classical and quantum electrodynamics in an...

24
Classical and quantum electrodynamics in an intense laser field Madalina Boca Department of Physics, University of Bucharest 2012 annual scientific conference (FF UB) Intense laser-matter interaction Magurele 2012 1 / 24

Upload: phambao

Post on 27-Mar-2018

220 views

Category:

Documents


5 download

TRANSCRIPT

Classical and quantum electrodynamics in an intenselaser field

Madalina Boca

Department of Physics, University of Bucharest2012 annual scientific conference

(FF UB) Intense laser-matter interaction Magurele 2012 1 / 24

Outline

1 Introduction

2 Modeling the laser field

3 Radiation scattering

Classical/quantum description

Final electron distribution

4 Pair creation

(FF UB) Intense laser-matter interaction Magurele 2012 2 / 24

Introduction

Processes

Radiation scattering (non-linear Compton/Thomson):

Fundamental for theoryAstrophysics (Freenberg, Primakov, 1963)X and gamma polarimetryX/gamma radiation source (Milburn (1963), Arutyunian (1963);impressive change due to the availability of intense laser sources.)

Pair creation

Theory (QED in the nonperturbative regime)Schwinger mechanism practically unavailable → non-linear processes

Experiment E144 at SLAC (Stanford Linear Accelerator Center) [Bula et al, 1996]

(FF UB) Intense laser-matter interaction Magurele 2012 3 / 24

Introduction

G. A. Mourou, arXiv:1108.2116

(FF UB) Intense laser-matter interaction Magurele 2012 4 / 24

Introduction

Relevant parameters

Electron energy E ;

γ ∼ E [keV]511

(ELI-NP: γ ∼ 1000)

Laser wavelength

λ ∼ 800 nm (~ω ∼ 0.056 au ∼ 1.5 eV)

laser pulse duration

tens of cycles: τ ∼ 10T (T ∼ 3 fs; ELI-NP: τ ∼ 30 fs)

Laser intensity

I = ε0c2

E 20 = ε0c

2ω2A2

0

η = eA0mc, → I = (ω [au])2 η2 × 6.6× 1020 W/cm2

η ∼ 700, ω = 0.056 au → I = 1024 W/cm2 (ELI-NP)

classicality parameter:

y = ηγ~ωmc2

(FF UB) Intense laser-matter interaction Magurele 2012 5 / 24

Introduction

Compton scattering

p1 6= 0:

ω2 = ω1E1 − cn1 · p1

E1 − cn2 · p1 + (1− n1 · n2)~ω1

Thomson (elastic) scattering

p1 6= 0: (elastic scattering in the elec-tron rest frame)

ω2 = ω1E1 − cn1 · p1

E1 − cn2 · p1

Head-on collision, forward scattering, E1 mc2, ~ω1 mc2: ωmax2 ≈ 4γ2ω1

Example: ~ω1 = 2.33 eV (λ ≈ 532 nm), E1 = 600 MeV → ~ωmax2 ≈ 13 MeV (0.02×E1).

(FF UB) Intense laser-matter interaction Magurele 2012 6 / 24

Modeling the laser field

The laser field

Semiclassical approximation: A(r, t), Φ(r, t) ↔ E(r, t), B(r, t)

monochromatic

plane wave: E,B functions on φ ≡ ct − n · r

focused laser field

(FF UB) Intense laser-matter interaction Magurele 2012 7 / 24

Radiation scattering Classical/quantum description

Classical/quantum description

CED formalism: the electron accelerated by the laser field emits radiation;

Arbitrary laser field (monochromatic/plane-wave/focused)Electron equation of motion (w/wo radiation reaction)Lienard-Wiechert potentialsPlane-wave, no RR: pi = pf

Quantum description: single photon emission in the external field

Dirac equation, semiclassical approximation (laser field: classical,emitted photon: quantized field)plane wave laser field(P − eAL−eAC−mc)Ψ = 0 Exact solutions of the Dirac equation forHe−L (Volkov solutions); Hc : first order perturbation theory

Aif ∼1

i~

∫dt〈ψV (p2)|HC(k2)|ψV (p1)〉

(FF UB) Intense laser-matter interaction Magurele 2012 8 / 24

Radiation scattering Classical/quantum description

Radiation spectrum

d2W

dω2dΩ2−→

dW

dω2,

dW

dΩ2

Monochromatic approximation: d2W

dω2dΩ2→ an infinite series of lines for any fixed

observation direction.

ω(q)N = NωL

E1 − cn1 · p1

E1 − cn2 · p1 + (1− n1 · n2)[

mc2η2

4(E1−cn1·p1)+ N~ωL

(cl)N = NωL

E1 − cn1 · p1

E1 − cn2 · p1 + (1− n1 · n2) mc2η2

4(E1−cn1·p1)

η → 0: Compton/Thomson formula for ωL → NωL (simultaneous absorption of Nphotons)

ω(q)1 = NωL

E1 − cn1 · p1

E1 − cn2 · p1 + (1− n1 · n2)N~ωL

η → 0, p→ 0: Compton/Thomson formula for electron initially at rest andωL → NωL

(FF UB) Intense laser-matter interaction Magurele 2012 9 / 24

Radiation scattering Classical/quantum description

Radiation spectrum

ω(q)N = NωL

E1 − cn1 · p1

E1 − cn2 · p1 + (1− n1 · n2)[

mc2η2

4(E1−cn1·p1)+ N~ωL

(cl)N = NωL

E1 − cn1 · p1

E1 − cn2 · p1 + (1− n1 · n2) mc2η2

(E1−cn1·p1)

mc2η2

4(E1−cn1·p1): nonlinearity effect “electron dressing”: p → q = p + (mc)2eta2

4(n1·p)n,

m→ m∗ = m√

1 + η2/2

Classicality criterion: small electron recoil y = Neff~ω1(E1−cn1·p1)

mc2η2 1

η . 1→ Neff = O(1), y ∼ ~ω1γmc2η2 η 1→ Neff ≈ η3, y ∼ ~ω1γη

mc2

Quantum cut-off

ω(q)N < ω

(cl)N ; frequency cut-off lim

N→∞~ω(q)

N = E1−cn1·p11−n1·n2

= ~ωcut−off

Head-on collision For head-on collision, backscattering, ultrarelativistic electron:~ωcut−off = E1 (not always observed!)

(FF UB) Intense laser-matter interaction Magurele 2012 10 / 24

Radiation scattering Classical/quantum description

Blue shift/Red shift

γ1 1 −→ ω2 ωl Blue shift: electron energy converted into the energy of theemitted photon

η > 1 Red shift due to electron dressing

Head-on collision, E1 = 600 MeV, λL = 532 nm (quasi-monochromatic) (ELI-NPgamma source); δθ = ∠(p1, k2)

(FF UB) Intense laser-matter interaction Magurele 2012 11 / 24

Radiation scattering Classical/quantum description

Blue shift/Red shift

η 1 Onset of a different regime: the radiation distribution becomesquasi-continuous for well defined angles.

(FF UB) Intense laser-matter interaction Magurele 2012 12 / 24

Radiation scattering Classical/quantum description

Classical/quantum calculation

Classicality parameter y ∼ ~ω1γηmc2

Head-on collision, ωL = 0.043, E1 = 5.1 GeV, η = 40 (quantum cutt-off reached)

(FF UB) Intense laser-matter interaction Magurele 2012 13 / 24

Radiation scattering Classical/quantum description

Angular distribution

γ ∼ η

Head-on collision, γ1 = 50 , η = 100 Well defined shape of angular distribution,azimuthal symmetry lost

(FF UB) Intense laser-matter interaction Magurele 2012 14 / 24

Radiation scattering Classical/quantum description

Angular distribution

γ ∼ η

Shape of the distribution given by trajectory of β

Possible field shape reconstruction from β

Identical shape predicted by classical/quantum calculation

(FF UB) Intense laser-matter interaction Magurele 2012 15 / 24

Radiation scattering Classical/quantum description

Radiation reaction

Lorentz-Abraham-Dirac (LAD) equation:

dpµ

dτ= e

mFµνpν + 2

3

e20

c2(mc)

[d2pµ

dτ2 + pµ

(mc)2

(dpν

dτdpνdτ

)]Landau-Lifshitz (LL) equation: perturbative; in RHS use dpµ

dτ= e

mFµνpν

analytical solution of the LLequation for a plane-wave field[DiPiazza, Lett. Math. Phys. 83, 105 (2008)]

without RR pi = pf

with RR pi 6= pf

∆p depends on: laser intensity,frequency, duration

Not included in the quantumformalism as presented before

λ = 1000 nm, η = 100(I = 1.2× 1022 W/cm2)

(FF UB) Intense laser-matter interaction Magurele 2012 16 / 24

Radiation scattering Classical/quantum description

Radiation reaction

Quantum description of radiation reaction: incoherent multiple one-photon emission by

the electron [DiPiazza et al, Phys. Rev. Lett. 105, 220403 (2010)]

(FF UB) Intense laser-matter interaction Magurele 2012 17 / 24

Radiation scattering Classical/quantum description

Time dependence of the emitted fields

Trains of zeptosecond pulses [Galkin et al, Contrib. Plasma Phys. 49,593 (2009)]

λ0 = 532 nm, E1 = 600 MeV, θ1 = 0.8π, η = 0.1, 10.

(FF UB) Intense laser-matter interaction Magurele 2012 18 / 24

Radiation scattering Classical/quantum description

Focalization effects

Only classical description possible

unlike in the plane-wave case pi 6= pf

Orthogonal collision: effects in theregime γ ∼ η 1; pi 6= pf

Head-on collision: negligible effects inthe regime γ ∼ η 1; pi = pf

Numerical examples for a Gaussian pulse with waist-size w

(FF UB) Intense laser-matter interaction Magurele 2012 19 / 24

Radiation scattering Classical/quantum description

Focalization effects

Ponderomotive acceleration of electrons by atigthly focused laser pulse

Energy gain ∼ MeV for I ∼ 1019 W/cm2.

[Yu et al, Phys. Rev. E 61, R2220 (2000); Phys. Rev. E 68, 046407

(2003)]

(FF UB) Intense laser-matter interaction Magurele 2012 20 / 24

Radiation scattering Final electron distribution

Final electron distribution (γ η ∼ 1)

the monochromatic case: a series of discrete lines for any electron direction

finite pulse: discrete lines → continuous spectrum

λ0 = 800 nm, η = 0.6, E1 = 46 GeV, near head on collision (SLAC)

monochromatic plane wave pulse

(FF UB) Intense laser-matter interaction Magurele 2012 21 / 24

Radiation scattering Final electron distribution

Final electron distribution for large η

λ0 = 800 nm, E1 = 5.1 GeV, head-on collision.η = 0.5 η = 5

λ0 = 800 nm, η = 5 (I = 5 ×1019W /cm2), head-on collision; energydistribution of the final electron dp/dE2.

(FF UB) Intense laser-matter interaction Magurele 2012 22 / 24

Pair creation

Pair creation

Trident Process

Intermediate photon: off or on shell

off-shell → one step process

e− + NωL → e′− + e− + e+

(Non-linear Bethe-Heitler)

~ωBH ≥ m∗c2

2Nγ

on-shell → two step process

e− + nωL → e′− + ω′

ω′ + (N − n)ωL → e− + e+

(Non-linear Breit-Wheeler)

~ωBW ≥ m∗c2

2(√

N−1)γ

Rates for the two processes:

Hu et al, Phys. Rev. Lett. 105, 080401 (2010), A. Ilderton, Phys. Rev. Lett. 106, 020404 (2011)

(FF UB) Intense laser-matter interaction Magurele 2012 23 / 24

Pair creation

Pair creation

SLAC E144 experiment(Non-linear BW dominant)

Hu et al, Phys. Rev. Lett. 105, 080401 (2010)

ELI-NP (η ∼ 1000, MeV electrons) :competing processes

Hu et al, Phys. Rev. Lett. 105, 080401 (2010)

(FF UB) Intense laser-matter interaction Magurele 2012 24 / 24