client:building(&estatesoffice,( university collegecork ... ·...

22
Client: Building & Estates Office, University College Cork Title: University College Cork Carbon Footprint 201112 Internal Report Document No. BE1310BRB002 Issue Description Author Checked Release A Internal Report on UCC’s 201112 Carbon Footprint ND JM 24 Oct 2013 Cleaner Production Promotion Unit School of Engineering Civil Engineering Buildling University College Cork Western Road, Cork Ireland. T: +353 21 490 2521 T: +353 21 490 3534 (accounts) F: +353 21 490 2128 http://www.ucc.ie/cppu

Upload: others

Post on 24-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Client:  Building  &  Estates  Office,  University  College  Cork  

Title:   University  College  Cork  Carbon  Footprint  2011-­‐12  Internal  Report  

Document  No.   BE1310-­‐BR-­‐B-­‐002  

Issue   Description   Author   Checked   Release    

A   Internal  Report  on  UCC’s  2011-­‐12  Carbon  Footprint    

ND   JM   24  Oct  2013  

         

   

 

 

Cleaner  Production  Promotion  Unit  School  of  Engineering  Civil  Engineering  Buildling  University  College  Cork  Western  Road,  Cork    Ireland.  

 T:  +353  21  490  2521  T:  +353  21  490  3534  (accounts)  F:  +353  21  490  2128  http://www.ucc.ie/cppu    

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 2 of 22  

University  College  Cork  Carbon  Footprint  2011-­‐12  Internal  Report  

1 Executive  Summary  

A  ‘Carbon  Footprint’  refers  to  the  potential  climate  impact  of  the  greenhouse  gases  (GHG)   that   are  emitted  directly  or   indirectly  due   to   an  organisation’s   activities.   To  calculate  a  Carbon  Footprint   involves  the  preparation  of  a  GHG   inventory,   typically  an  estimation  of  an  entity’s  annual  emission  of  GHG  expressed  in  terms  of  tonnes  of  carbon   dioxide   equivalent   (tCO₂e).   An   estimate   of   UCC’s   Carbon   Footprint   was  calculated   for   the   academic   year   2011/12,   using   the   internationally   recognised  methodology   ‘Greenhouse   Gas   Protocol   Corporate   Standard’.   This   work   was   an  update   of   a   previous   study   on   the  University’s   ‘Carbon   Footprint’   for   the   2008/09  academic   year.   Table   1   below   presents   a   summary   of   the   study’s   findings,  categorised  into  the  three  ‘scopes’  of  GHG  emissions:  Scope  1:  Core  direct  emissions;  Scope  2:  Core  Indirect  emissions  &  Scope  3:  Optional  inclusions.    

Carbon  Footprint  

Total    tCO2e  

Normalised  Footprint  tCO2e  per  student  FTE   Per  staff  FTE   per  m2  area  

Scope  1  &  2   21,167   1.24   8.69   0.11  Scope  1,  2  &  3   31,747   1.86   11.90   0.16  Table  1:    University  College  Cork  Carbon  Footprint  Summary  2011/12  

Internal   benchmarking   represents   the   most   valuable   application   of   the   Carbon  Footprint  analysis.  Figure  1  compares  the  core  Carbon  Footprint  (Scope  1  and  Scope  2  activities)  across  a  number  of  University  College  Cork  building  clusters  for  2011/12.    

Figure  1:  UCC  Carbon  Footprint  2011-­‐12  (Scope  1  &  2)  comparison  between  building  clusters  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 3 of 22  

2 Introduction  

2.1 Background  In  recent  years,  climate  change  has  come  to  the  forefront  as  a  key  international  issue  for  both  industrialised  and  developing  countries.  It  will  continue  to  be  an  important  political   and   economic   issue   for   generations   to   come   (Sundin   and   Ranganathan  2002).  World   energy   demand   is   growing   at   a   rate   of   about   1.6%   per   year,   and   is  expected   to   reach   about   700   x   1018   J/annum   by   2030,   with   more   than   80%   of  worldwide   primary   energy   production   still   coming   from   the   combustion   of   fossil  fuels.  In  an  associated  trend,  global  carbon  dioxide  (CO2)  emissions  are  expected  to  exceed  30  x  109  t/annum  in  the  near  future  (Pękala  et  al.  2010).  

Large  organisations  such  as  University  College  Cork  (UCC),  have  a  vital  role  to  play  in  efforts  to  mitigate  global  warming,  as  significant  producers  of  industrial  greenhouse  gas   (GHG)   emissions   (known   as   ‘direct’   or   Scope   1   emissions)   or   through   GHG  emitted  throughout  their  value  chain,  or  supply  chain  (known  as  ‘indirect’  or  Scope  2  and   Scope   3   emissions)   (Downie   and   Stubbs   2011).   Conducting   an   inventory   of  greenhouse  gas  emissions  is  an  important  first  step,  which  an  organisation  can  take  towards   developing   an   effective   response   to   climate   change.   A   greenhouse   gas  inventory  provides  valuable  information  on  the  risks  and  opportunities  of  operating  in  a  carbon  constrained  economy  (Sundin  and  Ranganathan  2002).  

In  this  context,   this  study  aims  to  calculate  the  organisational  Carbon  Footprint   for  UCC  based  on  emissions  data  for  the  six  main  greenhouse  gases  (GHGs)  identified  by  the  Intergovernmental  Panel  on  Climate  Change:  CO2,  CH4,  N2O,  PFCs,  SF6,  with  the  final  measurement  being  expressed  in  tonnes  of  CO2  equivalent  (CO2e).   In  the  case  of  UCC,  CO₂  accounts  for  >99%  of  GHG  emissions  with  small  amounts  of  CH₄  &  N₂O  comprising  the  remainder.  

2.2 Institutional  Context  Founded   in  1845,   the  National  University  of   Ireland,  Cork   -­‐  University  College  Cork  (UCC)   is   one   of   four   constituent   universities   of   the   federal   National   University   of  Ireland.   Located   in   Cork   city   in   the   southwest   of   the   country,   UCC   is   a   leading  educational  and  research  institution  in  the  state.  It  was  selected  three  times  (2003,  2005   &   2011)   by   The   Sunday   Times   as   the   Irish   University   of   the   Year.   The  University’s  research  income  is  consistently  one  of  the  highest  in  the  country  and  in  the  2012  QS  University  Rankings  was  ranked  in  the  top  2%  of  universities  worldwide  based  on  the  quality  of  its  research.  

Sustainability   and   care   for   the   environment   are   evident   throughout   the  University  curriculum  with   environmental   subjects   taught   across   a   range   of   academic   areas,  including:   Engineering,   Chemical   Sciences,   Biological   Sciences,   Environmental  Science  &  Management,  Geography,  Geology,  Sociology,  Zoology  etc.  In  parallel  with  and   complementary   to   this   teaching,   University   College   Cork   has   substantial   and  varied   research  activities   in   sustainable  development  and  environment   throughout  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 4 of 22  

all  of  its  colleges  and  schools.  In  keeping  with  it  role  in  environmental  teaching  and  education,   UCC   has   a   strong   commitment   to   reducing   its   environmental   impacts  though   an   Environmental   Policy,  which   covers:   Recycling  &  Waste,   Energy,  Water,  Procurement;  Commuter  Planning;  Buildings  &  Estates;  Education  &  Communication.    

UCC’s   Buildings   and   Estates   Office   (B&EO)   has   led   the   University’s   efforts   in   this  regard   and   has   recently   overseen   the   development   of   a   comprehensive  Environmental  Management  System.   In  February  2010  UCC  became   the   first   third-­‐level   educational   institution   in   the   world   to   be   accredited   with   the   prestigious  international   ‘Green  Flag’  award,  while   in  2011   it  was   first  University  worldwide  to  achieve   the   ISO   50001   standard   in   energy  management.   It  was   ranked   third   in  UI  World  Green  Metric  University  Rankings  2012.    

In   2010   the   Cleaner   Production   Promotion   Unit   in   the   School   of   Engineering   was  requested  by  the  Buildings  and  Estates  Office  (B&EO)  to  determine  the  University’s  carbon  footprint  for  2008/09.  This  report  presents  the  carbon  footprint  for  the  year  20011/12  and  represents  an  update  of  the  initial  study.  

2.3 Carbon  Foot-­‐printing  The   term   ‘Carbon   Footprint’   has   now   become   a   synonym   for   the   climate   change  impact   of   individuals,   communities,   nations,   companies,   or   products   (Wiedmann  2009).     While   derived   from   the   Ecological   Footprint   methods   developed   by  (Wackernagel  and  Rees  1996),  the  widespread  use  of  Carbon  Footprint  methods  has  been  promoted  in  the  main  by  non-­‐governmental  organisations  (NGOs),  companies,  and  various  private  initiatives,  as  opposed  to  by  research  (Weidema  et  al.  2008).  The  wide  variety  of  entities  adopting  carbon  foot-­‐printing  has  however  resulted  in  a  wide  variety  of  approaches  and  there  is  a  large  spectrum  of  definitions  ranging  from  direct  CO2  emissions  to  full  life-­‐cycle  greenhouse  gas  emissions  as  shown  in  Figure  2.  

Figure  2:  Spectrum  of  ‘Carbon  Footprint’  definitions  after  (Dunphy  &  Henry  2012)  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 5 of 22  

 

Examples  of  definitions  of  ‘carbon  footprint’  include:  

“…the   total   greenhouse   gas   emissions   (GHG)   caused   directly   and  indirectly  by  an  individual,  organisation,  event  or  product”  (Carbon  Trust  2007).    

"…measure   of   the   impact   that   human   activities   have   on   the  environment   in   terms   of   the   amount   of   greenhouse   gases   produced,  measured  in  units  of  carbon  dioxide”  (UNEP,  n.d.).  

“…the   total   amount  of   CO₂   and  other   greenhouse   gases,   emitted  over  the  full  life  cycle  of  a  process  or  product.  It  is  expressed  as  grams  of  CO₂  equivalent   per   kilowatt   hour   of   generation   (gCO₂eq/kWh),   which  accounts   for   the  different   global  warming  effects  of  other   greenhouse  gases”  (POST,  2006).    

In   acknowledging   such   differences,   Peters   (2010)   recommends   the   following   open  definition:  “the  ‘carbon  footprint’  of  a  functional  unit  is  the  climate  impact  under  a  specified  metric   that   considers   all   relevant   emission   sources,   sinks,   and   storage   in  both  consumption  and  production  within  the  specified  spatial  and  temporal  system  boundary”.   The   lack   of   consensus   as   to   what   constitutes   a   carbon   footprint  underlines   the   importance  of  adopting  an   internationally   recognised  standard  such  as  the  Greenhouse  Gas  Protocol  in  this  study.    

This   study   aims   to   calculate   the   organisational   carbon   footprint   for  UCC   based   on  emissions  data  for  the  six  main  greenhouse  gases  (GHGs)  identified  by  the  IPCC.  

2.4 Carbon  Footprint  Limitations  The   information   contained   in   a   Carbon   Footprint   varies,   depending   on   how   it   is  calculated  and  on  how  much  responsibility  the  entity  in  question  is  willing  to  assume  (Matthews,  Hendrickson,  and  Weber  2008).  There  is  an  inherent  trade-­‐off  between  comprehensiveness  of  the  measure  developed  on  one  hand  and  practicality  of  data  collation  and  analysis  on  the  other.  There  is  also  a  limit  to  the  extent  to  which  final  consumers   and   intermediate   businesses   can   affect   emissions   occurring   far   up   the  supply   chain   (Matthews,   Hendrickson,   and   Weber   2008).   In   addition,   nontrivial  shortcomings   in   the   collection   and   aggregation   of   GHG   emissions   data   have   an  impact  on   the  degree  of   credibility  and   relevance  of   sustainability   reports,   such  as  those   presenting   Carbon   Footprint   results   (Dragomir   2012).   For   any   given   Carbon  Footprint  analysis,  including  this  study,  a  number  of  questions  need  to  be  addressed  to   ensure   the   validity   of   the   reported   findings.   Table   1   presents   an   overview   of  these,  after  the  paper  by  (Finkbeiner  2009).    Use  of  a  standardised  approach  assisted  in  this  regard.  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 6 of 22  

 

 Area   Issue  Scope  of  emissions     Shall  all  GHGs  specified  by  IPCC  2007  or  only  the  six  

GHG  gases  of  Kyoto  Protocol  be  considered?      

Life  cycle  stages   While  a  general  understanding  is  that  Carbon  Footprint  should  relate  to  the  life  cycle  using  process-­‐based  data,  the  inclusion  of  the  use  phase  might  be  controversial  between  business-­‐to-­‐business  and  business-­‐to-­‐consumer  perspectives.  If  included,  how  can  use  phase  profiles  be  defined  in  a  meaningful  way?  

System  boundaries     How  to  specify  cut-­‐off  criteria?  Materiality  threshold  or  GHG  threshold?  How  to  deal  with  employee  transport?  Time  boundaries  can  be  challenging  as  well,  especially  for  agricultural  products  

Offsetting   Shall  offsetting  be  included  in  the  calculation  or  not?  Is  the  use  of  renewable  energy  a  type  of  offsetting  or  not?  

Data   Which  data  sources?  Share  of  primary  activity  data  and  secondary  data?  Are  any  operational  data  quality  requirements  possible?  

Allocation    

Is  there  any  progress  or  further  specification  possible  compared  to  the  existing  ISO  14040  procedures?  For  system  expansion,  how  can  the  identification  of  an  avoided  product  system  be  qualified?  

End-­‐of-­‐life    

How  to  define  end-­‐of-­‐life  scenarios?  Recycled  content  approach  on  the  product  level  or  average  recycled  content  on  the  material  level?    

Carbon  storage   How  to  deal  with  carbon  storage,  carbon  capture,  carbon  sequestration?  

Land  use  change    Shall  emissions  arising  from  direct  land  use  change  be  included  or  not?  Shall  changes  in  soil  carbon  (source  or  sink)  be  included  or  not?  

Capital  goods   How  to  deal  with  capital  goods?  Renewable  electricity  and  electricity  mix    

Shall  the  grid-­‐average  carbon  intensity  be  used  and,  if  so,  what  is  the  grid?  Shall  renewable  energy  be  treated  as  part  of  the  grid  or  shall  there  be  specific  benefits  if  it  is  used  in  a  specific  supply  chain?  

Table  2:  Issues  with  Carbon  Footprint  Methodology,  after  (Finkbeiner  2009)  

 

3 Methodology  

3.1 Introduction  The  scope  and  boundary  of  carbon  emissions  is  critical  to  identifying  and  measuring  the  direct  and  indirect  carbon  emissions  across  the  activities  of  an  organization,  and  its   supply   chain.   Without   clear   identification   of   these   activities,   accurate   carbon  emissions   and   footprint   measurement   and   reporting   cannot   be  made   (Lee   2011).  However,   the   current   diversity   of   GHG   accounting   practices   makes   it   difficult   to  develop   comparable   GHG   inventory   and   reduces   the   credibility,   and   utility   of   the  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 7 of 22  

resulting   information   (Sundin   and   Ranganathan   2002).   Against   this,   there   is   a  growing   standardisation   and   professionalisation   of   environmental   reporting  (Dragomir   2012)1.   For   Carbon   Footprint   analysis,   the   Greenhouse   Gas   Protocol  Corporate  Standard,  the  GHG  Protocol,  represents  such  a  standard.    

3.2 Greenhouse  Gas  Protocol  Corporate  Standard    The  GHG  Protocol  uses  a  structured  yet  flexible  accounting  and  reporting  framework  based  on  a  bottom-­‐up  accounting  process.  Emissions  are  calculated  at   the   level  of  GHG   sources   and   can   be   subsequently   aggregated   and   disaggregated   by   facility,  business   unit,   country,   region,   etc.   (Sundin   and   Ranganathan   2002).   The   GHG  Protocol   thus   represents   a   voluntary   international   standard   for   accounting   and  reporting   greenhouse   gas   emissions   that   will   enable   businesses   to   report  information   from   global   operations   in   a  way   that   presents   a   clear   picture   of   GHG  risks   and   reduction  opportunities,  while   facilitating   understanding   and   comparison  with  similar  reports  (Sundin  &  Ranganathan  2002)2.  

The   Greenhouse   Gas   Protocol:   A   Corporate   Accounting   and   Reporting   Standard,  revised  edition  (GHG  Protocol  Standard)  categorises  an  organisation’s  emissions  into  3  groups  or  ‘Scopes’,  as  described  below  and  illustrated  in  Figure  3.  

 Figure  3:  Overview  of  Emissions  &  Scopes  (Source:  GHG  Protocol  Corporate  Standard)  

Scope  1  –  Core  direct  emissions:  Direct  emissions  resulting  from  activities  within  the  organisation’s  control.  Includes  on-­‐site  fuel  combustion,  manufacturing  and  process  emissions,   refrigerant   losses   and   company   vehicles.   These   are   emissions   from  

                                                                                                               1  The  introduction  of  new  estimation  methodologies  for  existing  databases,  and  the  adoption  of  international  standards  are  essential  steps  in  promoting  the  transparency  of  corporate  environmental  performance  (Dragomir  2012).      2  It  is  important  to  note  that  the  GHG  Protocol  Standard  is  designed  to  develop  a  veritable  inventory;  it  does  not  purport  to  provide  a  standard  for  how  a  verification  process  should  be  conducted.  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 8 of 22  

sources   that   are   owned   or   controlled   by   the   reporting   institution   (i.e.   owned   or  controlled  by  UCC).  Inclusion  of  such  emissions  is  mandatory.    

Scope  2  –  Core  indirect  emissions:  Indirect  emissions  from  electricity,  heat  or  steam  purchased   and   used   by   the   organisation.   These   are   emissions   that   are   a  consequence  of  the  operations  of  the  University,  but  occur  from  sources  owned  or  controlled  by  another  company.  Inclusion  of  such  emissions  is  mandatory.    

Scope   3   –   Non-­‐core   indirect   emissions:   Any   other   indirect   emissions   from   sources  not   directly   controlled   by   the   organisation.   Examples   include:   employee   business  travel,   outsourced   transportation,   waste   disposal,   waste   usage   and   employee  commuting.   Inclusion   of   these   categories   is   generally   elective.   There   is   broad  discretion  about  which  (if  any)  Scope  3  emissions  should  be  included  –  for  example,  organisations   may   choose   to   include   (or   not   include)   categories   such   as   waste  disposed   to   landfill   and   employee   business   travel.   Using   the   GHG   Protocol  methodology   ensures   that   the   UCC   Carbon   Footprint   report   and   results   will   be  prepared   in   accordance   with   international   best   practice.   As   this   was   also   the  procedure   used   in   the   previous   study,   the   results   will   allow   for   temporal  comparisons  and  with  appropriate  caveats.  

3.3 Study  Process    Figure  4  illustrates  the  methodological  approach  used  within  the  study.  The  first  step  was  to  scope  the  study,  select  relevant  (spatial,   temporal  and  process)  boundaries,  identify   the   likely   sources   of   GHG   emissions   (through   reference   to,   and   review   of  decisions   taken   in   the   previous   study).   Secondly,   possible   GHG   emission   sources  were  identified;  this  involved  updating  the  review  of  the  activities  of  the  University  and  literature  review  of  similar  studies  whilst  referencing  the  GHG  Protocol  Standard  and   other   relevant   texts.   Data   were   collected   and   actual   GHG   emissions   sources  confirmed.  The  GHG  emissions  for  each  source  were  calculated  (in  terms  of  t  CO₂e).  The   data   were   reviewed   for   robustness   and   the   overall   carbon   footprint   for  University  College  Cork  calculated.  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 9 of 22  

 Figure  4:  Methodological  framework  used  in  the  study  

3.4 Scope  of  Emission  Sources.  

3.4.1 Temporal  Boundary  The  reporting  period  to  be  covered  in  this  Carbon  Footprint  analysis  is  the  academic  year   2011-­‐2012   (October   1st   2011   –   September   30th   2012).   While   most  organisational   or   institutional   Carbon   Footprints   are  measured   on   a   calendar   year  basis,  it  is  more  relevant  to  measure  a  University’s  footprint  based  on  its  operational  year,  i.e.  academic  year  (as  this  aligns  with  the  period  for  which  data  are  collected).  Again  this  is  comparable  with  the  approach  adopted  in  the  original  study.  

3.4.2 Spatial  Boundary  University  College  Cork  is  an  Irish  University  catering  for  17,082.5  student  FTEs3  and  2435.07  staff  FTEs  in  2011-­‐12.  The  buildings  considered  in  this  report  cover  an  area  of   approximately   196,002   m2,   which   includes   both   main   campus   and   outlying  buildings.   The   individual   Carbon   Footprint   contributions   for   building   clusters  were  also   determined.   These   include:   Main   Campus,   Brookfield,   Lee  Maltings,  Western  Gateway,   North   Mall,   Environmental   Research   Institute   and   the   other   outlying  buildings.  This  serves  to  further  detail  the  overall  UCC  Carbon  Footprint  and  allows  for   comparison   within   the   University,   across   building   clusters.   Student                                                                                                                  3  FTEs  –  full  -­‐time  equivalents  are  the  number  of  employees    (or  students  as  the  case  may  be)  on  full-­‐time  schedules  plus  the  number  of  on  part-­‐time  schedules  converted  to  a  full-­‐time  basis.  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 10 of 22  

accommodation   is   operated   separately   from   the   University,   and   as   a   result   is  excluded  from  analysis.  Figures  5  to  7  illustrate  the  principal  UCC  locations  involved.  

 

Figure  5:  UCC  Main  Campus    

 

Figure  6:  UCC  West  Campus  

 

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 11 of 22  

 

Figure  7:  UCC  East  Campus  

3.4.3 Activities  and  Emissions  from  GHG  Protocol  Scopes:    The  choice  about  which  activities  and  which  emissions  to  include  the  calculation  of  a  carbon   footprint   is  always  a  difficult  process.  However,   these  decisions  will   greatly  influence  the  credibility  and  usefulness  of  the  report  and  its  compatibility  with  other  CF  results  determined  using  the  same  methodology.    

When  following  the  GHG  Protocol  Standard,   it   is  compulsory  to   include  core  direct  and  indirect  emissions  (i.e.  Scopes  1  &  2)  in  a  Carbon  Footprint  analysis.  These  core  direct   and   indirect   emissions   are   those   emissions   typically   used   for   comparison  purposes.   The   following   activities   are   included   in   the   Carbon   Footprint   analysis  conducted  for  this  report:    

• Scope   1   –   direct   emissions   from   sources   owned/controlled   by   UCC:   Direct  energy   consumption   –   on   site   consumption   of   gas   for   space   and   water  heating,  teaching  and  catering  

• Scope   2   –   indirect   energy   emissions   generated   in   the   production   of  electricity:  Purchased  electricity,  steam  and  heat  consumed  

• Scope  3  –  indirect  emissions  optional  inclusions  such  as  staff  business  travel,  commuting,  waste  and  emissions  from  the  provision  of  water.    

The  core  direct  and   indirect  emissions  were  collated  as  completely  as  possible  and  an   inclusive   approach   was   taken   to   selecting   the   optional   non-­‐core   and   indirect  emissions.  In  accordance  with  the  GHG  Protocol  Standard  the  six  greenhouse  gases  covered  by  the  Kyoto  Protocol  are  addressed  by  the  study.  However,  as  mentioned  earlier   for   UCC,   Carbon   Dioxide   accounted   for   >99%   of   GHG   emissions   with   the  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 12 of 22  

remaining  emissions  consisting  of  small  amounts  of  methane  and  Nitrous  Oxide.  

The  most  basic  carbon  footprint  would  only  encompass  direct  emissions  from  major  emissions   sources   like   fuel  and  electricity   consumption,  whether  caused  by  energy  use   in   buildings,   other   on-­‐site   facilities   or   vehicle   fleets.   However,   such   a   basic  approach   often   excludes   indirect   emissions   such   as   emissions   from   waste  production,  water  consumption,  business  travel,  commuting  etc.   for  studies  aiming  to  achieve  a   comprehensive  assessment  of  an  organisation’s   carbon   footprint,   it   is  vital  to  include  secondary  carbon  emission  sources  and  their  impact.  As  these  Scope  3  emissions  differ  greatly   from  study   to  study,   it   is   therefore  Scope  1  &  2   typically  that   are   used   for   inter-­‐institutional   comparison   purposes   (in   so   far   as   such  comparison   are   useful).   However,   of   course   Scope   3   emissions   are   of   interest   for  temporal  comparisons  within  the  same  institution.  

This   study   follows   the   decisions   made   for   the   2008/09   study,   which   was   made  following  a  review  of  carbon  footprint  reports  from  universities  in  the  UK  and  USA.  As   can   be   seen   in   Table   3   below,   the   operational   scope   for   this   Carbon   Footprint  includes   all   components   that   would   be   expected   in   the   mandatory   scopes.   In  addition,  when   selecting   Scope  3  emissions,   an   inclusive   approach  was  adopted   in  keeping  with  the  objectives  of  the  study.  

  Activity   Activity  Subset  Scope  1   Stationary  Combustion   Natural  gas;  Liquid  fuel;  Motor  fuel  (UCC-­‐owned  

vehicles)  Mobile  Combustion    Process  Emissions    Fugitive  Emissions    

Scope  2   Purchased  Electricity    Electricity  &  Steam  produced  onsite  (non-­‐UCC)  

CHP  

Scope  3   Employee  Commuting     Car,  Motorbike,  Bus,  Rail  Employee  Business  Travel   Car,   Motorbike,   Bus,   Rail,   light   rail,   short   haul  

flights,  long  haul  flights  Student  Commuting   Car,  Motorbike,  Bus,  Rail  Student  Academic  Travel   Car,   Motorbike,   Bus,   Rail,   light   rail,   short   haul  

flights,  long  haul  flights  Waste     Landfill  Water    

Table  3:  Operation  Boundary  for  UCC  CF  Study  2011/12  

 

 

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 13 of 22  

3.5 Data  collection  After  setting   the  boundaries  and  scope  of   the  study,   it   is   then  necessary   to  collect  the  consumption  data  required  to  calculate  the  carbon  footprint  of  each  of  the  GHG  causing  activities  in  UCC.  Table  4  on  page  14  outlines  the  consumption  data  collected  to  calculate  the  carbon  footprint  of  each  of  the  GHG  causing  activities.  

3.5.1 Data  Collection  –  Notes  &  Qualifications    Academic  Travel  –  survey  of  academic  departments    

Business   Travel   –   monetary   data   on   travel   were   available   and   it   was   therefore  possible  to  extrapolate,  albeit  using  significant  assumptions.  

Combined  Heat  &  Power  (CHP)  –  electricity  generated  from  the  CHP  is  not  counted,  but  instead,  the  actual  fuel  (natural  gas)  used  to  generate  to  electricity.  This  is  done  in  order  to  represent  the  carbon  savings  achieved  by  both  generating  electricity  on-­‐site  and  from  using  the  co-­‐generated  heat.  

Commuting  –  The  study  used  raw  data  from  a  2011  survey  on  commuting  (ca.  23.5%  response  rate  from  UCC  staff  &  ca.  6%  response  from  students)  combined  with  map  resources,  working  year  averages  and  extrapolated  for  2011/12  data.    

Note:  Many  assumptions  were  made  in  the  calculation  including:  1)  That  the  sample  size  is  representative  of  the  whole  of  UCC  staff  and  students;  2)  That  all  vehicles  are  of  average  engine  size.    

Electricity   –   records   of   electricity   used   on   the   main   campus   includes   electricity  derived   from  the  CHP  plant.  To  avoid  double  counting   (the  natural  gas  used   in   the  CHP   is   already   counted)   the  electricity   generated  by   the  CHP  was   subtracted   from  the  main   campus  electricity   consumption.  As  practice  differs  with   respect   to  using  supplier-­‐specific  or  general  grid  emission  factors  (e.g.  GHG  Protocol  Standard  allows  supplier-­‐specific  EF  whereas  UK  DEFRA/DECC  guidance  insists  on  National  Grid),  for  transparency,  Irish  Grid  averages  have  been  used  in  this  study  (CER,  2013).  

Fugitive  Emissions  –  Similarly  there  were  no  records  related  to  refrigerant  leakage  or  other   possible   fugitive   emissions,   which   are   not   tracked   within   the   University.   It  should   be   possible   to   maintain   a   central   record   of   the   purchase   of   refrigerants,  which  would  contribute  to  future  studies.  However  as  they  would  be  less  than  1%  of  the   total   Carbon   Footprint,   i.e.   they   are   not   considered   significant   they   can   be  excluded  from  the  process  without  impacting  on  results.  

Lab   Fuel   –   Data   on   laboratory   fuel   use   are   absent,   due   to   the   lack   of   records;  however  it  is  not  considered  to  be  significant  i.e.  less  than  1%  of  Carbon  Footprint  

Natural   Gas   –   Data   on   natural   gas   usage   in   UCC   are   considered   completely  separately   to   the   natural   gas   used   in   the   campus   CHP  plant   to   ensure   there   is   no  double  counting.  Also  as  the  electricity  generated  from  the  CHP  plant  is  only  used  on  main  campus,  the  natural  gas  used  for  the  CHP  was  attributed  to  the  main  campus  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 14 of 22  

only.  

Process  Emissions  –  There  were  no  details  on  process  emissions  available.  Although  unlikely  to  be  very  large  it  should  be  followed  up  in  preparation  for  future  studies.  As  process  emissions  would  be  less  than  1%  of  Carbon  Footprint  i.e.  not  significant  they  can  be  excluded  from  the  process  without  impacting  on  results.  

Vehicle  Fuel  –  This  was  calculated  from  monetary  values  using  estimates  of  average  price  of  fuel  for  the  corresponding  time-­‐frame  of  analysis.  

Waste  –  Data  for  the  Oct  to  Dec  2011  were  not  available  and  so  estimates  based  on  the   remaining   year   were   used.   The   landfills   that   take   UCC   waste   have   methane  recovery   &   electricity   generation   in   operation,   which   is   reflected   in   the   emission  factor  used.  

Table   4   below   summaries   the   data   types   and   data   collection   sources   used   in   the  study.  

GHG  Producing  Activity    

Activity  Subset   Data  Collection  Sources  

Units  

Stationary  Combustion    

Natural  Gas   B&EO  Energy  Report  2011-­‐12;  B&EO  Staff    

MWh  /  year*  

Liquid  fuel   Finance  Office   quantity  of  fuel  /  year*  

Mobile  Combustion   UCC-­‐owned  vehicles  

Finance  Office;  B&EO  fuel  use  or  mileage  data  

quantity  of  fuel  /  year*  

Process  Emissions     NA   GHG  emissions  /  year*  

Fugitive  Emissions     Refrigerant  leakage  

NA   GHG  emissions  /  year*  

Purchased  Electricity   Source  fuel  mix   B&EO  Energy  Report  2011-­‐12  

MWh  /  year*  

Elec.  Produced  Onsite     CHP   B&EO   quantity  of  fuel  /  year*  

Employee  Commuting                                                                                                                                                                          

Car,  Bus,  Rail,  Motorbike  

B&EO  2012  commuting  survey  

est.  passenger  km  /  year  

Business  Travel                                                                                                                                                                                                                                                                                                                            

Car,  Bus,  Rail,  Plane  

Finance  Office   km  /  year*  

Student  Commuting   Car,  Bus,  Rail,  Motorbike  

B&EO  2012  commuting  survey  

est.  passenger  km  /  year  

Student  Travel                                                                                                                                                                                                                                                              

Car,  Bus,  Rail,  Plane  

Departmental  information  

est.  passenger  km  /  year  

Waste     Landfilled   B&EO  waste  records  2011-­‐12  

tonnes  /  year*  

Water     B&EO  Energy  Report  2011-­‐12  

m3  /  year*  

Table  4:  Data  Collection  Sources  and  Data  Types  for  UCC  carbon  footprint  study  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 15 of 22  

3.6   Calculation  of  GHG  Emissions  Calculation  GHG  emissions  from  the  unit  of  activity  data,  requires  emission  factors  for  the   greenhouse   gases   (specifically   CO₂,   CH₄   and   N₂O).   These   factors   enable   GHG  emissions   to   be   estimated   from   a   unit   of   available   activity   data   (e.g.   tonnes   of   fuel  consumed,   tonnes  of  product  produced).  These  are   then  expressed   in   tonnes  of  CO₂  equivalent  tCO₂e.    

The   majority   of   CO₂   emission   factors   came   from   Irish   sources   especially   the  Environmental   Protection   Agency   (EPA,   2012)   and   the   Commission   for   Energy  Regulation  (CER,  2013).  It  was  confirmed  by  the  CER  that  the  carbon  emission  factors  presented  are   inclusive  of  transmission  and  distribution  losses.  Emission  factors  from  the   other   greenhouse   gases  were   not   available   on   an   Irish   level,   and  were   sourced  from  the  Clean  Air  Cool  Planet  Campus  Climate  Action  Toolkit,  which  is  widely  used  in  the  U.S.  and  based  on  IPCC  data  (CA-­‐CP,  2008).    

Using  these  factors,  the  activity  data  as  discussed  above,  are  applied  to  yield  emissions  for   that   activity   by   specific  GHG   type.   Each  GHG   is   then   assigned   a  Global  Warming  Potential  (GWP),  which  describes  its  global  warming  impact  relative  to  carbon  dioxide.  The  total  GHG  emissions  are  translated  into  a  standard  measurement  of  t  CO₂e.  

  Activity     Activity  Subset   CO2  Emission  Factors   Source  Scope  1  

Stationary  &  Mobile  Combustion  

Natural  Gas   205,522.7  g  CO2  /  MWh   EPA,  2012  

Diesel     265,690  g  CO2  /  I   DEFRA,  2012  

Petrol   230,510  g  CO2  /I   DEFRA,  2012  Scope  2  

Purchased  Electricity  

Grid  Average   481,000  g  CO2  /  MWh   CER,  2013  

Scope  3  

Commuting  &  Travel      

Car   172.4g  CO2  /  km   SEI  in    EPA,  n.d.  Bus   69.5  g  CO2  /passenger  km   DEFRA,  2012  Rail   55  g  CO2  /passenger  km   DEFRA,  2012  Motorbike   116.1  g  CO2  /km     DEFRA,  2012  Flight  domestic   163.13  g  CO2  /passenger  

km   DEFRA,  2012  Flight  short  haul   89.85  g  CO2  /passenger  km  Flight  long  haul   78.8  g  CO2  /passenger  km   DEFRA,  2012  

Waste   Landfill   870  g  CO₂  /  kg  waste   IPCC  in  EPA,  n.d.  Water     18.46  g  CO2  /  m3   EPA,  n.d.  

Table  5:  Emission  Factors  used  

 

 

 

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 16 of 22  

4 Results  &  Commentary  

4.1 Results  A   summary   of   the   estimation   of   the   carbon   footprint   for   University   College   Cork   in  2011/12  is  presented  as  Table  6  below.  

Carbon  Footprint   Total    tCO2e   Normalised  Footprint  tCO2e  per  student  FTE   Per  staff  FTE   per  m2  area  

Scope  1  &  2   21,167   1.24   8.69   0.11  

Scope  1,  2  &  3   31,747   1.85   11..87   0.16  Table  6:  University  College  Cork  Carbon  Footprint  Summary  2011/12  

As   shown   in   Table   7   and   Figure   8   below,   the   normalised   (for   building   area)   carbon  footprint   component   associated   with   energy   consumption   in   the   University   has  reduced  by  15.6%  compared  to  the  2008/09  study.   Indeed,  each  of   the  cluster  areas  demonstrated  a  reduction  in  the  normalised  ‘carbon  footprint’  associated  with  energy  usage.  This  reflects  the  importance  placed  on  energy  management  by  the  Building  and  Estates   Office   and   the   on-­‐going   operation   of   an   ISO   50001:2011   accredited   energy  management  system  in  the  University.    

UCC  Cluster   GHG  Emissions  Scope  1  &  2  tCO2e    

Footprint  per  m2            tCO2e   Cluster  Areas  m2    (2012)  2011-­‐12   Change  vs  08-­‐9  

Main  Campus   10,570.4   0.10   -­‐8.3%   101,469  

Lee  Maltings   4,509.5   0.25   -­‐37.6%   18,031  

Brookfield   872.5   0.07   -­‐17.1%   12,562  

Western  Gateway  

1,550.7   0.09   NA   16,498  

Mardyke   1,171.9   0.11   -­‐48.1%   11,099  

ERI   239.7   0.09   -­‐17.7%   2,781  

North  Mall   621.5   0.08   -­‐17.8%   7,933  

Other   1,631.2   0.08   -­‐32.4%   25,629  

Total   21,167.4   0.11   -­‐15.6%   199,130  Table  7:  Results  per  Cluster  (core  emissions)      There   is   however   two   caveats   that   should   be   observed   lest   too  much   emphasis   be  placed  on  this  reduction.  Firstly,  it  must  also  be  acknowledge  that  the  decarbonisation  (albeit  slow  moving)  of  the  electricity  grid  has  also  had  a  significant  impact.  The  carbon  intensity  of  the   Irish  Grid  has  reduced  by  10%  since  the   initial  study.  Accordingly  any  building  cluster  principally  using  electricity  would  be  expected  to  make  a  reduction  of  at   least   this   quantum.   Secondly,   as   energy   consumption   is   greatly   dependent   on  weather   conditions,   degree-­‐day   analysis   should   be   conducted   to   take   account   of  weather  influence.    Such  an  analysis  will  be  conducted  by  the  authors,  in  conjunction  with  the  Building  and  Estates  Office,  and  an  addendum  to  this  report  will  be  issued  to  address  this  question.  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 17 of 22  

 

 Figure  8:  Changes  in  normalised  core  carbon  footprint  (Scope  1  &  2)  of  UCC  building  clusters    

Downie   and   Stubbs   (2011)   posit   that   lack   of   knowledge   of   Scope   3   emissions   will  inhibit   an   organisation’s   ability   to   pursue   the   most   cost-­‐effective   carbon   mitigation  strategies.   There   is   currently   not   much   guidance   or   framework   for   estimating   or  reporting   Scope   3   emissions,   consequently   the   resulting   reports   are   not   necessarily  consistent   or   comparable   between   organisations   even   in   the   same   sector   (Huang,  Weber,  and  Matthews  2009).  However  that  is  not  to  ignore  that  value  for  tracking  an  organisation’s  own  Scope  3  emissions  over  time.  The  optionally  included  (i.e.  Scope  3)  emissions  are  presented  in  Table  8  below.  

Scope  Activity   Footprint  tCO₂e   Change  vs  08-­‐09  tCO₂e   Percentage  

Employee  Commuting   1,403.6   -­‐1,214.3   -­‐49.3%  Employee  Business  Travel   1,637.5   464   39.4%  Student  Commuting   6,350.5   3,320.6   109.6%  Student  Academic  Travel     124.2   -­‐59.1   -­‐32.2%  Other     1,063.5   609   134.6%  Total     10,579.2   3,092.5   41.3%  Table  8:  Scope  3  emission  per  activity      The   data   above   shows   that   Scope   3   emissions   rose   by   41.3%   since   2008/09,   an  increase  of  some  3,092.5  t  CO₂e.  The  cause  of  this  increase  is  quite  apparent  from  the  data  as  the  GHG  emissions  associated  with  student  commuting  has  more  than  doubled  since  the  initial  study  on  both  an  absolute  and  normalised  basis;  drilling  down  into  the  data   it   can   be   seen   that   this   is   due   to   a   significant   increase   in   the   level   of   students  traveling  to  UCC  by  car.    

Also,  there  is  a  nearing  halving  of  emissions  associated  with  staff  commuting  to  UCC.  While   staffing   levels   have   reduced   by   just   under   10%   in   the   intervening   period   this  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 18 of 22  

accounts  for  only  some  of  the  reduction  as  the  normalised  footprint  has  also  reduced  by   40%.   The   amount   of   travelling   by   both   car   and   bus   has   reduced   by   nearly   50%,  while  rail  has  remained  steadier.  It  may  be  that  staff  are  increasingly  locating  closer  to  UCC  (with  city  housing  now  more  affordable)  and  walking  or  cycling  to  work,  or  it  may  be  increased  levels  of  car-­‐pooling,  or  perhaps  the  impact  of  the  park  and  ride.    

However,   it   should   be   noted   that   these   figures   are   based   upon   surveys   and   the  representativeness   of   the   survey   population   is   unknown.   The   response   rate   to   the  commuting  survey  was  ca.  23.5  %  for  staff  and  just  5.9%  for  students.    

 Figure  9:  Trends  in  the  UCC  Scope  3  emissions  

 Figure  10:  Graphical  representation  of  Carbon  Footprint  by  activity  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 19 of 22  

Figure  10  above   illustrates  the  relative  significance  of  each  source  of  greenhouse  gas  emissions   comprising   the   total   carbon   footprint.   The   changes   in   relative   importance  are  illustrated  in  Figure  11  below.  

Figure  11:  Trend  in  relative  importance  of  greenhouse  gas  sources  in  total  UCC  Carbon  Footprint  

5 Conclusions  

The   results   presented   above   are   an   estimation  of   the   carbon   footprint   of  University  College   Cork   for   the   academic   year   2011/12.   The   core   greenhouse   gas   emissions  associated  with  energy   consumption  have   reduced  on  a  normalised  basis.   There   is   a  need  to  conduct  a  degree-­‐day  analysis  on  these  data,  however.  Care  needs  to  be  taken  to  ensure  that  over  those  emissions  arising  from  energy  utilised  in  heating  and  cooling  activities  are  further  analysed  in  this  way,  before  conclusive  comments  can  be  made.  

The   optional   Scope   3   emissions   analysis   is   most   interesting   and   shows   significant  decrease   in   emissions   arising   from   staff   commuting   with   a   contrasting   significant  increase   in   student   travel   by   car.     This  may   be   due   to   societal   issues   and   anecdotal  evidence   would   suggest   than   many   students   are   choosing   to   commute   rather   than  incur  the  cost  of  accommodation.  

There   are   a   number   of   optional   emissions   which   have   not   been   addressed   to   date  including  those  arising  from  the  University’s  procurement  spend.  Ozawa-­‐Meida  et  al.  (2011)   recently   published   a   consumption   based   carbon   footprint   methodology   for  higher  education  institutions,  their  approach  is  somewhat  similar  to  the  way  in  which  business   travel   data   were   calculated   in   the   UCC   carbon   footprint   studies   (i.e.  extrapolation   from   financial   records)   and  offers   great   potential   for   inclusion   of   non-­‐travel  procurement  goods  and  services   in  University  carbon  footprints.  The  challenge  

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 20 of 22  

in  adopting  the  methodology  is  determining  the  suitability  of  the  supply  chain  emission  factors  for  different  countries;  the  close  proximity  of   Ireland  to  the  UK  and  the  close  economic  links  between  these  countries  bodes  well  for  using  this  approach  at  UCC.  

Construction   is   a   significant   part   of   any   University’s   procurement   spend   but   the  inclusion  of  such  project  spending   in  what  are   in  effect  GHG  inventories  may   lead  to  potential   distortions   of   the   carbon   footprint   totals.   GHG   emissions   associated   with  non-­‐operational   spending   such   as   construction   and   other   significant   development  projects   should   perhaps   be   amortized   over   time   so   that   footprints   are   comparable  over  time  (Dunphy  et  al.  2013).  

Other   Scope   3   consideration   of   potential   significance   includes:   services   provided   on  campus   directly   to   the   University   community   e.g.   catering;   travelling   of   overseas  students;   visitors   to   the   campus;   etc.   The   inclusion   of   these   additional   Scope   3  emissions   should   be   considered   in   the   context   of   the   development   of   a   carbon  management  plan   for   the  University.  This  should  serve  to   improve  the  quality  of   the  footprint  measures  developed  but  care  needs  to  be  taken  to  ensure  that  this  is  done  in  such  a  way  so  as  not  to  distort  the  metric  to  such  an  extent  that  it  loses  value.  

As  mentioned  in  the  original  report  Universities  as  educators,  centres  of  research  and  community   leaders   have   an   important   to   play   in   tackling   the   challenge   of   climate  change.   This   Carbon   Footprint,   and   the   innovations   envisaged   above,   have   the  potential  to  form  the  basis  for  the  development,  implementation  and  evaluation  of  an  effective   carbon  management   plan   to   enable   University   College   Cork   to   address   its  ‘carbon   performance’   in   an   integrated   and   useful   way   and   to   communicate   such  performance  to  its  stakeholders.  

 

 

 

 

 

   

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 21 of 22  

6 References  

CA-CP, 2008, Campus Carbon Calculator, CleanAir CoolPlanet, Inc., Portsmouth, NH, USA. http://cleanair-coolplanet.org

Carbon Trust, 2007. Carbon footprinting, Carbon Trust, London, UK

CER, 2013, Fuel Mix Disclosure and CO₂ Emissions 2011, Commission for Energy Regulation, Dublin, Ireland.

DEFRA, 2012, The 2012 Guidelines to Defra and DECC’s Greenhouse Gas (GHG) Conversion Factors for Company Reporting, Department for Environment, Food & Rural Affairs, London, UK

Downie, J., and Stubbs W., 2011, Evaluation of Australian companies’ scope 3 greenhouse gas emissions assessments, Journal of Cleaner Production, 56: 156-163

Dragomir, V.D. 2012. The disclosure of industrial greenhouse gas emissions: a critical assessment of corporate sustainability reports, Journal of Cleaner Production 29-30: 222–237.

Dunphy, N.P. & Henry, A.M., 2012. Exploration and Communication of Lifecycle Carbon Implications of Building Energy Retrofits presented at the Corporate Responsibility Research Conference, 12-14 Sept, BEM - Bordeaux Management School, Bordeaux, France.

Dunphy, N.P., Ryan, M.B., Morrissey, J.E. and Poland, M., 2013. Tracking Carbon Footprints – experience of an Irish University, presented at the 7th Conference of the Environmental Management for Sustainable Universities, 04-07 June, Istanbul, Turkey.

EPA, 2012, Country specific net calorific values and CO₂ emission factors for use in the Annual Installation Emissions Report, Wexford, Ireland.

EPA, undated, Change CMT Calculator Emission Factor Sources, Wexford, Ireland. http://cmt.epa.ie/Global/CMT/emission_factor_sources.pdf

Finkbeiner, M., 2009, Carbon Footprinting—opportunities and threats, The International Journal of Life Cycle Assessment 14(2): 91–94.

Howley, M., Dennehy, E., Ó Gallachóir, B. and Holland, M., 2012, Energy in Ireland 1990 – 2011, Sustainable Energy Authority of Ireland, Dublin, Ireland.

Huang, Y.A., Weber, C.L. and Matthews, H.S., 2009. Categorization of Scope 3 Emissions for Streamlined Enterprise Carbon Footprinting, Environmental Science and Technology 43(22): 8509–8515.

Lee, K-H., 2011.,Integrating Carbon Footprint into supply chain management: the case of Hyundai Motor Company (HMC) in the automobile industry, Journal of Cleaner Production 19(11): 1216–1223.

Matthews, H.S., Hendrickson, C.T. and Weber, C.L. 2008, The importance of Carbon Footprint estimation boundaries, Environmental science & technology 42(16): 5839–42.

UCC  Carbon  Footprint  2011-­‐12  Internal  Report         Oct  2013    

Page 22 of 22  

Pękala, L.M., Tan, R.R, Foo, D.C.Y. and Jeżowski, J.M., 2010. Optimal energy planning models with Carbon Footprint constraints, Applied Energy 87(6): 1903–1910.

Peters, G.P., 2010, Carbon footprints and embodied carbon at multiple scales, Current Opinion in Environmental Sustainability, 2(4), pp.245–250.

POST, 2006, Postnote 268: Carbon Footprint Of Electricity Generation, Parliamentary Office of Science and Technology, London, UK.

Sundin, H. and Ranganathan, J. 2002. Managing Business Greenhouse Gas Emissions  : The Greenhouse Gas Protocol – A Strategic and Operational Tool, Corporate Environmental Strategy, 9(2): 137–144.

UNEP Climate Neutral Network, undated, Glossary, www.unep.org/climateneutral/Resources/Glossary/tabid/509/Default.aspx#C

Wackernagel, M. and Rees, W., 1996. Our Ecological Footprint: Reducing Human Impact on the Earth. Gabriola Island, B.C. Canada: New Society Publishers.

Weidema, B.P., Thrane, M., Christensen, P., Schmidt, J. and Løkke, S., 2008, Carbon Footprint: A Catalyst for Life Cycle Assessment?, Journal of Industrial Ecology 12(1): 3–6.

Wiedmann, T., and Minx, J. 2008. A Definition of ‘Carbon Footprint’ in C.C. Pertsova, Ecological Economics Research Trends: Chapter 1, pp. 1-11, Nova Science Publishers, Hauppauge NY, USA.

Wiedmann, T. 2009, Editorial: Carbon Footprint and Input–Output Analysis – an Introduction, Economic Systems Research 21(3): 175–186.