clinic class test 1 m e sol

2
SOL140213 - 1 1. (A) Sol. a > 0, Let f(x) = ax 2 + bx + c ) 1 .( .......... 0 c ) 0 ( f 0 c b a ) 1 ( f a < 0 ) 2 .( .......... 0 c ) 0 ( f 0 c b a ) 1 ( f (1) & (2) c (a + b + c) > 0 2. (B) Sol. + + = 0 ; 3 = 1 2 + 2 + 2 + 2 = ( + + ) 2 2 = 0 2 = 6 2 2 2 = (1) 2 = 1 2 2 + 2 2 + 2 2 = ( + + ) 2 2 ( + + ) = 3 2 2.(1)(0) = 9 Now equation x 3 ( 6) x 2 + 9x 1 = 0 x 3 + 6x 2 + 9x 1 = 0 3. (A) Sol. D = (4m + 1) Roots are rational if D is a perfect square Let 4 m + 1 = K 2 m = 4 1 K 2 K = –1, –3, –5, – 7, – 9 ................... m = 0 , 2, 6, 12, 20, 30, 42 but m is 0 Number of integral values of m are 6. 4. (A) Sol. (p 5) x 2 2px + (p 4) = 0 or x 2 5 p 4 p x 5 p p 2 = 0 f(x) = x 2 5 p p 2 x + 5 p 4 p f(0) > 0, f(2) < 0, f(3) > 0 f(0) > 0 5 p 4 p > 0 ...... (1) f(2) < 0 5 p 24 p < 0 ..........(2) f(3) > 0 5 p 49 p 4 > 0 ..........(3) Intersection of (1),(2) & (3) gives p 24 , 4 49 5. (B) Sol. Conditions are a 2 > 0, D < 0. a 2 > 0 a > 2 ...... (i) D < 0 8 2 4 . (a 2) (a + 4) < 0 16 (a 2 + 2a 8) < 0 HINTS & SOLUTIONS DATE : 14-02-2013 COURSE NAME : VIKAAS (JA) & VIPUL (JB) a 2 + 2a 24 > 0 a 2 + 6a 4a 24 > 0 (a + 6) (a 4) > 0 a (, 6) (4, ) ....... (ii) Intersection of (i) and (ii) gives a (4, ) least integer value of a = 5 6. (C) Sol. |x 4 .3 |x2| .5 x1 | = x 4 3 |x2| .5 x1 x 4 .3 |x2| .5 x1 = 0 x 4 = 0 so x = 0 7. (C) Sol. Let the 4 numbers p,q,r,s are in A.P. i.e. p = a 3d, q = a d, r = a + d, s = a + 3d p < q < r < s p + q = 4 r + s = 20 p + q + r + s = 24 4a = 24 a = 6 pq = A, rs = B p + q = 4 = 12 4d r + s = 20 = 12 + 4d 8d = 16 d = 2 the numbers are 0, 4 , 8 , 12 pq = A = a 2 4ad + 3d 2 A = 36 48 + 12 = 0 rs = B = a 2 + 4ad + 3d 2 = 36 + 48 + 12 = 96 (A, B) = (0, 96) 8. (A) Sol. x 2 + 1 = y and y 2 + 1 = x Substracting x 2 y 2 = y x (x y) (x + y + 1) = 0 x = y or x + y + 1 = 0 If x = y then x 2 + 1 = x x 2 x + 1 = 0 which has no real roots. If x + y + 1 = 0 then x + y = 1 Adding, given equations, x 2 + y 2 + 2 = x + y x 2 + y 2 + 2 = 1 x 2 + y 2 + 3 = 0 which is not possible. 9. (C) Sol. For integral roots D = (2(a + 1)) 2 4a(a + 2) = 4a 2 + 8a + 4 4a 2 8a x = a 2 2 ) 1 a ( 2 x = 1, 2 a a For 2 a a to be integer possible values of a are 0, 1, 3 and 4 If a = 2 then x = 1 total number of integer values of x = 5 10. (D) Sol. 2{(x p) (x q) + (p q) (p x q + x} = (p q) 2 + (x p) 2 + (x q) 2 2(x p) (x q) + (p q) 2 = (x p) 2 + (x q) 2 2x 2 2x(p + q) + 2pq + p 2 + q 2 2pq = 2x 2 + p 2 + q 2 2x(p + q) It is an identity so infinite values of x are possible. TEST - 1 TARGET : JEE (IITs) 2014 COURSE CODE : CLINIC CLASSES Mathematics - Quadratic Equation

Upload: dude-boy

Post on 18-Nov-2015

3 views

Category:

Documents


2 download

DESCRIPTION

Clinic Class Test 1 M E Sol

TRANSCRIPT

  • RESONANCE SOL140213 - 1

    1. (A)

    Sol. a > 0, Let f(x) = ax2 + bx + c

    )1.(..........0c)0(f

    0cba)1(f

    a < 0

    )2.(..........0c)0(f

    0cba)1(f

    (1) & (2) c (a + b + c) > 0

    2. (B)

    Sol. + + = 0 ; 3 = 1

    2 + 2 + 2 + 2 = (+ + )2

    2 = 0 2 = 6

    2 2 2 = (1)2 = 12 2 + 22 + 22 = ( + + )2 2 (+ + )= 32 2.(1)(0) = 9Now equation x3 ( 6) x2 + 9x 1 = 0 x3 + 6x2 + 9x 1 = 0

    3. (A)Sol. D = (4m + 1)

    Roots are rational if D is a perfect squareLet 4 m + 1 = K2

    m = 4

    1K2

    K = 1, 3, 5, 7, 9 ................... m = 0 , 2, 6, 12, 20, 30, 42 but m is 0 Number of integral values of m are 6.

    4. (A)

    Sol. (p 5) x2 2px + (p 4) = 0 or x2 5p4p

    x5p

    p2 = 0

    f(x) = x2 5pp2

    x + 5p4p

    f(0) > 0, f(2) < 0, f(3) > 0

    f(0) > 0 5p4p

    > 0 ...... (1)

    f(2) < 0 5p24p

    < 0 ..........(2)

    f(3) > 0 5p49p4

    > 0 ..........(3)

    Intersection of (1),(2) & (3) gives p

    24,

    449

    5. (B)Sol. Conditions are a 2 > 0, D < 0.

    a 2 > 0 a > 2 ...... (i)D < 0 82 4 . (a 2) (a + 4) < 0

    16 (a2 + 2a 8) < 0

    HINTS & SOLUTIONS

    DATE : 14-02-2013COURSE NAME : VIKAAS (JA) & VIPUL (JB)

    a2 + 2a 24 > 0a2 + 6a 4a 24 > 0(a + 6) (a 4) > 0

    a (, 6) (4, ) .......(ii)Intersection of (i) and (ii) gives a (4, )

    least integer value of a = 56. (C)Sol. |x4.3|x2|.5x1| = x43|x2|.5x1

    x4.3|x2|.5x1 = 0 x4 = 0so x = 0

    7. (C)Sol. Let the 4 numbers p,q,r,s are in A.P. i.e. p = a 3d, q = a d,

    r = a + d, s = a + 3dp < q < r < sp + q = 4r + s = 20p + q + r + s = 244a = 24a = 6pq = A, rs = Bp + q = 4 = 12 4dr + s = 20 = 12 + 4d 8d = 16d = 2 the numbers are 0, 4 , 8 , 12pq = A = a2 4ad + 3d2

    A = 36 48 + 12 = 0rs = B = a2 + 4ad + 3d2

    = 36 + 48 + 12 = 96 (A, B) = (0, 96)

    8. (A)Sol. x2 + 1 = y and y2 + 1 = x

    Substracting x2 y2 = y x (x y) (x + y + 1) = 0 x = y or x + y + 1 = 0If x = y then x2 + 1 = x x2 x + 1 = 0 which has no real roots.If x + y + 1 = 0 then x + y = 1Adding, given equations, x2 + y2 + 2 = x + y x2 + y2 + 2 = 1 x2 + y2 + 3 = 0 which is not possible.

    9. (C)Sol. For integral roots

    D = (2(a + 1))2 4a(a + 2)= 4a2 + 8a + 4 4a2 8a

    x = a2

    2)1a(2 x = 1,

    2aa

    For 2a

    a

    to be integer possible values of a are 0, 1, 3

    and 4 If a = 2 then x = 1 total number of integer values of x = 5

    10. (D)Sol. 2{(x p) (x q) + (p q) (p x q + x} = (p q)2 + (x p)2 +

    (x q)2

    2(x p) (x q) + (p q)2 = (x p)2 + (x q)2

    2x2 2x(p + q) + 2pq + p2 + q2 2pq = 2x2 + p2 + q2 2x(p + q)It is an identity so infinite values of x are possible.

    TEST - 1TARGET : JEE (IITs) 2014

    COURSE CODE : CLINIC CLASSES Mathematics - Quadratic Equation

  • RESONANCE SOL140213 - 2

    11. (B)Sol. f(1) < 0

    (2 2k + k 4) < 0k > 2 ................(i)f(2) < 0(8 4k + k 4) < 0

    k > 34

    ............(ii)

    from (i), (ii) k > 34

    12. (B)Sol. 2 2 + 3 = 0 and 2 2 + 3 = 0

    now 3 32 + 5 2= (2 3 + 5) 2= (3 + 5) 2= 2 2 2= 3 2= 1and 3 2 + + 5= (2 + 1) + 5= (2 3 + 1) + 5 = 2 2 + 5 = 2 equation x2 3x + 2 = 0

    13. (A)

    Sol.2x25

    1xx25.2 3x25.3 = 0

    x2x2 25 xx2

    5.10 3.53 = 0t2 10t 375 = 0(t 25) (t + 15) = 0 t = 25, 15

    xx25 = 52 x2 x = 2

    x2 x 2 = 0 (x 2)(x + 1) = 0

    x = 2, 1 sum = 114. (B)Sol. Roots of (x a) (x a 1) = 0 are a, a + 1

    Roots of (x + a) (x + a2 2) are a, a2 + 2Since the roots of (x a) (x a 1) = 0 lies between roots of(x + a) (x + a2 2) = 0 f(a) = (a + a) (a2 2 + a) < 0

    = (2a) (a2 + a 2) < 0 = (2a) (a 1) (a + 2) < 0

    a ( , 2) (0, 1)f(a + 1) = (2a + 1) [a + 1 2 + a2]

    = (2a + 1) (a2 + a 1)

    = (2a + 1)

    251

    a

    251

    a

    a

    251

    ,

    25

    21

    ,21

    a ( , 2)

    251

    ,0

    p = 2 q = 0 q p = 2

    15. (A)Sol. ax2 + bx + a2 + b2 ab bc ca = 0

    = 2ax2 + 2bx + (a b)2 + (b c)2 + (c 1)2 = 0Let f(x) = 2ax2 + 2bx + (a b)2 + (b c)2 + (c a)2

    f(0) = (a b)2 + (b c)2 + (c a)2 > 0and D < 0 f(x) > 0

    x R f(1) > 02a 2b + (a b)2 + (b c)2 + (c a)2 > 0 2(a b) + (a b)2 + (b c)2 + (c a)2 > 0

    16. (ABCD)Sol. (1 + )x2 (6 + 4) x + (8 + 3) = 0

    Discriminant = 4(2 + 1) > 0, R {1}

    17. (AB)Sol. a + b + c = 1 a2 + b2 + c2 + 2 (ab + bc + ca) = 1

    ab + bc + ca = 21

    a3 + b3 + c3 3abc= (a + b + c) (a2 + b2 + c2 ab bc ca)

    3 3abc = (1)

    21

    2

    3 2 21

    = 3abc abc = 61

    18. (ABCD)

    Sol. Let y = (x a)(x b)

    (x c) x2 (a + b + y)x + ab + cy = 0Since x is real D 0 (a + b + y)2 4 (ab + cy) y2 + 2 (a + b 2c)y + (a b)2 0Now D1 = 4(a + b 2c)

    2 4 (a b)2 = 16(c a)(c b) Range of y = R if D1 0 i.e (c a) (c b) 0i.e a c b or b c aand Range of y R other wise

    19. (AD)Sol. Adding x2 9 = 0 x = 3

    If x = 3 9 3a 3 = 0 a = 2and9 + 3a 15 = 0 a = 2

    if x = 3 9 + 3a 3 = 0 a = 2and9 3a 15 = 0 a = 2

    20. (CD)Sol. Let f(x) = ax2 + 2bx 4

    f(x) = 0 does not have two real & distinct roots and f(0)= 4 f(x) 0 x Rfurther f(2) = 4a 4b 4 0 a b 1f(1) = a 2b 4 0 2b a 4f(2) = 4a + 4b 4 0 a + b 1

    21. (CD)

    Sol. (a 1) (x2 + 3 x + 1)2 (a + 1) [(x2 + 1)2 (x 3 )2] 0

    or (a 1) (x2 + 3 x + 1)2 (a + 1) (x2 + x 3 + 1)

    (x2 x 3 1) 0

    2(x2 + 1) + 2a 3 x 0

    x2 a 3 x + 1 0 x R 3a2 4 0 (D 0)

    a

    3

    2,

    3

    2

    number of possible integral value of 'a' is {1,0,1}3 Ans.and sum of all integral values of 'a' is 1 + 0 + 1 = 0 Ans.

    22. (ABC)Sol. ax2 + (b )x + (a b ) = 0

    roots are real D 0

    2 + 2(2a b) + b2 4a2 + 4ab 0 R D1 0

    a(a b) 00 < a b

    b a < 0