMB Polarization Results from the   Cosmic Background Imager

38The Cosmic Background Imager – ATCA, 19 Oct 2004

Polarization of radiation

• Electromagnetic Waves– Maxwell: 2 independent linearly polarized waves

– 3 parameters (E1,E2,) polarization ellipse

• Stokes parameters (Poincare Sphere):– intensity I (Poynting flux) I2 = E1

2 + E22

– linear polarization Q,U (m I)2 = Q2 + U2

– circular polarization V (v I)2 = V2

• Coordinate system dependence:– I independent– V depends on choice of “handedness”

• V > 0 for RCP

– Q,U depend on choice of “North” (plus handedness)• Q “points” North, U 45 toward East• EVPA = ½ tan-1 (U/Q) (North through East)

Page 39: CMB Polarization Results from the   Cosmic Background Imager

39The Cosmic Background Imager – ATCA, 19 Oct 2004

Polarization – Stokes parameters• CBI receivers can observe either RCP or LCP

– cross-correlate RR, RL, LR, or LL from antenna pair

• CMB intensity I plus linear polarization Q,U important– CMB not circularly polarized, ignore V (RR = LL = I)

– parallel hands RR, LL measure intensity I

– cross-hands RL, LR measure complex polarization P=Q+iU• R-L phase gives electric vector position angle = ½ tan-1 (U/Q)

• rotates with parallactic angle of detector on sky

V

U

Q

I

eie

eie

VI

eUiQ

eUiQ

VI

ee

ee

ee

ee

ii

ii

i

i

LL

RL

LR

RR

1001

00

00

1001

22

22

2

2

*

*

*

*

Page 40: CMB Polarization Results from the   Cosmic Background Imager

40The Cosmic Background Imager – ATCA, 19 Oct 2004

Polarization Interferometry

• Parallel-hand & Cross-hand correlations– for antenna pair i, j and frequency channel :

– where kernel P is the aperture cross-correlation function

– and the baseline parallactic angle (w.r.t. deck angle 0°)

RLij

iijij

RLij

RRijijij

RRij

ijeUiQPdV

IPdV

e)(~

)(~

)()(

e)(~

)()(

22

2

vvvvu

vvvu

ijiijijij eAP xvvuv

2)(~

)(

01tan ijijijij uv

Page 41: CMB Polarization Results from the   Cosmic Background Imager

41The Cosmic Background Imager – ATCA, 19 Oct 2004

E and B modes

• A useful decomposition of the polarization signal is into “gradient” and “curl modes” – E and B:

uv1tan v

vvvvv χieBiEUiQ 2)(~

)(~

)(~

)(~

RLij

iijij

RLij

ijeBiEPdV

e)](~

)(~

[)()( )(22 vvvvvu

E & B response smeared by phase variation over aperture A

interferometer “directly” measures (Fourier transforms of) E & B!

Page 42: CMB Polarization Results from the   Cosmic Background Imager

42The Cosmic Background Imager – ATCA, 19 Oct 2004

Power Spectrum of CMB

• Statistics of CMB field– Gaussian random field – Fourier modes independent– described by angular power spectrum

– 4 non-zero polarization covariances: TT,EE,BB,TE – EB, TB should be zero due to parity (but check on systematics)

)'()'(~

)(~

2)'()'(*~

)(~

2

2

vvvv

vvvvv

CTT

CTT

)'()'(*~

)(~

)'()'(*~

)(~

)'()'(*~

)(~

)'()'(*~

)(~

)'()'(*~

)(~

)'()'(*~

)(~

22

22

22

vvvvvvvv

vvvvvvvv

vvvvvvvv

EBTB

BBTE

EETT

CBECBT

CBBCET

CEECTT

Page 43: CMB Polarization Results from the   Cosmic Background Imager

43The Cosmic Background Imager – ATCA, 19 Oct 2004

Errors: leakage

• instrumental polarization– “leaks” L into R, R into L (level ~1%-2%)

– e.g. Robs = R + d L

• measure on bright source– use standard data analysis to determine d-terms

• to first order:– TT unaffected– TT leaks into TE & TB

– TE & TB leak into EE, BB, EB

• include in correlation analysis– just complicates covariance matrix calculation

Page 44: CMB Polarization Results from the   Cosmic Background Imager

44The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI PolarizationNew Results!

Brought to you by:A. Readhead, T. Pearson, C. Dickinson (Caltech)

S. Myers, B. Mason (NRAO),J. Sievers, C. Contaldi, J.R. Bond (CITA)

P. Altamirano, R. Bustos, C. Achermann (Chile)& the CBI team!

astro-ph/0409569 (24 Sep 2004)

Page 45: CMB Polarization Results from the   Cosmic Background Imager

45The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI 2000+2001, WMAP, ACBAR, BIMA

Readhead et al. ApJ, 609, 498 (2004)Readhead et al. ApJ, 609, 498 (2004)

astro-ph/0402359astro-ph/0402359

SZE SZE SecondarySecondaryCMB CMB

PrimaryPrimary

Page 46: CMB Polarization Results from the   Cosmic Background Imager

46The Cosmic Background Imager – ATCA, 19 Oct 2004

2002 DASI & 2003 WMAP Polarization

Courtesy Wayne Hu – http://background.uchicago.edu

Carlstrom et al. 2003 astro-ph/0308478

Page 47: CMB Polarization Results from the   Cosmic Background Imager

47The Cosmic Background Imager – ATCA, 19 Oct 2004

New: DASI 3-year polarization results!

• Leitch et al. 2004 (astro-ph/0409357) 16Sep04! 16Sep04! – EE 6.3 σ – TE 2.9 σ – consistent w/ WMAP+ext model– BB consistent with zero– no foregrounds (yet)

Page 48: CMB Polarization Results from the   Cosmic Background Imager

48The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI Current Polarization Data

• Observing since Sep 2002 (processed to May 2004)– compact configuration, maximum sensitivity

Page 49: CMB Polarization Results from the   Cosmic Background Imager

49The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI Polarization Upgrade

• CBI instrumentation– Use quarter-wave devices for linear to circular conversion– Single amplifier per receiver: either R or L only per element

• 2000 Observations– One antenna cross-polarized in 2000 (Cartwright thesis)– Only 12 cross-polarized baselines (cf. 66 parallel hand)– Original polarizers had 5%-15% leakage– Deep fields, upper limit ~8 K

• 2002 Upgrade– Upgrade in 2002 using DASI polarizers (J. Kovac)– Observing with 7R + 6L starting Sep 2002– Raster scans for mosaicing and efficiency– New TRW InP HEMTs from NRAO

Ka-band Receiver

0

2

4

6

8

10

12

14

16

18

20

26 28 30 32 34 36 38 40

Frequency (GHz)

No

ise

Tem

per

atu

re (

K)

Page 50: CMB Polarization Results from the   Cosmic Background Imager

50The Cosmic Background Imager – ATCA, 19 Oct 2004

Calibration from WMAP Jupiter

• Old uncertainty: 5%• 2.7% high vs. WMAP Jupiter• New uncertainty: 1.3%• Ultimate goal: 0.5%

Page 51: CMB Polarization Results from the   Cosmic Background Imager

51The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI Polarization Mosaics

• Four mosaics = 02h, 08h, 14h, 20h at = 0°– 02h, 08h, 14h 6 x 6 fields, 20h deep strip 6 fields [45’ centers]

Page 52: CMB Polarization Results from the   Cosmic Background Imager

52The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI observational issues

• short (100) baselines– can see the Sun if it is up observe at night only– can see the Moon within 60 observe 60 from Moon

• CMB fields on equator observe SZE clusters when blocked by moon!

– far-field at 100m atmosphere imaged along with CMB• Atacama site very good, little data lost to clouds

• plus platform (no delay tracking)– need to reject common mode signals (which correlate)

• 120db isolation between antennas (shields + phase shifters)

– strong (>1 Jy) ground signal (polarized)• orientation dependence (see mountains around site!)• removed by differencing (or scan projection)

Page 53: CMB Polarization Results from the   Cosmic Background Imager

53The Cosmic Background Imager – ATCA, 19 Oct 2004

Calibration and Foreground Removal

• Ground emission removal– Strong on short baselines, depends on orientation– Differencing between lead/trail field pairs (8m in RA=2deg)

• Use scanning for 2002-2003 polarization observations

Page 54: CMB Polarization Results from the   Cosmic Background Imager

54The Cosmic Background Imager – ATCA, 19 Oct 2004

Before ground subtraction:

• I, Q, U dirty mosaic images:

Page 55: CMB Polarization Results from the   Cosmic Background Imager

55The Cosmic Background Imager – ATCA, 19 Oct 2004

After ground subtraction:

• I, Q, U dirty mosaic images (9m differences):

Page 56: CMB Polarization Results from the   Cosmic Background Imager

56The Cosmic Background Imager – ATCA, 19 Oct 2004

Foregrounds – Sources

• Foreground radio sources– Predominant on long baselines – Located in NVSS at 1.4 GHz, VLA 8.4 GHz– Measured at 30 GHz with OVRO 40m

• new 30 GHz GBT receiver available late 2004

Page 57: CMB Polarization Results from the   Cosmic Background Imager

57The Cosmic Background Imager – ATCA, 19 Oct 2004

Foregrounds – Sources

• Foreground radio sources– Predominant on long baselines – Located in NVSS at 1.4 GHz, VLA 8.4 GHz– Measured at 30 GHz with OVRO 40m

• new 30 GHz GBT receiver available late 2004

• “Projected” out in power spectrum analysis– list of NVSS sources (extrapolation to 30 GHz unknown)– 3727 total for TT many modes lost, sensitivity reduced– use 557 for polarization (bright OVRO + NVSS 3 pol)– need 30 GHz GBT measurements to know brightest

Page 58: CMB Polarization Results from the   Cosmic Background Imager

58The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI Calibration & Foregrounds

• Calibration on TauA (Crab) & Jupiter– use TauA to calibrate R-L phase (26 Jy of polarized flux!)– secondary calibrators also (3C274, Mars, Saturn, …)

• Scan subtraction/projection– observe scan of 6 fields, 3m apart = 45’– lose only 1/6 data to differencing (cf. ½ previously)

• Point source projection– list of NVSS sources (extrapolation to 30 GHz unknown)– 3727 total for TT many modes lost, sensitivity reduced– use 557 for polarization (bright OVRO + NVSS 3 pol)– need 30 GHz GBT measurements to know brightest

Page 59: CMB Polarization Results from the   Cosmic Background Imager

59The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI Diffuse Foregrounds

• Mid-High galactic latitudes (25°– 50° vs. 60° DASI) • Galactic cosmic rays (synchrotron emission)

– from WMAP template (Bennett et al. 2003)– mean, rms, max not significantly worse than in DASI fields– except 14h field (in North Polar Spur) 50% worse

• Rely on CBI frequency leverage (26-36 GHz)– synchrotron spectrum -2.7 vs. thermal

– also l2 vs. CMB in power spectrum

Page 60: CMB Polarization Results from the   Cosmic Background Imager

60The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI & DASI Fields

galactic projection – image WMAP “synchrotron” (Bennett et al. 2003)

Page 61: CMB Polarization Results from the   Cosmic Background Imager

61The Cosmic Background Imager – ATCA, 19 Oct 2004

New: CBI Polarization Power Spectra

• 7-band fits (l = 150 for 600<l<1200)• bin positions well-matched to peaks & valleys• offset bins run also• narrower bins (l = 75) – scatter from F-1

• bin resolution limited by signal-to-noise

Page 62: CMB Polarization Results from the   Cosmic Background Imager

62The Cosmic Background Imager – ATCA, 19 Oct 2004

Data Tests

• Test robustness to systematic effects, such as:– instrumental effects (amplitude, polarization)– foregrounds (synchrotron, free-free, dust)

• Numerous 2 and noise tests– few discrepant days found no difference to results

• Conduct series of splits and “jack-knife” tests, e.g.:– primary vs. secondary calibrators (calibration consistency)– first half vs. second half of data (time-variable instrument)– “jack-knife” on antennas (bad single antenna)– “jack-knife” on fields (bad single field)– high vs. low frequency channels (e.g. foregrounds)

NO SIGNIFICANT DEVIATIONS FOUND!

Page 63: CMB Polarization Results from the   Cosmic Background Imager

63The Cosmic Background Imager – ATCA, 19 Oct 2004

Shaped Cl fits

• Use WMAP’03 best-fit Cl in signal covariance matrix– bandpower is then relative to fiducial power spectrum– compute for single band encompassing all ls

• Results for CBI data (sources projected from TT only)– qB = 1.22 ± 0.21 (68%)

– EE likelihood vs. zero : equivalent significance 8.9 σ

• Conservative - project subset out in polarization also– qB = 1.18 ± 0.24 (68%)

– significance 7.0 σ

Page 64: CMB Polarization Results from the   Cosmic Background Imager

64The Cosmic Background Imager – ATCA, 19 Oct 2004

k b cdm ns m h

CBI Mosaic Observation

2.5o

THE PILLARS OF INFLATION

1) super-horizon (>2°) anisotropies2) acoustic peaks and harmonic pattern (~1°)3) damping tail (<10')4) Gaussianity5) secondary anisotropies6) polarization7) gravity waves

But … to do this we need to measure a signal which is 3x107 timesweaker than the typical noise!

geometry baryonic fraction cold dark matter primordial dark energy matter fraction Hubble Constant optical depthof the protons, neutrons not protons and fluctuation negative press- size & age of the to last scatt-universe neutrons spectrum ure of space universe ering of cmb

The CBI measures these fundamental constants of cosmology:

Page 65: CMB Polarization Results from the   Cosmic Background Imager

65The Cosmic Background Imager – ATCA, 19 Oct 2004

New: CBI Polarization Parameters

• use fine bins (l = 75) + window functions (l = 25) • cosmological models vs. data using MCMC

– modified COSMOMC (Lewis & Bridle 2002)

• Include:– WMAP TT & TE– WMAP + CBI’04 TT & EE (Readhead et al. 2004b = new!)– WMAP + CBI’04 TT & EE l <1000

+ CBI’02 TT l >1000 (Readhead et al. 2004a) [overlaps ‘04]

Page 66: CMB Polarization Results from the   Cosmic Background Imager

66The Cosmic Background Imager – ATCA, 19 Oct 2004

New: CBI Polarization Parameters

• use fine bins (l = 75) + window functions (l = 25) • Include:

– WMAP TT & TE– CBI 2004 Pol TT, EE (Readhead et al. 2004b = new)– CBI 2001-2002 TT (Readhead et al. 2004a)

• NOTE: parameter constraints dominated by higher precision TT from CBI 2001-2002 data!

Page 67: CMB Polarization Results from the   Cosmic Background Imager

67The Cosmic Background Imager – ATCA, 19 Oct 2004

New: CBI Polarization Parameters

• NOTE: parameter constraints dominated by higher precision TT from CBI 2001-2002 (and to lesser extent 2002-2004) data!

• To discern what polarization data is adding, will need to be more subtle…

Page 68: CMB Polarization Results from the   Cosmic Background Imager

68The Cosmic Background Imager – ATCA, 19 Oct 2004

Cosmology from EE Polarization

• Standard Cosmological Model ™– EE “predictable” from TT– constraints dominated by more precise TT measurements

• Beyond the Standard Model– derive key parameters from EE alone – check consistency– add new ingredients (e.g. isocurvature)

Page 69: CMB Polarization Results from the   Cosmic Background Imager

69The Cosmic Background Imager – ATCA, 19 Oct 2004

Example: Acoustic Overtone Pattern

• Sound crossing angular size at photon decoupling– fiducial model WMAP+ext : θ0 = 1.046

WMAPWMAP

WMAP+CBI’04WMAP+CBI’04

WMAP+CBI’04+CBI’02WMAP+CBI’04+CBI’02

1 s

grand unified:grand unified:

θθ == 1.0441.044±0.005±0.005

θθ//θθ00 = = 0.998±0.0050.998±0.005(WMAP+CBI’04+CBI’02)(WMAP+CBI’04+CBI’02)

Page 70: CMB Polarization Results from the   Cosmic Background Imager

70The Cosmic Background Imager – ATCA, 19 Oct 2004

Example: Acoustic Overtone Pattern

• Sound crossing angular size at photon decoupling– fiducial model WMAP+ext : θ0 = 1.046

– CBIPol + WMAP + “ext” : θ/θ0 = 0.998 ± 0.005

• Overtone pattern– equivalent to “j ladder” – TT extrema spaced at j intervals– EE spaced at j+½ (plus corrections)

21

j

j

sEEj

sTTj

Page 71: CMB Polarization Results from the   Cosmic Background Imager

71The Cosmic Background Imager – ATCA, 19 Oct 2004

New: CBI EE Polarization Phase

• Parameterization 1: envelope plus shiftable sinusoid– fit to “WMAP+ext” fiducial spectrum using rational functions

kgfa

C EE

sin

1

Page 72: CMB Polarization Results from the   Cosmic Background Imager

72The Cosmic Background Imager – ATCA, 19 Oct 2004

New: CBI EE Polarization Phase

• Peaks in EE should be offset one-half cycle vs. TT – fix amplitude a=1 and allow phase to vary

slice at: slice at: aa=1=1

== 2525°±°±3333°° rel. phase ( rel. phase (22=1)=1)

22(1, 0(1, 0°°)=0.56)=0.56

Page 73: CMB Polarization Results from the   Cosmic Background Imager

73The Cosmic Background Imager – ATCA, 19 Oct 2004

New: CBI EE Polarization Phase

• Peaks in EE should be offset one-half cycle vs. TT– allow amplitude a and phase to vary

best fit: best fit: aa=0.94=0.94

== 2424°±°±3333°° ( (22=1)=1)

22(1, 0(1, 0°°)=0.56)=0.56

Page 74: CMB Polarization Results from the   Cosmic Background Imager

74The Cosmic Background Imager – ATCA, 19 Oct 2004

New: CBI EE Polarization Phase

• Scaling model: spectrum shifts by scaling l – same envelope f,g as before

0

0

sin

1

ss

EE

AAa

kgfa

C

fiducial model:fiducial model:

θθ00== 1.0461.046(“WMAP+ext”)(“WMAP+ext”)

θθ sound crossingsound crossingangular scaleangular scale

Page 75: CMB Polarization Results from the   Cosmic Background Imager

75The Cosmic Background Imager – ATCA, 19 Oct 2004

New: CBI EE Polarization Phase

• Scaling model: spectrum shifts by scaling l – allow amplitude a and scale θ to vary

overtone 0.67 island: overtone 0.67 island: aa=0.69=0.69±±0.030.03

excluded by TTexcluded by TTand other priorsand other priors

other overtone islandsother overtone islands

also excludedalso excluded

Page 76: CMB Polarization Results from the   Cosmic Background Imager

76The Cosmic Background Imager – ATCA, 19 Oct 2004

New: CBI EE Polarization Phase

• Scaling model: spectrum shifts by scaling l – allow amplitude a and scale θ to vary

best fit: best fit: aa=0.93=0.93

slice along a=1:slice along a=1:

θθ//θθ00== 1.021.02±±0.04 (0.04 (22=1)=1)

zoom in: zoom in:

± one-half cycle± one-half cycle

Page 77: CMB Polarization Results from the   Cosmic Background Imager

77The Cosmic Background Imager – ATCA, 19 Oct 2004

New: CBI, DASI, Capmap

Page 78: CMB Polarization Results from the   Cosmic Background Imager

78The Cosmic Background Imager – ATCA, 19 Oct 2004

New: DASI EE Polarization Phase

• Use DASI EE 5-bin bandpowers (Leitch et al. 2004)– bin-bin covariance matrix plus approximate window

functions

a=0.5, 0.67 overtone islands:a=0.5, 0.67 overtone islands:

suppressed by DASIsuppressed by DASI

DASI phase lock:DASI phase lock:

θθ//θθ00== 0.94±0.060.94±0.06a=0.5 (low DASI)a=0.5 (low DASI)

Page 79: CMB Polarization Results from the   Cosmic Background Imager

79The Cosmic Background Imager – ATCA, 19 Oct 2004

New: CBI + DASI EE Phase

• Combined constraints on θ model:– DASI (Leitch et al. 2004) & CBI (Readhead et al. 2004)

CBI a=0.67 overtone island:CBI a=0.67 overtone island:

suppressed by DASI datasuppressed by DASI data

other overtone islandsother overtone islands

also excludedalso excluded

CBI+DASI phase lock:CBI+DASI phase lock:

θθ//θθ00== 1.00±0.031.00±0.03a=0.78a=0.78±0.15±0.15 (low DASI) (low DASI)

Page 80: CMB Polarization Results from the   Cosmic Background Imager

80The Cosmic Background Imager – ATCA, 19 Oct 2004

Conclusions

• CMB polarization interferometry (CBI,DASI)– straightforward analysis {RR,RL} → {TT,EE,BB,TE}– polarization systematics minimized

• CMB polarization results– EE power spectrum measured

• consistent with Standard Cosmological Model™

– EE acoustic spectrum• peaks phase one-half cycle offset from TT

• sound crossing angular scale independently consistent (3%)

– BB null, no polarized foregrounds detected– TE difficult to extract in wide bins

• more data, narrower bins

Page 81: CMB Polarization Results from the   Cosmic Background Imager

81The Cosmic Background Imager – ATCA, 19 Oct 2004

CBI Polarization Projections

Page 82: CMB Polarization Results from the   Cosmic Background Imager

82The Cosmic Background Imager – ATCA, 19 Oct 2004

Future

• CBI– 6 months more data in hand finer l bins– more detailed papers: data tests, analysis, parameters– run to end of 2005 (pending funding)– also: SZE clusters (e.g. Udomprasert et al. 2004)

• Beyond CBI QUIET– detectors are near quantum & bandwidth limit – need more!– but: need clean polarization (low stable instrumental effects)– large format (1000 els.) coherent (MMIC) detector array– polarization B-modes! (at least the lensing signal)

• Further Beyond– Beyond Einstein (save the Bpol mission!)

Page 83: CMB Polarization Results from the   Cosmic Background Imager

83The Cosmic Background Imager – ATCA, 19 Oct 2004

SZE with CBI: z < 0.1 clusters

P. Udomprasert thesis (Caltech)

Page 84: CMB Polarization Results from the   Cosmic Background Imager

84The Cosmic Background Imager – ATCA, 19 Oct 2004

The CBI Collaboration

Caltech Team: Tony Readhead (Principal Investigator), John Cartwright, Clive Dickinson, Alison Farmer, Russ Keeney, Brian Mason, Steve Miller, Steve Padin (Project Scientist), Tim Pearson, Walter Schaal, Martin Shepherd, Jonathan Sievers, Pat Udomprasert, John Yamasaki.Operations in Chile: Pablo Altamirano, Ricardo Bustos, Cristobal Achermann, Tomislav Vucina, Juan Pablo Jacob, José Cortes, Wilson Araya.Collaborators: Dick Bond (CITA), Leonardo Bronfman (University of Chile), John Carlstrom (University of Chicago), Simon Casassus (University of Chile), Carlo Contaldi (CITA), Nils Halverson (University of California, Berkeley), Bill Holzapfel (University of California, Berkeley), Marshall Joy (NASA's Marshall Space Flight Center), John Kovac (University of Chicago), Erik Leitch (University of Chicago), Jorge May (University of Chile), Steven Myers (National Radio Astronomy Observatory), Angel Otarola (European Southern Observatory), Ue-Li Pen (CITA), Dmitry Pogosyan (University of Alberta), Simon Prunet (Institut d'Astrophysique de Paris), Clem Pryke (University of Chicago).

The CBI Project is a collaboration between the California Institute of Technology, the Canadian Institute for Theoretical Astrophysics, the National Radio Astronomy Observatory, the University of Chicago, and the Universidad de Chile. The project has been supported by funds from the National Science Foundation, the California Institute of Technology, Maxine and Ronald Linde, Cecil and Sally Drinkward, Barbara and Stanley Rawn Jr., the Kavli Institute,and the Canadian Institute for Advanced Research.