claes fransson, stockholm university collaborators: r. chevalier (uva), poonam chandra (uva) p....

120
Claes Fransson, Stockholm University tors: R. Chevalier (UVa), Poonam Chandra (UVa) P. Gröningsson, C. Kozma, P. & N. Lundqvi T. Nymark (SU), B. Leibundgut, J. Spyromilio, K. Kjaer, R. Kotak (ESO) Shocks in SN 1987A

Upload: ezra-harris

Post on 27-Dec-2015

217 views

Category:

Documents


3 download

TRANSCRIPT

Claes Fransson, Stockholm University

Collaborators: R. Chevalier (UVa), Poonam Chandra (UVa) P. Gröningsson, C. Kozma, P. & N. Lundqvist, T. Nymark (SU), B. Leibundgut, J. Spyromilio, K. Kjaer, R. Kotak (ESO)

Shocks in SN 1987A

SAINTS collab.SN 1987A ring collision

Chandra & ATCA

Park et alManchester et al

Dust emissionBouchet et al 2006

T ~ 166 KSi featurecollisionally heated

Spitzer

Gemini S + Spitzer

11.7 18.3

Gröningsson et al 2006

VLT/UVES

FWHM ~ 6 km s-1

Seeing 0.5-0.8”

Resolves N/S

Gröningsson et al 2006

H

narrow

[O III] 5007

Narrow FWHM ~ 10 km s-1 from unshocked ring

Broad Vmax 300-400 km s-1 from shocked ring (Pun et al 2002)

broad

He I

Gröningsson et al (2006)Smith et al (2006), Heng et al (2006)

Velocity (104 km/s)

Reverse shock

Broad ~16,000 km/s emission from reverse shock going back into ejecta

VLT/FORSDec 2006

2002

2000

Reverse shock evolution

HCa II

Broad ~16,000 km/s emission from reverse shock going back into ejecta

1. Ly and H from charge exchange of neutral ejecta? Probably not (Heng & McCray 2007)

2. X-ray excitation by reverse shock + blobs more likely?

Recombination time in ejecta long,

non-thermal excitation, ….

non-spherical

Similar to freeze-out phase for radioactive excitation and to Type IIb/IIn CS interaction (cf SN 1993J)

3. Cosmic ray excitation?

What is causing the reverse shock emission?

Intermediate velocity lines from shocked ringprotrusions

Gröningsson et al 2006

Oct 2002

N part of ring ~ ‘Spot 1’. Peak velocity ~ 120 km s-1. Max extension ~ 300 km s-1

VLT/SINFONI

March 2005 He I 2.06

Kjaer et al 2007

Adaptive optics integral field unit for J, H, K

Expansion velocities along ring J-band

Average velocity over the ring ~ 120 km s-1

UVES gives high and low velocity tails

Deprojected velocities

VLT/UVES spectrum

Max. velocity ~ shock velocity ~ 300-400 km/s

Coronal lines Gröningsson et al 2006

Fe XIV 5303 Ts ~ 2x106 K

H, He I, N II, O I-III, Fe II, Ne III-V….. Cooling, photoionized gas behind radiative shock intoring protrusions

Borkowski et al 1997Pun et al 2002

Hydrodynamics of ring collision

Optical emission from radiativeshocks into the ring materialRadio and hard X-rays from reverse shock

shock

Radiative shock structure

Post-shock densities ~5x106 - 107 cm-3. Agrees with nebular diagnostics

photoion. precursor narrow Ha, [N II], [O III]

coll. ioniz. X-raysCoronal lines

photoion. broad H, [OIII],…

Vs = 350 km/s no = 104 cm-3

Shock velocity into hot-spots 300 – 400 km s-1 Ts ~ 2x106 K

Coronal lines complement the X-rays to probe whole temp. range

Shock velocity

Coronal line diagnostics

Gröningsson, Nymark…

VLT/ISAAC

Near-IR

[Fe XIII] 1.0747-1.0798

Chandra: Zhekov et al (2005, 2006)

also XMM by

Haberl et al

X-rays

N VII, O VII-VIII, Ne IX-X, Mg XI-XII, Si XIII, Fe XVII…..

Two components: High density (104 cm-3) kT ~ 0.5 keV + Low density (102 cm-3) kT ~ 3.0 keV

Optical/UV from radiative shocks

Soft X-rays from radiative + adiabatic shocked ring blobs

Hard X-rays and radio from adiabatic reverse shock

A radiative shock gives X-rays, UV, optical, IR

Expect correlation between optical/UV and soft X-rays, but not with hard and radio

Time evolution

Coronal lines and soft X-rays correlate. Soft X-rays from hot-spots. Hard from reverse shock & blast wave

Optical: Gröningsson et alX-rays: Park et al 2005

Gröningsson et al 2007

Oct 2002

Low ionization lines (up to [O III]) have Vmax ~ 250 km s-1

Coronal lines Vmax ~ 400 km s-1

Highest vel. shocks may have been adiabatic in 2002

Line widths of low ionization ions increase with time 2000: ~ 250 km s-1 -> 2006: ~ 450 km s-1 . Coronal lines ~ constant ~ 450 km s-1

Cooling shocks

Cooling shocks

1

4

3.4

1 103008

3es

cool cm

n

skm

Vt yrs

High velocity shocks seen in soft X-rays gradually become radiative

Now, H up to ~ 450 km s-1

ne up to ~ 4x104 cm-3 ~ ring density (Lundqvist & CF

96)

Expect this to continue to higher shock velocities

Narrow, unshocked linesUnshocked ring ionized by SN shock breakout, then recombiningRing is now ionized by X-rays from shocks. Come-back of narrow lines

Pre-ionized region ~ 5x1017 (n/104 cm-3 )-1 cm

Shock models:Most of absorbed X-raysin pre-shock gas are re-emitted as [O III]

We are now starting tosee the re-ionization of the ring!

Conclusions

SN 1987A excellent case of CSI, with both thermal

and non-thermal processes.

Line profiles probe shock distribution + dynamics

UV/optical/IR from radiative shocks

Strong correlation between increase in optical and soft X-rays

Coronal lines complement soft X-rays as shock diagnostics

Higher velocity shocks gradually cooling. Now up to ~ 450 km s-1

Unshocked CSM is now becoming ionized.

Bright future!

Relation to other mass losing SNe

1. ej >> CSM Type IIL, IIb SN 1993J, SN 1979C

Steady wind

Line width ~ Vej

2.ej << CSM Type IIn… SN 1995N, SN 1998S

Blobs, rings, short-lived superwinds… SN 1987A

Line width ~ Vblast << Vej

Two cases for the line widths

blastblastej

CSMrev VVV

2/1

blastblastej

CSMrev VVV

2/1

Reverse CD Blast wave

ejecta CSM

VsVrev

SN 1993J opticalFilippenko et al 1994Fransson et al 2004

Box-like line profiles narrow emitting shell

Transition from Type II toType Ib = Type IIb

H

He I

Cool shell behind rev. shock SN ejectapartially ionized, T<7000K fully ionized neutral, T ~ (1-3)x104 Kn ~ 1010 cm-3 n ~ 106 – 107 cm-3

H, Mg II, Fe II O III-IV, N III-V, Ne III-V

UV & optical line emission

SN 1993J optical/UV

Good fit with ionized ejecta (O III etc) + cool, dense shell (H, Mg II, Fe II)Consistency of X-ray flux and UV/optical flux

HST (SINS) + Keck

HHe I

Mg II

[O III]

Type IIn SNe SN 1995N (Fransson et al 2004)

Broad H-lines(5-10,000 km/s)+ narrow (< 500 km/s) lines. HI, He,O III, Ne III-V, Fe II-VII

Sometimes intermediate (few x 1000 km/s) metal lines

Broad (eg H) 15,000 km/smay at be due to multiple electron scattering of narrow H emission by CS gas (Chugai 2001)

Light curve often dominatedby CSI even at early times

SN 1995N (Fransson et al 2004)

Spectral modeling: N/C large + enhanced O close to reverse shock most of the envelope lost before the explosion dM/dt ~ 10-4-10-3 MO yr-1

Late superwind phase? (Heger et al 1997)Binary ejection?May be connection to Ibcs (cf Chugai & Chevalier 2006)

Progenitor of SN 2005gl possibly identified as an LBV star (if not a cluster) (Gal-Yam et al 2006)

SN 1979C (IIL), 1987A (IIP), 1993J (IIb), 1995N (IIn), 1998S (IIn) all have N/C >> 1 (Fransson et al 1984, 1989, 2001, 2005)

SN 1998S IIn N/C ~ 6SN 1995N IIn N/C ~ 4SN 1993J IIb N/C ~ 12SN 1987A IIP N/C ~ 5SN 1979C IIL N/C ~ 8

Solar N/C ~ 0.25

All indicate CNO processing and mass loss and/or mixing

SN 1998S

CNO diagnostics

N/C >> 1 CNO burning heavy mass loss + mixingRotation helps!Roche lobe overflow

N/C strong fcn of mass loss40 M at ZAMSMeynet & Maeder 2003

SN 1993J binary modelWoosley et al 1994

X-ray spectra useful probes of theejecta composition

solar helium zone

carbon zone oxygen zone

Nymark et al 2006

Nymark, Chandra, CF 2007data: XMM Zimmermann & Aschenbach Chandra: Swartz et al 2003

SN 1993J

CNO enriched H or He envelope

Data: Pooley et al 2002Modeling: T. Nymark, P. Chandra, CF 2007

SN 1998S

CNO enriched H envelope

Conclusions

SN 1987A excellent case of CSI, with both thermal and non-thermal processes.

Soft X-rays and UV/optical/IR from radiative shocks Line profiles probe shock distribution + dynamics Correlation between increase in optical and soft X-rays Coronal lines probe shocks with 300-400 km s-1

Higher velocity shocks become radiative. Now up to ~ 450 km s-1

Unshocked ring is now becoming ionized.

CS interaction has different signatures depending on CSM structure. Physics similar CNO processing seen in most SNe with strong mass loss. X-rays important probe of ejecta composition for all CC SNe

Gröningsson et al (2006)Smith et al (2006), Heng et al (2006)

Velocity (104 km/s)

Reverse shock

Broad ~16,000 km/s emission from reverse shock going back into ejectaLy and H from charge exchange of neutral ejecta (??) (Heng & McCray 2007)X-ray excitation by reverse shock + blobs likely. Time evol. may tell.

VLT/FORSDec 2006

2002

2000

VLT/SINFONIKjaer et al 2007

Chandra & ATCA

Park et alManchester et al

Gemini S + Spitzer

11.7 18.3

shock

Optical lines probe different temperature intervals in the cooling gas behind the radiative shocks

Te

Fe

VLT/SINFONI

March 2005 He I 2.06 PaBr[Fe II]

Kjaer et al 2007

Adaptive optics integral field unit for J, H, K

Expansion velocities along ring J-band

P. Challis/SAINTS collab.

SN 1987A ring collision

Reverse CD Blast wave

ejecta CSM

VsVrev

V rev≈ ρCSMρej 1/2

V s

1. If ej >> CSM Vs >> Vrev Type IIL, IIb SN 1993J, SN 1979C

2.ej << CSM Vs << Vrev Type IIn SN 1995N, SN 1998S SN 1987A 1. Steady wind 2. Blobs, rings, superwinds…

Two cases for the mass loss

SN 1987A radioactivities

M(56Ni) = 0.07 MO , M(57Ni) = 3x10-3 MO, M(44Ti) = 1x10-4 MO

Energy stored as ionization, later released as recombination flattening of light curve

44Ti mass

M(44Ti) = 1 x10-4 MO

Range (1-2) x10-4 MOIR photometry needed

M(44Ti) = (0.5, 1, 2) x10-4 MO

Line fluxes: H

Excellent fit! But, hydrogen lines dominated by freeze out in

envelope Hnot sensitive to M(44Ti)

0.5-2 keV

3-10 keV +radio 3 -20 cm

Radio and X-ray brightening

Correlation of hard X-rays and radioprobably close to reverse shock

Park et al 2005Manchester et al

Gröningsson et al (2006)Smith et al (2006), Heng et al (2006)

Velocity (104 km/s)

Reverse shock

H

Broad ~15,000 km/s emission from reverse shock going back into ejectaLy and H from charge exchange of neutral ejecta (?) (Michael et al 2003)

44Ti

reverse shock

VLT/UVES

2002

2000

Conclusions

Mass loss dominant factor for radio, X-rays and late optical

Increasingly important for IIP IIL IIn,p Ib/c. N/C important diagnostic

Strong evidence for magnetic field amplification (and particle acceleration). In SN 1993J B-field close to equipartition. Electrons far below. Effects of cosmic rays?

SN 1987A excellent shock lab. to study both thermal and non-thermal processes. Expect collision with main ring to start soon.

Mass loss rates

Type IIP dM/dt 10-6 MO yr-1 (for u = 10 km s-1). RSG wind OK

Type IIL dM/dt 2x10-5 – few x 10-4 MO yr-1 (for u = 10 km s-1).

'super wind' (Heger et al) t = Vs/u tobs 5x102 tobs > 104 / (u/10 km s-1) yrs i.e., several MO lost

Type IIn dM/dt 10-4 -10-3 MO yr-1 (for u = 10 km s-1). super wind Clumping (Chugai)? Asymmetric wind (Blondin, Chevalier, Lundqvist)?

Type Ib/c dM/dt 10-7 - 10-5 MO yr-1 (for u = 1000 km s-1).

Mass loss rate uncertain

SN 1993J

Radio: Synchrotron spectrum Wavelength dependent turn-on of emission

VLBI imaging of SN 1993J and SN 1986J

Van Dyk et al 1994, Weiler, Panagia, Sramek 2002

Bartel et al Marcaide et al.

1.3 cm

21 cm

Log t (days)

Log

S

ρcs∝ r−2ρej∝ r−n

T CS=1 . 4x109 V104km / s

2

K T reverse=T CS

n−2 2=106−107 K

R s∝t n−3 / n−2

V s∝ t−1/ n−2

Chevalier (1982)CF (1984)Chevalier & CF (1994)

SN 1993J X-rays

ROSAT 0.1 - 2.4 keV (Zimmermann et al 1994, Immler et al 2002)

ASCA 1 – 10 keV (Uno et al 2002)

COMPTON-GRO/OSSE 50 – 200 keV (Leising et al 1994)

Chandra (Swartz et al 2002)

XMM/Newton (Zimmermann & Aschenbach 2003))

t < 50 days kT ~ 100 keV Lx 5x1040 erg/s 50 - 200 keV

2x1039 erg/s 0.1 - 2.4 keV

t > 200 days kT ~ 1 keV Lx 1x1039 erg/s 0.1 - 2.4 keV

Transition from hard to soft spectrum!

Zimmermann & Aschenbach 2003Tem

pera

ture

(ke

V)

Days after explosion

X-ray evolution

At 10 days: Only X-rays from outer, CS shock T~109 KAt 200 days: X-rays from reverse shock dominates T~107 K

CF, Lundqvist & Chevalier 1996

Hard to soft evolution natural consequence of the cool shell

Fassia et al 2001SN 1998S

Narrow CS lines have V ~ 40-50 km/s

Radiative reverse shock spectra

RS radiative for

One-temperature spectrum bad approx. for cooling shock .

Affects abundance estimates by large factor!

T. Nymark, CF, C. Kozma 2006

O VIII

C VI

Fe XVIII-XXIII

Si XIII

S XV

Mg XI-XII

Te

Distance from shock

M¿

5x10−5 uw/10 km s -1 M Θ /yr

Origin of the rings

R ~ 1018 cm, Vexp ~10 km s-1 tdyn ~2x104 years

N/C ~ 5

Origin (?): Merger inducing the equatorial mass loss and outer rings (Podziadlowski 1992, Heger & Langer 1998, Morris & Podziadlowski 2005)

Can this happen in a Ic progenitor? Late SN2001em emission (Chugai & Chevalier 2006)

Type IIP (little mass lost)

IIL, IIn, IIb ( < 0.5 M of H envelope)

Ib (only He core)

Ic (only O core)

Effects of binary mass loss probably important

SN Types determined by mass loss

SN 1993Jin M 813.6 Mpc

Best studied CS case: SN 1993J

RADIOI. Free-free absorption by the CSM¿uw

¿ ¿ ¿ ¿

Twind ~ 105 K (Lundqvist & CF 1989)

Good fit to Type IIL SNe (SN 1979C, 1980K…..)

SN 1979C IIL

dM/dt = 5x10-5 – 10-4 MO/yr for u=10 km/ssuperwind phase?

Montes et al 2000

Inverse Compton scattering by photospheric photons suppressesradio at optical max.

B << e indicated by flat light curve (?)

degeneracy between B and e

Typical for galactic RSG mass loss rates

SN 2004etObs: Stockdale (2004), Beswick et al (2004), Argo et al (2005)

Type IIP

¿ 2−10 x10−6 T e

105 K 3/4

uw10 km s -1 M⊕yr -1¿

(Chevalier, CF, Nymark 2006)

Most common core collapse SN

II. Synchrotron self-absorption

F ν=R2B−1/ 2ν5/2 1−e−τ ν

τ ν ∝ν−5/ 2−α Bα+3/ 2N e

F peak , ∧ τ ν,t =1, R=V exp t ⇒B t , N e t

F ν∝ν−α

F ν∝ν5/ 2

Absorption by same rel. electrons as are emitting

Note: Expansion velocity, i.e. radius, from line profiles or VLBI, not a parameter, c.f. GRB’s Log

Log

F

= 1

VLBI

Bartel et al 2001

Size of radio emitting region

Line widths(1.0-1.5)x104 km s-1

HST, SINS

Questions

Importance of shells. How common is e.g. the SN 1987A ring?

Effects of binarity. Mergers, non-spherical effects (e.g., Podziadlowski 1992). Similarities with WR stars in binaries?

Acceleration mechanism of non-th. particles??? Collissionless shock thermalization

Effects of cosmic rays on shock structure and non-thermal spectrum (e.g., SNRs)

Dust condensation in cool shell?

T too high in H & He zones, unless density very high. OK in O/C or O/Si regions

Temperature sensitive to ejecta composition

See also Deneult, Clayton & Heger 2003

Dust extinction first in UV, later in H

CF et al 2005

HLMg II

SN 1998S dust extinction

Dust in SNeAGB stars and SNe main sources for dust

Little direct evidence for dust condensation in SNe!

I. Ejecta condensation

SN 1987A at ~ 500 days from line profiles,

far-IR emission (Bouchet, Danziger &Lucy 1992)

Cas A. ISO mid-IR emission (Lagage et al 1996, Douvion et al 2001)

Cas A

Progenitors: Mass loss determines SN Type. Type IIP (little mass lost), ....IIn, IIb ( < 0.5 M of H envelope), Ib (only He core), Ic (only O core)

Ejecta structure: Shock dynamics probes density structure of SN ejecta

Shock physics: Thermal radiation processes (X-rays) Non-thermal radiation processes (radio/X-rays) Relativistic particle acceleration

Dust production

SN – GRB connection: GRB afterglow determined by circumstellarenvironment of the SN. Connection ty Type Ic SNe

Why is circumstellar interaction of SNe important?

Core collapse SNe

Type II H, He lines. H, He, O, Mg, Ca….Type Ib No H. No Si II. He, O, Mg, CaType Ic No H, He. No Si II. O, Mg, Ca

Filippenko 1997

(Filippenko 1997)

II: IIP (plateau) most common. MV ~ -16- -17. 10-15 M RSG

IIL (linear), IIn (narrow) 8-10, 15-20 M (??), binaries ?

Ib/c MV -17 - -20. WR stars > 25 M , some binaries ?

Dust emission in Type IIs

Gerardy et al 2002All Type IIn or IIL

Dust temperatures and luminosity

Gerardy et al 2002

Tdust ~ 800-1300 K ~ condensation temperature

LIR + Tdust Dust condensation at V ~ 4000 km/s at ~ 300 days (Pozzo et al 2004)

Not in SN core! Close to reverse shock

Pozzo et al 2004

Vel

ocity

(10

00 k

m/s

)

Where ?

1. Ejecta (SN 1987A).

1. Heated dust

1. Echo

1. Dust formation in cool dense shell

Cold dust in Cas A at 850 Dust emission between reverse and forward shocks

SCUBADunne et al 2003

Dust in Cas A

Dust + synchro Dust only

SN 1995N

Reverse shock close to the O core

HST/Keck/VLT CF et al 2002

H velocity ~ 10,000 km/s

[O III] velocity ~ 4,000 km/s

Narrow lines ~ 500 km/s

Shock not sph. symm. ?

Dust condensation

Grain comp region Tcond

Graphite C-O 1900Al2 O3 O-zone 1600Mg Si O3 O-zone 1500Fe3 O4 ? 1300SiO2 O/Si 1500

Kozasa et al 1990

Need temperature less than 2000 K

C-O shock structure

T < 1500 K, n > 1010 cm-3 behind reverse shock. OK for dust condensation

shock

Dust?

Progenitors: Mass loss determines SN Type. Type IIP (little mass lost), ....IIn, IIb ( < 0.5 M of H envelope), Ib (only He core), Ic (only O core)

Ejecta structure: Shock dynamics probes density structure of SN ejecta

Shock physics: Thermal radiation processes (X-rays) Non-thermal radiation processes (radio) Relativistic particle acceleration

Dust production

SN – GRB connection: GRB afterglow determined by circumstellarenvironment of the SN.

Why is circumstellar interaction of SNe important?

Conclusions

1. Consistent picture of radio, X-rays and optical/UV observations based on CS interaction 2. Combination of radio, X-rays and optical/UV observations provide reliable mass loss rates for progenitors

3. Cool, dense shell crucial for X-ray evol., X-ray to optical/UV reprocessing, line formation….

4. Radio observations provide an excellent laboratory for understanding non-thermal particle acceleration and collisionless shock physics

5. CNO processing seen in most SNe

6. Dust may form in the cool, dense shell

7. Stellar wind bubbles compressed by ISM pressure in starbursts to pc dimensions may explain constant density and high pressure inferred from GRB afterglows

SN 1995N

Reverse shock close to the O core

SN 1995N

Reverse shock close to the O core

HST/Keck/VLT CF et al 2002

H velocity ~ 10,000 km/s

[O III] velocity ~ 4,000 km/s

Narrow lines ~ 500 km/s

Shock not sph. symm. ?

N/C >> 1 CNO burning

heavy mass loss + mixing

N/C increases with mass loss

Meynet & Maeder 2003

40 M at ZAMS

Mass loss processes

I. Single stars Blue SGs u ~ 500 – 3000 km/s dM/dt 10-7 – 10-5 MO /yr

Red SGs u ~ 10 – 50 km/s dM/dt 10-6 – 10-4 MO /yr

Superwinds (cf. AGB's): Heger et al (1997) find large amplitude pulsations with several MO per 10,000 years dM/dt ~ 10-4 MO/yr

II Binaries Winds RL overflow, common envelope phases....

X-rays

Thermal X-rays dominated by reverse shock

Reverse shock radiative! Cooling shock. One-temp. fits misleading!

Cool, dense shell between reverse shock and forward shock absorption of X-rays

T reverse=T CS

n−2 2=106−107 K

n reverse=n−4 n−3 nCS

2≈30nCS≈108−109 cm−3

Conclusions from CNO

Progenitors must have lost most of the hydrogen envelope before explosion

Confirms mass loss as the important factor for the SN Type among core collapse SNe

Absorption by cool dense shell

RADIOI. Free-free absorption by the CSM

¿uw

¿ ¿ ¿ ¿

Twind ~ 105 K (Lundqvist & CF 1989)

Good fit to Type IIL SNe (SN 1979C, 1980K…..)

dM/dt = 5x10-5 – 10-4 MO/yr for u=10 km/s

II. Synchrotron self-absorption

F ν=R2B−1/ 2ν5/2 1−e−τ ν

τ ν ∝ν−5/ 2−α Bα+3/ 2N e

F ν∝R2Bα+1N e ν−α τ <<1

F ν∝R2B−1/2ν5/2 τ >>1

F peak , R=V expt ∧ τ ν,t =1 ⇒ B t , N e t

F ν∝ν−α

F ν∝ν5/ 2

Absorption by same rel. electrons as are emitting

Obs: VLA: van Dyk et al 1994,

Weiler, Panagia, Sramek 2002

CF & Björnsson 1998

Model and VLA light curves

csm r-2 OK!! No evidence for mass loss variations or s 2.2. dM/dt = 5x10-5 MO/yr for u=10 km/s, same as from X-rays3. Injection spectrum nrel -2.1. Synchrotron cooling steepens this!4. B 0.15 e 10-4

Assume: UB Utherm, Urel Utherm

Self-consistent calculation of rel. electron spectrum, including all cooling processes, as well as radiative transfer

Strong interactors = strong radio, X-ray, optical emission high mass loss rates

Type IIL, IIn, IIp..

radiative reverse shocks

Weakly interacting

Type IIP

adiabatic reverse shocks

Transitions: SN 1987A weak strong

CSI observed for all types of core collapse SNe

H profile in SN 1998SFransson et al 2004

Double peaked H profile implies thin shell If R/R < vth/Vexp~10-3 Sobolev not valid. Optically thick lines F

M-shaped profiles

Confirms line formation in cold, dense shell R < 1013 cm. Consistent with photoionization models

see alsoLeonard et al 2000Gerardy et al 2000Poozo et al 2004

X-rays from Type IIP

SN 1999em, SN 1999gi, SN 2004dj, ……..

Lx ~ (1-5)x1038 erg/s (0.5-8 keV)

1. Inverse Compton from relativistic electrons at blast wave

2. Thermal dominated by adiabatic reverse shock

Little spectral info we can not discriminate between 1 & 2

IC would constrain B and e (c.f., 2002ap)

Pooley & Lewin, Schlegel et al

Spectrum of relativistic particles

Type Ic SNe: Radio has ~ 1 p ~ 3 Cooling not very important Acceleration spectrum steeper than ‘standard’ Fermi case?

dN/dE E-p F = (p-1)/2

First order Fermi acceleration across shock p = (r+2)/(r-1)

ordinary strong shock r=4 p = 2 = 0.5

Synchrotron or Compton cooling p -> p+1 = 3 = 1.0

Whish list

More radio spectra and light curves like SN 1993J (including low frequencies). Optical line widths (or VLBI!) crucial for analysis

Very late radio and X-ray obs. (e.g. SN 1979C, 1980K, 1993J, 2001em, 2003L….). Follow reverse shock back into processed parts of ejecta. Probe wind bubble structure

UV + X-ray obs. for abundances

Deeper X-ray obs. of esp. IIP and Ib/c to discriminate between IC and thermal.

Conclusions

1. Consistent picture of radio, X-rays and optical/UV observations based on CS interaction 2. Combination of radio, X-rays and optical/UV observations provide reliable mass loss rates for progenitors

3. Cool, dense shell crucial for X-ray evol., X-ray to optical/UV reprocessing, line formation….

4. Radio observations provide an excellent laboratory for understanding non-thermal particle acceleration and collisionless shock physics

5. CNO processing seen in most SNe

6. Dust may form in the cool, dense shell

7. Stellar wind bubbles compressed by ISM pressure in starbursts to pc dimensions may explain constant density and high pressure inferred from GRB afterglows

SN classification

Type Ia Early: No H, He. Si II 6150 line. Late: Fe II-IIIType II H, He lines. H, He, O, Mg, Ca….Type Ib/c No H, He (Ic). No Si II. O, Mg, Ca

Filippenko 1997

(Filippenko 1997)

Ia : Standard candles (almost!). Thermonuclear explosions of 1.4 M white dwarfCore collapseII: IIP (plateau) most common. MV ~ -16- -17. 10-15 M RSG IIL (linear), IIn (narrow) 8-10, 15-20 M (??), binaries ?Ib/c MV -17 - -20. WR stars > 25 M , some binaries ?

IIn Narrow line SNe(Filippenko 1997)

Flat, very bright light curves

Good fit with SSA.Inverse Compton cooling by photospheric photons important. LBol peaks at ~ 10 days

Berger, Kulkarni, Chevalier 2002

Björnsson & CF 2003

Type Ic SN 2002ap

Can only determine from SSA alone

¿ u ¿

Borkowski et al 1997

SN 1993J X-raysXMM: Zimmermann & Aschenbach 2003Chandra: Swartz et al 2003

ThermalkT ~ 0.34 + 6.5 keV

Enhanced Si (?) (Swartz et al)

Can NOT use a one (or two) temperature components.

Cooling reverse shock + shell absorption +forward shock

SN 1993J

SSA + free-free

SSA only

dM/dt = 5x10-5 MO/yr for u=10 km/s

Fit to each epoch + radius B(t) & N(t)

CF & Björnsson 1998

Magnetic field and rel. particle density

1. Wind B-field 1-2 mG at 1016 cm (Cohen et al 1987)

Amplification of B-field behind shock. Weibel instab.? (Medvedev & Loeb 1999)2. UB 0.15 Utherm i.e. B 0.15 e 10-4

3. Ue 10-4 Utherm

B=64 Rs

1015 cm −1

G−2

U e=εe U therm=εe98ρV s

n rel∝ ρV s2

n rel∝ nwind

log R log R

log

B lo

g

ne

Note : If ne() ~ np(), then p ~ mp/me e ~ 0.2 ??

Obs: VLA: van Dyk et al 1994,

Weiler, Panagia, Sramek 2002

CF & Björnsson 1998

Model and VLA light curvesAssume B and e constantSelf-consistent calculation of rel. electron spectrum, including all cooling processes, as well as radiative transfer

Synchrotron cooling gives

Cooling break observed with GMRTand VLA at ~3400 days close to predicted (Chandra et al 2004)

Weiler et al, KITP 2006Type Ic SNe

GRB connection

SN 1994I in M 51‘best case’

Steep light curves F t-1.2

Spectra well fitted by SSA

Steep radio spectra F ~ 1

B t-1 as expected for equipartition in wind

B ~ 0.1

Chevalier 1998

SSA

FF

Free-free vs synchrotron self-absorption

High & low V F-F; Low & high V SSA¿ u ¿ ¿ u ¿

Non-thermal, inverse Compton scattering of photospheric photons

Obs: XMM: Sutaria et al 2003, Pian et al 2003 VLA: Berger et al 2002

2002ap: X-rays from inverse Compton

¿u V 2¿ ¿ ¿¿

10−5 M O /yr¿ ¿ ¿ u

1000 km/s −1

¿ εB≈2 εrel ¿V exp=70 ,000 km/s ¿ ¿ ¿

1. If

2. If

¿10−5 M O /yr ⇒ ε B≈5x10−3¿¿ 5x10−7 M O / yr ¿ Low for WR star!

day 6

(Björnsson & CF 2003)

Late time X-ray emission from Type Ic SNe

SN 1994I

at 7 years

Chandra

Immler et al 2002

Thermal? Too low density in a WR wind!Inverse Compton? No photospheric photons from radioactivitySynchrotron? Too low if extrapolated from X-rays

Spectrum of relativistic particles

dN/dE E-p p = (r+2)/(r-1)

F = (p-1)/2

First order Fermi acceleration across shock p = (r+2)/(r-1)

ordinary strong shock r = 4 p = 2 = 0.5

Radiative cooling p -> p+1 = 3 = 1.0

Type Ic SNe: Radio has ~ 1 p ~ 3 Cooling not very important Acceleration spectrum steeper than ‘standard’ Fermi case?

Cosmic ray dominated shocks

CR pressure ~ 4/3 and particle loss high compression r ~ 10 (instead of r ~ 4) flattening of spectrum at high energy steepening at low

F = (p-1)/2 dN/dE E-p

p = (r+2)/(r-1)

Berezko & Ellison 2001

1 103 107

E ~ mp

E2 d

N/d

E

radio X-rays

Radio: Steepening of spectrum. LC not much affected

X-rays: Strongly dependent on slope of rel. electron spectrum. Explains high X-ray flux at late epochs

Cosmic ray modified shock spectra and light curvesChevalier + CF 2006

X-rays

radio

ICCR mod.synchro

‘stand.’ synchro

IC

synchro

Results from synchrotron modeling

1.Excellent laboratories for rel. particle acceleration

2. csm r-2 OK!! No evidence for mass loss variations or s 2.

3. Injection spectrum ne -2.1 in SN 1993J.

4. B 0.15 e 10-4. (Note : If ne() ~ np(), then

p ~ mp/me e ~ 0.2 ?? )

5. Compton cooling by photospheric photons important for

first ~ 50 days. Synchrotron for years

6. Evidence for cosmic ray dominated shocks for Type Ic SNe

Shock structure

Chevalier & Blondin 1995

Fransson et al 1996

CS shock adiabatic

Reverse shock radiative

Ti

Te

Conclusions Mass loss dominant factor for radio, X-rays and late optical Radio, X-rays and optical/UV provide reliable mass loss rates for progenitors.

Increasingly important for IIP IIL IIn,b Ib/c. Consistent with the Type II taxonomy.

CNO processing seen in most SNe. Dust may form in reverse shock

Strong evidence for magnetic field amplification (and particle acceleration). In SN 1993J and SN 1994I B-field close to equipartition. Electrons far below. Late X-ray emission may indicate cosmic ray acceleration

SN 1987A excellent case of CSI, with both thermal and non-thermal processes. Expect most of the ring to be ionized by the X-rays and the collision with the main ring to start soon.