civilfem theory manual

1589
CivilFEM Theory Manual Table of Contents Chapter 1 Introduction 1.1 Introduction Chapter 2 General Aspects of CivilFEM 2.1 Integration of CivilFEM in Ansys 2.2 Active Units System 2.3 Active Codes Chapter 3 Materials 3.1 Introduction 3.2 General Properties 3.3 Specific Material Properties 3.4 Specific Code Properties 3.5 FLAC 3D Material Properties 3.6 Active Properties 3.7 Material Properties Dependence Chapter 4 Element Types 4.1 Element Types Supported by CivilFEM Chapter 5 CivilFEM Entities 5.1 General Criteria 5.2 Cross Sections 5.3 Axis Orientation in Beam Sections 5.4 Shell Vertex 5.5 Member properties 5.6 Beam and Shell Properties 5.7 Solid Sections Chapter 6 CivilFEM Combinations 6.1 CivilFEM Combinations 6.2 Results Combination in Ansys and in CivilFEM 6.3 Basic Terminology 6.4 Types of Combination Rules 6.5 Data Groups

Upload: roberto-perez-narvaez

Post on 12-Apr-2015

678 views

Category:

Documents


41 download

TRANSCRIPT

CivilFEM Theory Manual Table of ContentsChapter 1 1.1 Chapter 2 2.1 2.2 2.3 Chapter 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Chapter 4 4.1 Chapter 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chapter 6 6.1 6.2 6.3 6.4 6.5 Introduction Introduction General Aspects of CivilFEM Integration of CivilFEM in Ansys Active Units System Active Codes Materials Introduction General Properties Specific Material Properties Specific Code Properties FLAC3D Material Properties Active Properties Material Properties Dependence Element Types Element Types Supported by CivilFEM CivilFEM Entities General Criteria Cross Sections Axis Orientation in Beam Sections Shell Vertex Member properties Beam and Shell Properties Solid Sections CivilFEM Combinations CivilFEM Combinations Results Combination in Ansys and in CivilFEM Basic Terminology Types of Combination Rules Data Groups

6.6 6.7 6.8 6.9 6.10 Chapter 7 7.1 7.2 Chapter 8 8.1 8.2 8.3 Chapter 10-A

Envelopes Concomitance at Load and Model Level Comment about Beam188 and Beam189 elements Start states combinations with prestressing tendons Calculation of all possible load cases Predesigned Structures Introduction Frames Miscellaneous utilities Structures cost and weight Influence lines Solid to shell Steel Structures according to Eurocode 3

10-A.1 Scope 10-A.2 Checking Types 10-A.3 Valid Element Types 10-A.4 Valid Cross-Section Types 10-A.5 Reference Axis 10-A.6 Data and Results used by CivilFEM 10-A.7 Checking Process Chapter 10-B Steel Structures according to EA (MV-103)

10-B.1 Scope 10-B.2 Calculation Basis 10-B.3 Compression Check 10-B.4 Tension Check 10-B.5 Bending Check Chapter 10-C Steel Structures according to British Standard 5950 (1985)

10-C.1 Scope 10-C.2 Checking Types 10-C.3 Valid Element Types 10-C.4 Valid Cross-Section Types 10-C.5 Reference Axis 10-C.6 Data and Results used by CivilFEM 10-C.7 Checking Process Chapter 10-D Steel Structures according to British Standard 5950 (2001)

10-D.1 Scope 10-D.2 Checking Types 10-D.3 Valid Element Types 10-D.4 Valid Cross-Section Types 10-D.5 Reference Axis 10-D.6 Data and Results used by CivilFEM 10-D.7 Checking Process Chapter 10-E Steel Structures according to AISC LRFD 2nd edition

10-E.1 Scope 10-E.2 Checking Types 10-E.3 Valid Element Types 10-E.4 Valid Cross-Section Types 10-E.5 Data and Results used by CivilFEM 10-E.6 Checking Process Chapter 10-F Steel Structures according to GB50017

10-F.1 Scope 10-F.2 Checking Types 10-F.3 Valid Element Types 10-F.4 Valid Cross-Section Types 10-F.5 Calculation Basis 10-F.6 Checking Process Chapter 10-G Steel Structures according to AISC ASD/LRFD 13th edition

10-G.1 Scope 10-G.2 Checking Types 10-G.3 Valid Element Types 10-G.4 Valid Cross-Section Types 10-G.5 Calculation Basis 10-G.6 Checking Process Chapter 10-H Steel Structures according to CTE DB SE-A

10-H.1 Scope 10-H.2 Checking Types 10-H.3 Valid Element Types 10-H.4 Valid Cross-Section Types 10-H.5 Calculation Basis 10-H.6 Checking Process

Chapter 10-I 10-I.1 10-I.2 10-I.3 10-I.4 10-I.5 10-I.6 Chapter 10-J

Steel Structures according to AISC ASD 9th Edition Scope Checking Types Valid Element Types Valid Cross-Section Types Calculation Basis Checking Process Steel Structures according to ANSI/AISC N690-1994

10-J.1 Scope 10-J.2 Checking Types 10-J.3 Valid Element Types 10-J.4 Valid Cross-Section Types 10-J.5 Calculation Basis 10-J.6 Checking Process Chapter 10-K Steel Structures according to ASME BPVC III subsection NF

10-K.1 Scope 10-K.2 Checking Types 10-K.3 Valid Element Types 10-K.4 Valid Cross-Section Types 10-K.5 Calculation Basis 10-K.6 Checking Process Chapter 10-L Steel Structures according to ANSI/AISC N690-06

10-L.1 Scope 10-L.2 Checking Types 10-L.3 Valid Element Types 10-L.4 Valid Cross-Section Types 10-L.5 Calculation Basis 10-L.6 Checking Process Chapter 11-A Reinforced Concrete Beams (Part I)

11-A.1 Introduction 11-A.2 Predesign of rectangular sections 11-A.3 3D Interaction Diagram 11-A.4 Axial Load and Biaxial Bending Checking 11-A.5 Axial Load and Biaxial Bending Design 11-A.6 Calculation Codes 11-A.7 Previous Considerations to Shear and Torsion Calculation

11-A.8 Shear and Torsion according to Eurocode 2 (ENV 1992-11:1991) 11-A.9 Shear and Torsion according to Eurocode 2 (EN 1992-11:2004/AC:2008) and ITER Design Code 11-A.10 Shear and Torsion according to ACI-318 Chapter 11-B Reinforced Concrete Beams (Part II)

11-B.1 Introduction 11-B.2 Shear and Torsion according to EHE-98 11-B.3 Shear and Torsion according to EHE-08 11-B.4 Shear and Torsion according to BS8110 11-B.5 Shear and Torsion according to AS3600 11-B.6 Shear and Torsion according to GB50010 11-B.7 Shear and Torsion according to NBR6118 11-B.8 Shear and Torsion according to AASHTO Standard Specifications for Highway Bridges 11-B.9 Shear and Torsion according to Code of Rules SP 52-101-03 (Russian Code C 52-101-03) 11-B.10 Shear and Torsion according to IS456 Chapter 11-C Reinforced Concrete Beams (Part III)

11-C.1 Introduction 11-C.2 Shear and Torsion according to ACI-359 11-C.3 Cracking analysis 11-C.4 Cracking checking according Eurocode 2 (ENV 1992-11:1991) 11-C.5 Cracking checking according Eurocode 2 (EN 1992-11:2004/AC:2008) and ITER Design Code 11-C.6 Cracking checking according to ACI-318 11-C.7 Cracking checking according to EHE (EHE-98 and EHE-08) Chapter 12 12.1 12.2 Chapter 13 13.1 13.2 13.3 13.4 Prestressed concrete beams Shear and Torsion according to ACI-318 Shear and Torsion according to EHE-08 Concrete Shells Designing of Concrete Shells under Bending Moment and Torsion Wood-Armer Method Designing under Bending Moment and In Plane Loading CEB-FIP Method Design according to the Orthogonal Directions method Design according to the Most Unfavorable Direction method

13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 Chapter 14 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14 14.15 14.16 Chapter 15 15.1 15.2 Chapter 16

Shear checking and design according to Eurocode 2 (ENV 1992-1-1:1991) Shear checking and design according to Eurocode 2 (EN 1992-1-1:2004/AC:2008) and ITER Design Code Shear checking and design according to EHE-98 Shear checking and design according to EHE-08 Shear checking and design according to ACI 318 Shear checking and design according to ACI 349 Checking and design according to ACI 359-04 (reinforced concrete) Checking and design according to ACI 359-04 (prestressed concrete) Seismic Design Introduction Spectrum Calculation according to Eurocode 8 (ENV-1998-11:1994) Spectrum Calculation according to Eurocode 8 (EN-19981:2004) Spectrum Calculation according to NCSE-94 Spectrum Calculation according to NCSE-02 Spectrum Calculation according to GB50011 Spectrum Calculation according to IT3274 Spectrum Calculation according to AASHTO LRFD Bridge Design Specifications Spectrum Calculation according to EAK 2000 Spectrum Calculation according to CALTRANS Seismic Design Criteria Spectrum Calculation according to Uniform Building Code (1007) Spectrum Calculation according to PS 92 Spectrum Calculation according to the Indian Standard 1893 Modal analysis of the structure Modes Combination Push Over Analysis Exporting utilities Export and graphical representation of arrays in Microsoft Excel Export arrays to HTML Integration with FLAC3D

16.1 16.2 Chapter 17-A

Integration with FLAC3D Decomposition of a tetrahedral mesh into hexahedral elements Geotechnical Module and Foundations Module (part I)

17-A.1 Introduction 17-A.2 Definition of fictitious layered soils 17-A.3 Ballast Module 17-A.4 Retaining Walls 1 1/2D 17-A.5 Slope Stability 17-A.6 Mohr-Coulomb plasticity model 17-A.7 Cam-clay plasticity model 17-A.8 Hoek and Browns Failure Criteria 17-A.9 Seepage 17-A.10 Earth Pressures 17-A.11 Terrain Initial Stress Chapter 17-B Geotechnical Module and Foundations Module (part II)

17-B.1 Pile Wailing 17-B.2 Micropiles Chapter 17-C Geotechnical Module and Foundations Module (part III)

17-C.1 Tunnels Chapter 18 18.1 18.2 18.3 18.4 18.5 Chapter 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 Bridge and Civil non-Linearities Module (Part I) Introduction Types of elements for the non linear analysis CivilFEM Evolutive Analysis on Beams Creep and Shrinkage Non linear beams Bridge and Civil non-Linearities Module (Part II) Introduction Element Type Execution Process Transverse cross sections Bridge layout definition Solid modelling and finite element model generation Load definition structure Loads Construction process

Chapter 20 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8

Advanced Prestressed Concrete Module Introduction Support beam Tendons editor Prestressing losses 2D Interaction Diagram Axial Load and Biaxial Bending Checking Cracking Checking Free tendons (independent from support beam)

Chapter 1 Introduction

CivilFEM Theory Manual 300609. Ingeciber, S.A.

CivilFEM Theory Manual Chapter 1 Table of Contents1.1 Introduction ................................................................................................ 1 1.1.1 1.1.2 Theory Manual Purpose............................................................ 1 Notation .................................................................................... 1

CivilFEM Theory Manual 300609. Ingeciber, S.A.

1.1 Introduction

1.1

Introduction

Welcome to the CivilFEM Theory Manual. This manual presents the theoretical descriptions of all the calculation procedures used by the program and describes the relationship existing between the input data and the results given by CivilFEM. This manual is essential for understanding how the program works as well as for interpreting the calculation results correctly.

1.1.1

Theory Manual Purpose

The purpose of the CivilFEM Theory Manual is to provide information about the theoretical basis of the algorithms used in the program. The previous knowledge of the underlying theory will allow you to use the program in a more efficient and confident way, making a better use of its capacities and being conscious of its limits. Reading the whole manual should not be necessary; you will only have to look up those paragraphs referring to the calculation algorithms that you are focusing on. This manual does not contain, all the theory background regarding the calculation procedures carried out in code checking. In case you need a deep knowledge of the theory concerning any of the calculation procedures used, we encourage you to jave a look at the bibliography to which the different paragraphs refer. Should you require any further specific bibliography, please feel free to contact your CivilFEM distributor.

1.1.2

Notation

The CivilFEM Theory Manual employs the same notation criteria used in the Ansys Theory Manual.

CivilFEM Theory Manual 300609. Ingeciber, S.A.

1-1

Chapter 2 General Aspects of CivilFEM

CivilFEM Theory Manual 300609. Ingeciber, S.A.

CivilFEM Theory Manual Chapter 2 Table of Contents2.1 2.2 2.3 Integration of CivilFEM in ANSYS.............................................................. 1 Active Units System ................................................................................... 3 Active Codes.............................................................................................. 5

CivilFEM Theory Manual 300609. Ingeciber, S.A.

2.1 Integration of CivilFEM in ANSYS

2.1

Integration of CivilFEM in ANSYS

CivilFEM is a set of preprocessing, solution and post processing tools that is integrated within ANSYS and makes it easier for the user to deal with civil engineering problems. CivilFEM commands are implemented in ANSYS as external commands by means of routines written and compiled into dynamic link libraries (DLL), that are accessible through an explicit declaration in the ans_ext.tbl ANSYS file. All the CivilFEM tools are integrated in the ANSYS GUI with their corresponding menus and commands. Users can therefore access them in the same way as the ANSYS commands are used. The integration of CivilFEM into ANSYS allows users to take advantage of all the advanced capabilities of ANSYS while using CivilFEM commands: APDL Programming, File *.log, interactive Help... The data flow between ANSYS and CivilFEM is schematized in the following figure.

CivilFEM Theory Manual 300609. Ingeciber, S.A.

2-1

2.2 Active Units System

2.2

Active Units System

CivilFEM allows performing calculations in any consistent units system. However, the user must determine which units system is going to be used (see ~UNITS command), since many aspects concerning checking according to codes depend on the active units system used (specific values of certain units dependent parameters or calculation formulae using non-solid units) The active units system must be defined at the beginning of the session and should not be changed afterwards. By default, the active units system is the International System of Units (N, m, s).

CivilFEM Theory Manual 300609. Ingeciber, S.A.

2-3

2.3 Active Codes

2.3

Active Codes

When executing CivilFEM commands which depend on a code, the program checks which one is the active code and accomplishes calculations accordingly. CivilFEM allows having four active codes simultaneously: one for calculations concerning reinforced concrete structures, another for calculations concerning prestressed concrete structures, another for calculations concerning steel structures and another for seismic calculations (see ~CODESEL command).

Table 2.3-1 Codes or standards for Steel Structures supported by CivilFEM Eurocode 3 (EN 1993-1-1:2005) Eurocode 3 (ENV 1993-1-1:1992) EA-95 British Standard 5950 (1985) British Standard 5950 (2001) AISC LRFD 2nd edition AISC LRFD 13th edition AISC ASD 13th edition AISC ASD 9th edition (1989) (CivilFEM NPP required) Chinese code GB50011 Cdigo Tcnico de Edificacin CTE DB SE-A (2006) ASME BPVC Sect.III Div.1 SubSect NF (1989) (CivilFEM NPP required) ANSI/AISC N690-1994 (CivilFEM NPP required) ANSI/AISC N690-06 LRFD provisions (CivilFEM NPP required) ANSI/AISC N690-06 ASD provisions (CivilFEM NPP required)

Table 2.3-2 Codes or standards for Reinforced Concrete Structures supported by CivilFEM Eurocode 2 (EN 1992-1-1:2004/AC:2008) Eurocode 2 (ENV 1992-1-1:1991)

CivilFEM Theory Manual 300609. Ingeciber, S.A.

2-5

2.4 Active Codes

ACI 318 EHE 1998 EHE 2008 CEB-FIP British Standard 8110 Australian Standard 3600 Chinese code GB50010 Brazilian code NBR6118 AASHTO Standard Specifications for Highway Bridges Indian Standard 456 Russian code SP 52-101-03 (C 52-101-03)

ACI 349-01 (CivilFEM NPP required) ACI 359-04 (CivilFEM NPP required) ITER Structural Design Code for Buildings (CivilFEM NPP required)

Table 2.3-3 Codes or standards for Prestressed Concrete Structures supported by CivilFEM Eurocode 2 (EN 1992-1-1:2004/AC:2008) Eurocode 2 (ENV 1992-1-1:1991) ACI 318 EHE 1998 EHE 2008 ACI 359-04 (CivilFEM NPP required) ITER Structural Design Code for Buildings (CivilFEM NPP required)

Table 2.3-4 Codes or standards for Seismic Analysis supported by CivilFEM Eurocode 8 (EN 1998-1-1: 2004) Eurocode 8 (EN 1998-1-1: 1994)

CivilFEM Theory Manual 010708. Ingeciber, S.A.

2.3 Active Codes

NCSE-94 NCSE-02 Chinese seismic code GB50011 Italian 3274 seismic code AASHTO LRFD Bridge Design Specifications Greek code EAK 2000 California Seismic Design Criteria 1997 Uniform Building Code PS92 French seismic code Indian Standard 1893

By default the active codes are for each calculation type are the following: Structural steel: Reinforced concrete: Seismic calculations: Eurocode 3 (EN 1993-1-1:2005) Eurocode 2 (EN 1992-1-1:2004/AC:2008) Eurocode 8 (EN 1998-1-1: 2004)

Prestressed concrete: Eurocode 2 (EN 1992-1-1:2004/AC:2008)

CivilFEM Theory Manual 300609. Ingeciber, S.A.

2-7

Chapter 3 Materials

CivilFEM Theory Manual 300609. Ingeciber, S.A.

CivilFEM Theory Manual Chapter 3 Table of Contents3.1 3.2 3.3 Introduction ................................................................................................ 1 General Properties..................................................................................... 3 Specific Material Properties ....................................................................... 7 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.4 Structural Steel ......................................................................... 7 Concrete ................................................................................. 16 Reinforcement Steel ............................................................... 22 Prestessing Steel .................................................................... 23 Soils ........................................................................................ 24 Rocks ...................................................................................... 27

Specific Code Properties ......................................................................... 31 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 3.4.8 3.4.9 3.4.10 3.4.11 3.4.12 3.4.13 3.4.14 3.4.15 3.4.16 3.4.17 3.4.18 3.4.19 Eurocode 3 (Structural Steel).................................................. 31 Spanish EA code (Structural Steel) ........................................ 31 LRFD (Structural Steel)........................................................... 32 BS5950-1985 (Structural Steel) .............................................. 32 BS5950-2000 (Structural Steel) .............................................. 32 GB50017 (Structural Steel) ..................................................... 33 Eurocode 2 (Concrete)............................................................ 33 Eurocode 2 (Reinforcement Steel) .......................................... 38 Eurocode 2 (Prestressing steel) .............................................. 41 ACI (Concrete) ........................................................................ 44 ACI (Reinforcement steel)....................................................... 47 ACI (Prestressing steel) .......................................................... 49 CEB-FIP (Concrete) ................................................................ 51 CEB-FIP (reinforcement steel) ................................................ 56 EHE (Concrete) ...................................................................... 58 EHE (Reinforcement Steel)..................................................... 63 EHE (Prestressing steel)......................................................... 66 BS8110 (Concrete) ................................................................. 70 BS8110 (Reinforcement steel) ................................................ 74

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.4.20 3.4.21 3.4.22 3.4.23 3.4.24 3.4.25 3.4.26 3.4.27 3.4.28 3.4.29 3.5

GB50010 (Concrete) ............................................................... 76 GB50010 (Reinforcement steel) ............................................. 80 AS3600 ................................................................................... 83 NBR6118 (Concrete) .............................................................. 83 NBR6118 (Reinforcement Steel) ............................................ 85 Indian Standard 456 (Concrete) .............................................. 88 Indian Standard 456 (Reinforcement Steel) ............................ 90 Russian Code SP-52-101 (C Russian Code SP-52-101 (C 52-101) (Concrete) ................ 92 52-101) (Reinforcement Steel)96

ITER Structural Design Code for Buildings ............................. 98

FLAC3D Properties.................................................................................. 99 3.5.1 3.5.2 FLAC3D material properties for soil and rock elements .......... 99 FLAC3D material properties for structural elements ............. 104

3.6 3.7

Active Properties.................................................................................... 109 Material Properties Dependence ........................................................... 111 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.7 External Data ........................................................................ 111 General Properties ................................................................ 111 Structural Steel Specific Properties ...................................... 112 Concrete Specific Properties ................................................ 112 Soil Specific Properties ......................................................... 112 Rock Specific Properties ....................................................... 113 Specific Code Properties ...................................................... 115

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.1 Introduction

3.1

Introduction

Material properties considered by CivilFEM include ANSYS standard properties, as well as other properties necessary for CivilFEM specific calculations, such as properties related to codes: characteristic strengths, yield strengths, reduction coefficients, etc. When defining a material within CivilFEM, ANSYS standard properties are automatically defined, assigning to ANSYS materials the same numbering as CivilFEM materials. Thus, it is not recommended to directly modify ANSYS' material properties, to avoid unexpected behaviors between ANSYS and CivilFEM databases. CivilFEM materials have four different kinds of properties: General properties : Common properties for all kinds of materials Material properties : Reserved for steels, concretes, etc. Code properties Active properties : Related to Eurocode 2, Eurocode 3, ACI, CEB-FIP, etc. : Obtained for the actual active time

FLAC3D properties : Properties to be applied when exporting the model to FLAC3D General properties are common to all CivilFEM kinds of materials and contain data identifying the materials (number, reference, type), mechanical properties being transferred to ANSYS materials, as well as costs and the activation times of each material. Specific material properties are always available for a particular material, regardles of the code under which the material was defined. Specific code properties contain exclusive material data for each code. Active material properties depend on the age of the material, and are calculated for the active time (see section 3.6 for more information). FLAC3D properties are divided in two groups: Terrain properties: Structural properties: Soils (type 5) Rocks (type 6) Structural steel (type 1) Concrete (type 2) Reinforcing steel (type 3) Prestressing steel (type 4) These properties will be used to define the constitutive models and the structural element properties in the exporting process to FLAC3D. CivilFEM material definition (see ~CFMP command) is achieved by selecting one of the materials included in its libraries. The following types of materials can be defined in the current version: Structural steels

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-1

Chapter 3 Materials

-

Concretes Reinforcing steels Prestressing steels Soils Rocks

Once the material is defined, the material is labeled with a reference which relates it to the chosen library material. The user can modify all those properties that are not associated to the library. In order to modify the data associated to a library reference, one should make the material lose that reference and become User Def. The following labels characterize the type of datum regarding the possibility of changes made by the user: LIBR: LOCK: MODF: Data associated to a library reference. In ordert to modify a property with this label, the material should first become User Def. Blocked data. The will in no way be allowed to modify them. Data may be modified by the user.

On the other hand, there are several dependencies in the materials data which are automatically updated. Therefore, the user must take into account these dependencies when modifying those related properties (see chapter 3.7 for further details).

3-2

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.2 General Properties

3.2

General Properties

General properties are those properties common to all kinds of materials (concrete, structural steel and reinforcing steel). These properties have the labels and values described hereafter: Umat(MODF)

Material number defined by the user. Reference. User material name. Material type defined by the user. 0 = Generic Material. 1 = Structural steel 2 = Concrete 3 = Reinforcing steel 4 = Prestressing steel 5 = Soils 6 = Rocks

Ref8(LOCK)

Name(MODF)

Type(LOCK)

TAct(MODF)

Material activation time Material deactivation time Modulus of elasticity of the material. If Type=0 User Defined (generic material). If Type =1 or 2 Its value depends on the active code. It equals ExLn (this label is defined later on). If Type =5 or 6 Its value depends on the material. It is equal to ExCal. Otherwise Automatically defined from the material's library.

TDeact(MODF)

Ex(LOCK) (MODF) (LIBR)

NUxy(LIBR)

Poisson's modulus. Depends on the active code and the material type (0 Nuxy < 0.5). Eurocode 3 NUxy = 0.3 EA NUxy = 0.3 LRFD NUxy = 0.3 BS 5950 (Structural steel) (Structural steel) Art 3.2.5 (Structural steel) Art 3.1.9 (Structural steel)

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-3

Chapter 3 Materials

NUxy = 0.3 GB50017 NUxy = 0.3 Eurocode 2 NUxy = 0.2 Eurocode 2 NUxy = 0.3 Eurocode 2 NUxy = 0.3 ACI NUxy = 0.2 ACI NUxy = 0.3 ACI NUxy = 0.3 CEB-FIP NUxy = 0.2 CEB-FIP NUxy = 0.3 EHE NUxy = 0.2 EHE NUxy = 0.3 EHE NUxy = 0.3 BS 8110 NUxy = 0.2 BS 8110 NUxy = 0.3 GB50010 NUxy = 0.2 GB50010 NUxy = 0.3

Art 3.1.2 (Structural steel) (Concrete) Art 3.1.2.5.3 (Reinforcing steel) Art 3.1.2 (Prestressing steel) (Concrete) Art 116R-45 (Reinforcing steel) Art 116R-45 (Prestressing steel) (Concrete) Art 2.1.4.3 (Reinforcing steel) Art 2.1.4.3 (Concrete) Art 39.9 (Reinforcing steel) Art 39.9 (Prestessing steel) (Concrete) Art 2.4.2.4 (Reinforcing steel) (Concrete) (Reinforcing steel)

If Type = 5 or 6 then its value depends on NuxyCal one. Gxy Shear modulus. It is calculated using the following formula:

3-4

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.2 General Properties

(MODF)

GxyALP(MODF)

Ex 2 1 NUxy

Coefficient of linear thermal expansion. Its initial value depends on the active code: Eurocode 3 ALP = 1.2E-5 (C-1) EA ALP = 1.2E-5 (C ) LRFD ALP = 1.2E-5 (C ) BS 5950 ALP = 1.2E-5 (C ) GB50017 ALP = 1.2E-5 (C-1) Eurocode 2 ALP = 1.0E-5 (C-1) Eurocode 2 ALP = 1.0E-5 (C-1) Eurocode 2 ALP = 1.0E-5 (C-1) ACI ALP = 1.0E-5 (C-1) ACI ALP = 1.0E-5 (C )) ACI ALP = 1.0E-5 (C )) CEB-FIP ALP = 1.0E-5 (C ) CEB-FIP ALP = 1.0E-5 (C ) EHE ALP = 1.0E-5 (C ) EHE ALP = 1.0E-5 (C-1) EHE-1 -1 -1 -1 -1 -1 -1 -1

(Structural steel) Art 3.2.5 (Structural steel) Art 3.1.10 (Structural steel) (Structural steel) Art 3.1.2 (Structural steel) Art 3.4.3 (Concrete) Art 3.1.2.5.4 (Reinforcing steel) Art 3.2.3 (Prestressing steel) Art 3.2.3 (Concrete) (Reinforcing steel) (Prestressing steel) (Concrete) Art 2.1.8.3 (Reinforcing steel) Art 2.2.5.4 (Concrete) Art 39.10 (Reinforcing steel) Art 39.10 (Prestressing steel)

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-5

Chapter 3 Materials

ALP = 1.0E-5 (C-1) BS 8110 ALP = 1.0E-5 (C ) BS 8110 ALP = 1.0E-5 (C ) GB50010 ALP = 1.0E-5 (C ) GB50010 ALP = 1.0E-5 (C ) SOILS ALP = 1.0E-5 (C-1) ROCKS ALP = 1.0E-5 (C-1) RHO(MODF)-1 -1 -1 -1

(Concrete) Part 2: 7.5 (Reinforcing steel) (Concrete) Part 2: 7.5 (Reinforcing steel)

Density value of the material. RHO = GAM/g If Type= 0, 1, 2, 3 If Type =5 or 6 RHO is free RHO = RHOcal GAM = RHO*g If Type= 0, 1, 2, 3 If Type =5 or 6 GAM is free GAM = GAMcal

GAM(MODF)

Specific weight of the material.

DAMP(MODF)

Damping of the material. For transient analyses: K matrix multiplier ( ) for damping. For spectral analyses: critical damping ratio. Cost per volume unit. Vcost = Mcost*RHO = Wcost*GAM Cost per mass unit. Mcost = Vcost/RHO = Wcost*g Cost per weight unit. Wcost = Vcost/GAM = Mcost/g

VCost(MODF)

MCost(MODF)

WCost(MODF)

3-6

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.3 Specific Material Properties

3.33.3.1

Specific Material PropertiesStructural Steel

Command ~CFMP, defines all material properties for structural steel, including those properties that are necessary to carry out an ANSYS analysis. Specific structural steel material properties supported by CivilFEM are described hereafter: 3.3.1.1 NThk(LIBR)

Thickness table and dependent properties Refers to the range number for the different material's thickness. NThk Thickness table. Thik 0 0. The initial value 6

Thik(NThk) (LIBR)

ExLn(LIBR)

Modulus of elasticity for linear analysis. ExLn depends on the active code: Eurocode 3 ExLn = 21E4 MPa EA ExLn = 2.1E6 kp/cm2 LRFD ExLn = 29000 ksi BS 5950 ExLn = 205 kN/mm2 GB50017 ExLn = 206 kN/mm2 Art 3.4.3 Art 3.1.2 Art. 3.1.9 Art. 3.2.5

3.3.1.2 KPLA(MODF)

Plastic behavior in ANSYS Refers to the type of behavior. 0 1 2 4 5 6 Elastic (default value) Bilinear Kinematic Bilinear Isotropic Multilinear Kinematic Hardening Multilinear Isotropic Drucker-Prager

PLRAT

Elastic/Plastic modulus ratio. This ratio is by default equal to 10000.

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-7

Chapter 3 Materials

(MODF)

PLRAT PLThk

0 0

PLThk(MODF)

Thickness used to define the plastic behavior.

3.3.1.3 TSASSD

Stress strain diagram for structural analysis Type of stress-strain diagram. Each different type of stress-strain diagrams available depends on the code for which the material was defined. Apart from available diagrams supported by the codes, it is possible to define new ones by selecting the User defined option. Number of diagram points. Strain values corresponding to a point of the diagram. Stress values corresponding to a point of the diagram. Stress-strain diagrams conforming to Eurocode 3 User defined Elastic Bilinear

NPSASSD SAEPS SASGM 3.3.1.3.1

The available stress-strain diagrams for Eurocode 3 are: TSASSD= 0 TSASSD= 1 TSASSD= 2

Definition of the elastic diagram (TSASSD = 1): The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 2 points (NPSASSD = 2) has been selected for the definition of the stressstrain diagram. Strain values are the following: SAEPS (1) = SAEPS (2) = SASGM (1) = SASGM (2) = -1.0E-2 1.0E-2 SAEPS(1)*ExLn SAEPS(2)*ExLn

Stress values are the following:

Definition of the bilinear diagram (TSASSD = 2): The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression

3-8

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.3 Specific Material Properties

A total of 4 points (NPSASSD = 4) has been selected for the definition of the stressstrain diagram. Strain values have been taken conforming to article Art. 5.2.1.4 and are the following: SAEPS (1) = SAEPS (2) = SAEPS (3) = SAEPS (4) = -1.0E-2 -fy / ExLn fy / ExLn 1.0E-2

Stress values have also been taken conforming to article Art. 5.2.1.4 and are the following: SASGM (1) = SASGM (2) = SASGM (3) = SASGM (4) = 3.3.1.3.2 -fy+(SAEPS (1) - SAEPS (2)) / PLRAT*ExLn -fy fy fy + (SAEPS (4) - SAEPS (3)) / PLRAT*ExLn

Stress-strain diagrams conforming to the Spanish EA code

The different stress-strain diagrams according to EA code are: TSASSD= 0 User defined TSASSD= 1 Elastic TSASSD= 2 Bilinear Definition of the elastic diagram (TSASSD = 1): The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 2 points (NPSASSD = 2) has been selected for the definition of the stressstrain diagram. Strain values are the following: SAEPS (1) = SAEPS (2) = SASGM (1) = SASGM (2) = -1.0E-2 1.0E-2 SAEPS(1)*ExLn SAEPS(2)*ExLn

Stress values are the following:

Definition of the bilinear diagram (TSASSD = 2): The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-9

Chapter 3 Materials

A total of 4 points (NPSASSD = 4) has been selected for the definition of the stressstrain diagram. Strain values are the following: SAEPS (1) = SAEPS (2) = SAEPS (3) = SAEPS (4) = SASGM (1) = SASGM (2) = SASGM (3) = SASGM (4) = 3.3.1.3.3 -1.0E-2 -SIGe / ExLn SIGe / ExLn 1.0E-2 - SIGe +(SAEPS (1) - SAEPS (2)) / PLRAT*ExLn - SIGe SIGe SIGe + (SAEPS (4) - SAEPS (3)) / PLRAT*ExLn

Stress values are the following:

Stress-strain diagrams conforming to LRFD User defined Elastic Bilinear

The available stress-strain diagrams for LRFD are: TSASSD= 0 TSASSD= 1 TSASSD= 2

Definition of the elastic diagram (TSASSD = 1): The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 2 points (NPSASSD = 2) has been selected for the definition of the stressstrain diagram. Strain values are the following: SAEPS (1) = SAEPS (2) = SASGM (1) = SASGM (2) = -1.0E-2 1.0E-2 SAEPS(1)*ExLn SAEPS(2)*ExLn

Stress values are the following:

Definition of the bilinear diagram (TSASSD = 2): The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 4 points (NPSASSD = 4) has been selected for the definition of the stressstrain diagram. Strain values are the following: SAEPS (1) = -1.0E-2

3-10

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.3 Specific Material Properties

SAEPS (2) = SAEPS (3) = SAEPS (4) = SASGM (1) = SASGM (2) = SASGM (3) = SASGM (4) = 3.3.1.3.4

-fy / ExLn fy / ExLn 1.0E-2 -fy+(SAEPS (1) - SAEPS (2)) / PLRAT*ExLn -fy fy fy + (SAEPS (4) - SAEPS (3)) / PLRAT*ExLn

Stress values are the following:

Stress-strain diagrams conforming to BS 5950 User defined Elastic Bilinear

The available stress-strain diagrams for BS 5950 are: TSASSD= 0 TSASSD= 1 TSASSD= 2

Definition of the elastic diagram (TSASSD = 1): The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 2 points (NPSASSD = 2) has been selected for the definition of the stressstrain diagram. Strain values are the following: SAEPS (1) = SAEPS (2) = SASGM (1) = SASGM (2) = -1.0E-2 1.0E-2 SAEPS(1)*ExLn SAEPS(2)*ExLn

Stress values are the following:

Definition of the bilinear diagram (TSASSD = 2): The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 4 points (NPSASSD = 4) has been selected for the definition of the stressstrain diagram. Strain values are the following: SAEPS (1) = SAEPS (2) = SAEPS (3) = -1.0E-2 -fy / ExLn fy / ExLn

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-11

Chapter 3 Materials

SAEPS (4) = SASGM (1) = SASGM (2) = SASGM (3) = SASGM (4) = 3.3.1.3.5

1.0E-2 -fy+(SAEPS (1) - SAEPS (2)) / PLRAT*ExLn -fy Fy fy + (SAEPS (4) - SAEPS (3)) / PLRAT*ExLn

Stress values are the following:

Stress-strain diagrams conforming to GB50017 User defined Elastic Bilinear

The available stress-strain diagrams for GB50017 are: TSASSD= 0 TSASSD= 1 TSASSD= 2

Definition of the elastic diagram (TSASSD = 1): The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 2 points (NPSASSD = 2) has been selected for the definition of the stressstrain diagram. Strain values are the following: SAEPS (1) = SAEPS (2) = SASGM (1) = SASGM (2) = -1.0E-2 1.0E-2 SAEPS(1)*ExLn SAEPS(2)*ExLn

Stress values are the following:

Definition of the bilinear diagram (TSASSD = 2): The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 4 points (NPSASSD = 4) has been selected for the definition of the stressstrain diagram. Strain values are the following: SAEPS (1) = SAEPS (2) = SAEPS (3) = SAEPS (4) = -1.0E-2 -fy / ExLn fy / ExLn 1.0E-2

Stress values are the following:

3-12

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.3 Specific Material Properties

SASGM (1) = SASGM (2) = SASGM (3) = SASGM (4) = 3.3.1.4 SDEPS SDSGM TSDSSD

-fy+(SAEPS (1) - SAEPS (2)) / PLRAT*ExLn -fy Fy fy + (SAEPS (4) - SAEPS (3)) / PLRAT*ExLn

Stress-strain diagram for section analysis Strain values corresponding to a point of the diagram. Stress values corresponding to a point of the diagram. Type of stress-strain diagram. The different type of stress-strain diagrams available depend on the code for which the material was defined. Apart from available diagrams supported by codes, it is possible to define new ones by selecting the User defined option. Number of diagram points. Stress-strain diagrams conforming to Eurocode 3 TSDSSD= 0 TSDSSD= 1 User defined Bilinear

NPSDSSD 3.3.1.4.1

The different types of stress-strain diagrams available according to Eurocode 3 are:

Definition of the bilinear diagram (TSDSSD = 1): The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 4 points (NPSDSSD = 4) has been selected for the definition of the stressstrain diagram. Strain values have been taken conforming to article Art. 5.2.1.4 and are the following: SDEPS (1) = SDEPS (2) = SDEPS (3) = SDEPS (4) = SDSGM (1) = SDSGM (2) = SDSGM (3) = SDSGM (4) = -1.0E-2 -fy / ExLn / GAMM0 fy / ExLn / GAMM0 1.0E-2 (-fy+(SDEPS (1) - SDEPS (2)) / PLRAT*ExLn) / GAMM0 -fy / GAMM0 fy / GAMM0 (fy + (SDEPS (4) - SDEPS (3)) / PLRAT*ExLn) / GAMM0

Stress values are the following:

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-13

Chapter 3 Materials

3.3.1.4.2

Stress-strain diagrams conforming to the spanish EA code TSDSSD= 0 TSDSSD= 1 User defined Bilinear

The different stress-strain diagrams according to the EA code are:

Definition of the bilinear diagram (TSDSSD = 1) The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 4 points (NPSDSSD = 4) has been chosen for the definition of the stressstrain diagram. Strain values are the following: SDEPS (1) = SDEPS (2) = SDEPS (3) = SDEPS (4) = SDSGM (1) = SDSGM (2) = SDSGM (3) = SDSGM (4) = 3.3.1.4.3 -1.0E-2 -SIGe / ExLn / GAMa SIGe / ExLn / GAMa 1.0E-2 (- SIGe +(SDEPS (1) - SDEPS (2)) / PLRAT*ExLn) / GAMa - SIGe / GAMa SIGe / GAMa (SIGe + (SDEPS (4) - SDEPS (3)) / PLRAT*ExLn) / GAMa

Stress values are the following:

Stress-strain diagrams conforming to the LRFD code TSDSSD= 0 TSDSSD= 1 User defined Bilinear

The different stress-strain diagrams according to LRFD code are:

Definition of the bilinear diagram (TSDSSD = 1) The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 4 points (NPSDSSD = 4) has been selected for the definition of the stressstrain diagram. Strain values are the following: SDEPS (1) = SDEPS (2) = SDEPS (3) = SDEPS (4) = -1.0E-2 -fy / ExLn fy / ExLn 1.0E-2

3-14

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.3 Specific Material Properties

Stress values are the following: SDSGM (1) = SDSGM (2) = SDSGM (3) = SDSGM (4) = 3.3.1.4.4 (-fy+(SDEPS (1) - SDEPS (2)) / PLRAT*ExLn) -fy fy (fy + (SDEPS (4) - SDEPS (3)) / PLRAT*ExLn)

Stress-strain diagrams conforming to the BS5950 code TSDSSD= 0 TSDSSD= 1 User defined Bilinear

The different stress-strain diagrams according to the BS5950 code are:

Definition of the bilinear diagram (TSDSSD = 1) The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 4 points (NPSDSSD = 4) has been selected for the definition of the stressstrain diagram. Strain values are the following: SDEPS (1) = SDEPS (2) = SDEPS (3) = SDEPS (4) = SDSGM (1) = SDSGM (2) = SDSGM (3) = SDSGM (4) = 3.3.1.4.5 -1.0E-2 -ROy / ExLn ROy / ExLn 1.0E-2 (-fy+(SDEPS (1) - SDEPS (2)) / PLRAT*ExLn) -ROy ROy (fy + (SDEPS (4) - SDEPS (3)) / PLRAT*ExLn)

Stress values are the following:

Stress-strain diagrams conforming to the GB50017 code TSDSSD= 0 TSDSSD= 1 User defined Bilinear

The different stress-strain diagrams according to the GB50017 code are:

Definition of the bilinear diagram (TSDSSD = 1) The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-15

Chapter 3 Materials

A total of 4 points (NPSDSSD = 4) has been selected for the definition of the stressstrain diagram. Strain values are the following: SDEPS (1) = SDEPS (2) = SDEPS (3) = SDEPS (4) = SDSGM (1) = SDSGM (2) = SDSGM (3) = SDSGM (4) = 3.3.1.5 EPSmax(MODF)

-1.0E-2 -f / ExLn f / ExLn 1.0E-2 -f+(SDEPS (1) - SDEPS (2)) / PLRAT*ExLn) -f f f + (SDEPS (4) - SDEPS (3)) / PLRAT*ExLn)

Stress values are the following:

Strain limits for steel-concrete composite sections design Maximum permisible strain in tension at any point of the section (Point A in the pivot diagram). Sign criterion: + Tension, - Compression EPSmax = 0.010 (default value) If EPSmax = 0 then there is no limit

EPSmin(MODF)

Maximum permisible strain in compression at any point of the section (Point B in the pivot diagram). Sign criterion: + Tension, - Compression EPSmin = -0.010 (default value) If EPSmin = 0 then there is no limit

3.3.2

Concrete

Command ~CFMP, defines all concrete material properties including those properties required for an ANSYS analysis.Note: CivilFEM does not contain the material data conforming to the Australian Standard AS3600. If this code is activated, the selected material (concrete or reinforcement steel) will be filled out with the same parameters as the ACI-318 code requires.

Specific concrete material properties supported by CivilFEM are described hereafter: 3.3.2.1 NAge(MODF)

Time dependent properties Number of material age points defined. This value must be between 0 and 50. A different stress-strain diagram is defined for each of the age points defined. Age tables, in days (Age 0).

Age(NAge)

3-16

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.3 Specific Material Properties

(MODF)

MatAge(LOCK)

Material age. It will be calculated using the following formula: MatAge = ActTime - TmAct

The initial values of Nage and Age depend on the active code under which the material is defined. Eurocode 2: NAge = 20 Age = ACI-318: NAge = 20 Age = EHE: NAge = 20 Age = CEB-FIP: NAge = 20 Age = BS8110 NAge = 20 Age = 1, 3, 7, 10, 14, 21, 28, 40, 60, 75, 90, 120, 200, 365, 600, 1000, 1800, 3000, 6000, 10000 days 1, 3, 7, 10, 14, 21, 28, 40, 60, 75, 90, 120, 200, 365, 600, 1000, 1800, 3000, 6000, 10000 days 1, 3, 7, 10, 14, 21, 28, 40, 60, 75, 90, 120, 200, 365, 600, 1000, 1800, 3000, 6000, 10000 days 1, 3, 7, 10, 14, 21, 28, 40, 60, 75, 90, 120, 200, 365, 600, 1000, 1800, 3000, 6000, 10000 days 1, 3, 7, 10, 14, 21, 28, 40, 60, 75, 90, 120, 200, 365, 600, 1000, 1800, 3000, 6000, 10000 days

GB50010: NAge = 20 Age = 1, 3, 7, 10, 14, 21, 28, 40, 60, 75, 90, 120, 200, 365, 600, 1000, 1800, 3000, 6000, 10000 days

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-17

Chapter 3 Materials

NBR6118: NAge = 20 Age = IS456: NAge = 20 Age = SP52101: NAge = 20 Age = 1, 3, 7, 10, 14, 21, 28, 40, 60, 75, 90, 120, 200, 365, 600, 1000, 1800, 3000, 6000, 10000 days Linear structural analysis properties Type of elastic modulus used. The different types, admited by CivilFEM are the following: 1: Tangent modulus of elasticity 2: Initial modulus of elasticity 3: Secant modulus of elasticity 4: Design modulus of elasticity 5: Reduced modulus of elasticity ExLn(LIBR)

1, 3, 7, 10, 14, 21, 28, 40, 60, 75, 90, 120, 200, 365, 600, 1000, 1800, 3000, 6000, 10000 days

1, 3, 7, 10, 14, 21, 28, 40, 60, 75, 90, 120, 200, 365, 600, 1000, 1800, 3000, 6000, 10000 days

3.3.2.2 TpEx(MODF)

Modulus of elasticity for linear analysis. The different options for the elastic modulus will vary depending on the active code. These are the types of modulus available for each one of the codes: Eurocode 2 TpEx = 1 TpEx = 3 TpEx = 4 ACI TpEx = 1 CEB-FIP TpEx = 1 TpEx = 3 TpEx = 5 EHE TpEx = 1 TpEx = 2 ExLn = Eci ExLn = E0 ExLn = Eci ExLn = Eci ExLn = Ec (by default) ExLn = Ec (by default) ExLn = Ec ExLn = Ecm (by default) ExLn = Ecd

3-18

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.3 Specific Material Properties

TpEx = 3 BS8110 TpEx = 1 GB50010 TpEx = 1 NBR6118 TpEx = 1 TpEx = 3 IS456 TpEx = 1 SP52101 TpEx = 2 3.3.2.3 EPSmin(LIBR)

ExLn = Ej (by default) ExLn = Ec (by default) ExLn = Ec (by default) ExLn = Ei ExLn = Ecs (by default) ExLn = Ec (by default) ExLn = Eb (by default)

Strain limits for section's design Maximum admissible strain in compression at any point of the section (Point B of the pivots diagram). Sign criterion: + Tension, - Compression Eurocode 2 EPSmin = -0.0035 If concrete has fck > 50 MPa, the concrete strain limit is: EPSmin = -(2.6+35[(90-fck)/100]4) 10-3 (with fck in MPa). ACI EPSmin = -0.0030 CEB-FIP For this code, the maximum admissible strains depend on the selected stress-strain diagram. The initial values taken as the Maximum admissible strain in compression at any point of the section are the following: If TSDSSD = 0 then EPSmin = -0.0035 If TSDSSD = 1 then EPSmin = -EPScuB If TSDSSD = 2 then EPSmin = -EPScuU EHE EPSmin = -0.0035 If concrete has fck > 50 MPa, the concrete strain limit is: EPSmin = -(2.6+14.4[(100-fck)/100]4) 10-3 (with fck in MPa). BS8110

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-19

Chapter 3 Materials

EPSmin = -0.0035 GB50010 EPSmin = - EPScu NBR6118 EPSmin = -0.0035 IS456 EPSmin = -0.0035 SP52101 EPSmin = EPSb2 EPSint(LIBR)

Maximum permisible strain in compression at interior points of the section (Point C of the pivot diagram). Sign criterion:+ Tension, - Compression Eurocode 2 EPSint = -0.0020 If concrete has fck > 50 MPa, the concrete strain limit is: EPSint = -(2.0+0.085(fck-50)0.53) 10-3 (with fck in MPa). ACI EPSint = 0 (there is no limit). CEB-FIP For this code, the maximum admissible strains depend on the selected stress-strain diagram. The initial values taken as the Maximum admissible strain in compression at any point of the section are the following: If TSDSSD = 0 then EPSmin = -0.0020 If TSDSSD = 1 then EPSmin = -EPScuC If TSDSSD = 2 then EPSmin = 0 (there is no limit). EHE EPSint = -0.0020 If concrete has fck > 50 MPa, the concrete strain limit will then be: EPSint = -(2.0+0.085(fck-50)0.5) 10-3 (with fck in MPa). BS8110 EPSint = 0 (there is no limit). GB50010 EPSint = EPS0 NBR6118 EPSint = -0.0020

3-20

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.3 Specific Material Properties

IS456 EPSint = -0.0020 SP52101 EPSint = EPSb0 PCLevel(LIBR)

This value referes to the vertical distance in the section between the most compressed fiber and Point C of the pivot diagram. PCLevel = 3/7

3.3.2.4 NApt(MODF)

Shrinkage and creep Number of load application ages defined. Load application age tables, in days (Apt Creep method 0 1 No creep. Step by step. No shrinkage. By temperatures. 0).

Apt(NApt)(MODF)

KCREEP(MODF)

KSHRINK(MODF)

Shrinkage method. 0 1

AGECOEFF(MODF)

Aging coefficient (by default 0.8).

CREEPCF(NAge,NApt) Creep coefficient.(MODF)

EPSSHRNK(NAge)(MODF)

Shrinkage strain Calculation method selected for the definition of shrinkage strains and creep coefficients curves. 0 1 2 3 4 User defined Eurocode 2 Model (default value) CEB Model ACI Model EHE Model

KCRCOD(MODF)

Each calculation method has its own parameters: EC2: RH(MODF)

Relative humidity (%). Default value = 60%. Fictitious thickness in milimeters. Default value = 600mm.

H(MODF)

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-21

Chapter 3 Materials

CEB: RH(MODF)

Relative humidity (%). Default value = 60%. Fictitious thickness in milimeters. Default value = 600mm.

H(MODF)

EHE: RH(MODF)

Relative humidity (%). Default value = 60%. Fictitious thickness in milimeters. Default value = 600mm.

H(MODF)

ACI: PSI(MODF)

Creep factor. Default value = 0.60. Creep age (days). Default value = 10 days. Ultimate (in time) creep coefficient. Default value = 2.35. Shrinkage factor. Default value = 1.0. Shrinkage age. Default value = 55 days. Ultimate (in time) shrinkage strain. Def. value = -78010-6.

D(MODF)

NUU(MODF)

ALPHA(MODF)

F(MODF)

EPSSLU(MODF)

3.3.3

Reinforcement Steel

The ~CFMP command defines all reinforcement steel material properties including those properties that are necessary to carry out an ANSYS analysis. Specific reinforcement steel material properties supported by CivilFEM are described hereafter: 3.3.3.1 EPSmax(MODF)

Strain limits used for concrete sections checking and design Refers to the maximum admissible strain in tension at any point of the section (Point A in the pivot diagram). Sign criterion: + Tension, - Compression The initial value depends on the active code: Eurocode 2 EPSmax = 0.010 (Art. 4.3.1.2 and Art. 4.2.2.3.2) ACI EPSmax = 0 (there is no limit). CEB-FIP

3-22

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.3 Specific Material Properties

EPSmax = 0.010 EHE EPSmax = 0.010 BS8110 EPSmax = 0 GB50010 EPSmax = 0.010 NBR6118 EPSmax = 0.010 IS456 EPSmax = 0 SP52101 EPSmax = 0.025

3.3.4

Prestessing Steel

The ~CFMP command defines all the prestressing steel material properties, including those properties that are necessary to carry out an ANSYS analysis. Specific prestessing steel material properties supported by CivilFEM are described hereafter: 3.3.4.1 MU(MODF)

Data for calculating prestressing losses Friction coefficient between the tendons and their casing (by default MU=0.20) Unintentional angular displacement per unit lenght (by default K= 0.01m-1) Anchorage slip (by default a= 0.006m) Concrete skrinkage strain (by default = 0.0004) Concrete creep strain (by default = 2.00)

K(MODF)

A(MODF)

EPSsr(MODF)

PHI(MODF)

3.3.4.2 EPSmax(MODF)

Strain limits used for concrete sections checking and design Indicates the maximum admissible strain in tension at any point of the section (Point A of the pivot diagram). Sign criterion: + Tension, - Compression EPSmax 0, if EPSmax=0, there is no limit The initial value depends on the active code: Eurocode 2

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-23

Chapter 3 Materials

EPSmax = 0.010 EHE EPSmax = 0.010 ACI EPSmax = 0.00

3.3.5

Soils

The ~CFMP command defines all soil material properties including the properties necessary to carry out an ANSYS analysis. Specific soil material properties supported by CivilFEM are described hereafter: TpEx(MODF)

Type of elasticity modulus used in structural analysis: 1: Use static elasticity modulus (default) 2: Use dynamic modulus Elasticity modulus used in structural analysis: Type of Poisson coefficient used in structural analysis: 1: Use static Poissons ratio 2: Use dynamic Poissons ratio Poisson coefficient used in structural analysis: Type of density used in structural analysis: 1: Use bulk density (default) 2: Use submerged density Density used in structural analysis: Behavior type: 0: Elastic 1: Drucker-Prager 2: Mohr-Coulomb for plane strain models

ExCal(LOCK)

TpNUxy(MODF)

NUxycal(LOCK)

TpRHO(MODF)

RHOcal(LOCK)

KPLA(MDF)

ExSt(MODF)

Static elasticity modulus Static Poisson modulus P waves velocity S waves velocity Dynamic elasticity modulus

NUxySt(MODF)

Vp(MODF)

Vs(MODF)

Exd(MODF)

3-24

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.3 Specific Material Properties

NUxyd(MODF)

Dynamic Poisson modulus Dry specific weight Solid specific weight: GAMs = GAMd/(1-n) Saturated specific weight: GAMsat = (GAMs + GAMw*e) / (1+e) = GAMs*(1-n)+ GAMw*n Submerged specific weight: GAMsub = GAMsat - GAMw Apparent specific weight: GAMap = GAMd*(1+W) Water specific weight Dry density RHOd = GAMd/g Solid density RHOs = GAMs/g Saturated density RHOsat = GAMsat/g Submerged density RHOsub = GAMsub/g Apparent density RHOap = GAMap/g Relative density (by default 0.5) Porosity (1 > n 0) Void ratio e = n/(1-n) Moisture content. Saturation degree Sw = W*GAMs / (e*GAMw) = W*GAMd / (n*GAMw) Diameter that allows more than 10% of material to pass through (In millimeters). Diameter that allows more than 30% of material to pass through (In millimeters).

GAMd(MODF)

GAMs(LOCK)

GAMsat(LOCK)

GAMsub(LOCK)

GAMap(LOCK)

GAMw(MODF)

RHOd(MODF)

RHOs(LOCK)

RHOsat(LOCK)

RHOsub(LOCK)

RHOap(LOCK)

RHOrel(MODF)

n(MODF)

e(LOCK)

W(MODF)

Sw(LOCK)

D10(MODF)

D30(MODF)

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-25

Chapter 3 Materials

D60(MODF)

Diameter that allows more than 60% of material to pass through (In millimeters). Curvature coefficient Ccurv = D302/(D60*D10) Uniformity coefficient Cunif = D60/D10 Standard penetration test. SPT 0 Cone penetration test. CPT 0 Resistance to simple compression. qu 0 Oedometric modulus. Em 0 Maximum admissible load. Liquid limit percentage Plastic limit percentage Plasticity index [%]: Ip = wl - wp Angle of effective internal friction for Mohr-Coulomb (in degrees). 90 > PHIMCeff 0 Effective Cohesion. ceff 0 Angle of effective internal friction for Drucker-Prager. 90 > PHIDPeff 0 Effective Cohesion for Drucker-Prager. cDPeff 0 Angle of dilation. 90 > DELeff 0 Earth pressure coefficient at rest. K0 0 Active earth pressure coefficient. Ka 0 Passive earth pressure coefficient. Kp 0 Cohesion complementary component of active earth pressure. Kac 0 Cohesion complementary component of passive earth pressure.

Ccurv(LOCK)

Cunif(LOCK)

SPT(MODF)

CPT(MODF)

qu(MODF)

Em(MODF)

qa(MODF)

wl(MODF)

wp(MODF)

Ip(LOCK)

PHIMCeff(MODF)

cMCeff(MODF)

PHIDPeff(MODF)

cDPeff(MODF)

DELeff(MODF)

K0(MODF)

Ka(MODF)

Kp(MODF)

Kac(MODF)

Kpc(MODF)

3-26

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.3 Specific Material Properties

Kpc 0 RuSI(MODF)

Susceptibility to pore pressure: 0: Not susceptible 1: Susceptible Coefficient for pore pressure after consolidation. X Permeability. Kx 0 Y Permeability. Ky 0 Z Permeability. Kz 0 Consolidation coefficient. cv 0 Skempton law's coefficient. A 0 Skempton law's coefficient. 1 B 0 Skempton law's coefficient.

Ru(MODF)

kx(MODF)

ky(MODF)

kz(MODF)

cv(MODF)

A(MODF)

B(MODF)

BET(MODF)

3.3.6

Rocks

The ~CFMP command defines all rock material properties including those properties that are necessary to carry out an ANSYS analysis. Specific rock material properties supported by CivilFEM are described hereafter: RType(MODF)

Type Subtype Class Name Type of elasticity modulus used in structural analysis: 1: Use static elasticity modulus (default) 2: Use dynamic modulus Elasticity modulus used in structural analysis Type of Poissons ratio coefficient used in structural analysis: 1: Use static Poissons ratio 2: Use dynamic Poissons ratio

RSubType(MODF)

RClass(MODF)

RockName(MODF)

TpEx(MODF)

Excal(LOCK)

TpNUxy(MODF)

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-27

Chapter 3 Materials

NUxycal(LOCK)

Poissons ratio used in structural analysis Type of density used in structural analysis: 1: Use bulk density (default) 2: Use submerged density Density used in structural analysis Behavior type: 0: Elastic 1: Drucker-Prager 2: Mohr-Coulomb for plane strain models

TpRHO(MODF)

RHOcal(LOCK)

KPLA(MODF)

ExSt(MODF)

Static elasticity modulus Static Poisson modulus P waves velocity S waves velocity Dynamic elasticity modulus Dynamic Poisson modulus Resistance to simple compression. qu 0 Dry specific weight Solid specific weight GAMs = GAMd/(1-n) Saturated specific weight GAMsat = (GAMs + GAMw*e) / (1+e) Submerged specific weight GAMsub = GAMsat - GAMw Apparent specific weight GAMap = GAMd*(1+W) Water specific weight Dry density RHOd = GAMd/g Solid density

NUxySt(MODF)

Vp(MODF)

Vs(MODF)

Exd(MODF)

NUxyd(MODF)

qu(MODF)

GAMd(MODF)

GAMs(LOCK)

GAMsat(LOCK)

GAMsub(LOCK)

GAMap(LOCK)

GAMw(MODF)

RHOd(LOCK)

RHOs

3-28

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.3 Specific Material Properties

(LOCK)

RHOs = GAMs/g Saturated density RHOsat = GAMsat/g Submerged density RHOsub = GAMsub/g Apparent density RHOap = GAMap/g Relative density (by default 0.5) Porosity (1 > n 0) Void ratio e = n/(1-n) Moisture content. Saturation degree Sw = W*GAMs / (e*GAMw) = W*GAMd / (n*GAMw) Angle of internal friction angle. 90 > PHIeff 0 Effective cohesion. ceff 0 Angle of internal friction angle for Drucker-Prager. 90 > PHIDPeff 0 Effective cohesion. cDPeff 0 Angle of dilation (degrees). 90 > DELeff 0 Earth pressure coefficient at rest. K0 0 Susceptibility to pore pressure: 0: Not susceptible 1: Susceptible Coefficient for pore pressure after consolidation. Permeability. Kx 0 Permeability. Ky 0 Permeability. Kz 0

RHOsat(LOCK)

RHOsub(LOCK)

RHOap(LOCK)

RHOrel(MODF)

n(MODF)

e(LOCK)

W(MODF)

Sw(LOCK)

PHIeff(MODF)

ceff(MODF)

PHIDPeff(MODF)

cDPeff(MODF)

DELeff(MODF)

K0(MODF)

RuSI(MODF)

Ru(MODF)

kx(MODF)

ky(MODF)

kz(MODF)

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-29

Chapter 3 Materials

GSI(MODF)

Geological strength index. 100 GSI 0 Hoek & Brown coefficient m Hoek & Brown coefficient s Hoek & Brown residual coefficient m Hoek & Brown residual coefficient s Hoek & Brown coefficient n. 0.5 n < 0.65 Hoek & Brown coefficient m for unfractured rock. m0 0 Hoek & Brown coefficient s for unfractured rock. s0 1 Fragility / ductility limit coefficient. Factor for dilatancy calculation. By default HB_md=1 Factor for dilatancy calculation. By default HB_bd=0

HB_m(MODF)

HB_s(MODF)

HB_mr(MODF)

HB_sr(MODF)

HB_n(MODF)

HB_m0(MODF)

HB_s0(MODF)

HB_ALF(MODF)

HB_md(MODF)

HB_bd(MODF)

3-30

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.4 Specific Code Properties

3.4

Specific Code Properties

There are some properties in CivilFEM that are code dependent. This code dependent properties are described hereafter for each one of the materials supported by CivilFEM.

3.4.1

Eurocode 3 (Structural Steel)

For this type of materials (Type = 1) the following properties are considered: 3.4.1.1 GAMM0(MODF)

Partial safety factors Partial safety factor for calculating the resistance of class 1, 2 or 3 sections (GAMM0 1) M0=1.1 (Default value) Partial safety factor for calculating the resistance of class 4 sections and sections subjected to buckling (GAMM1 1) M1=1.1 (Default value) Partial safety factor for calculating the resistance of net sections (GAMM2 1) M2=1.25 (Default value) Mechanical properties Yield strength of the material (fy Ultimate strength (fu 0). 0).

GAMM1(MODF)

GAMM2(MODF)

3.4.1.2 fy (Thk)(LIBR)

fu (Thk)(LIBR)

3.4.2

Spanish EA code (Structural Steel)

For this type of materials (Type = 1) the following properties are considered: 3.4.2.1 GAMa(MODF)

Partial safety factors Partial safety factor (Art.3.1.7 GAMa 1)Ma =1(Default

value)

3.4.2.2 SIGe(Thk)(LIBR)

Mechanical properties Elastic limit (Art.3.1.7) SIGe 0 0

SIGr(Thk)(LIBR)

Tension resistance (Art.3.1.7) SIGr

SIGu(Thk)(LOCK)

Design resistance (Art.3.1.7) SIGu = SIGe/GAMa

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-31

Chapter 3 Materials

3.4.3

LRFD (Structural Steel)

For this type of materials (Type = 1) the following properties are considered: 3.4.3.1 fy (Thk)(LIBR)

Mechanical properties Yield strength of the material (fy Ultimate strength (fu 0). 0).

fu (Thk)(LIBR)

3.4.4

BS5950-1985 (Structural Steel)

For this type of materials (Type = 1) the following properties are considered: 3.4.4.1 Ys (Thk)(LIBR)

Mechanical properties Yield strength of the material (Ys 0).

Us (Thk)(LIBR)

Ultimate strength Art. 5.1.1 (Us 0). Design resistance. BS 5950 Art 3.1.1 ROy = 1.0Ys 0.84Us Effective area/Net area ratio Art. 3.3.3 BS 5950 Ke = 1.2 grade 40 or 43 Ke = 1.1 grade 50 or WR50 Ke = 1.0 grade 55 Ke = 0.75Us/Ys 1.2 in any other case

ROy (Thk)(LIBR)

Ke (Thk)(LIBR)

3.4.5

BS5950-2000 (Structural Steel)

For this type of materials (Type = 1) the following properties are considered: 3.4.5.1 Ys (Thk)(LIBR)

Mechanical properties Yield strength of the material (Ys 0).

Us (Thk)(LIBR)

Ultimate strength Art. 3.1.1 (Us 0). Design resistance. BS 5950 Art 3.1.1 ROy = 1.0Ys 0.84Us Effective area/Net area ratio Art. 3.4.3 BS 5950 Ke = 1.2 grade 40 or 43

ROy (Thk)(LIBR)

Ke (Thk)(LIBR)

3-32

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.4 Specific Code Properties

Ke = 1.1 grade 50 or WR50 Ke = 1.0 grade 55 Ke =

Us in any other case 1.2 ROy

3.4.6

GB50017 (Structural Steel)

For this type of materials (Type = 1) the following properties are considered: 3.4.6.1 f (Thk)(LIBR)

Mechanical properties Tensile, compressive or bending strength. Compressive strength when the ending section is under compressive load. Shear strength.

fce (Thk)(LIBR)

fv (Thk)(LIBR)

3.4.7

Eurocode 2 (Concrete)

For this type of materials (Type = 2) the following properties are considered: 3.4.7.1 CeTp(MODF)

Type of cement Refers to the different types of cement used: S: N: R: Slow hardening cements Slow hardening cements (Default value) Rapid hardening cements

RS: Rapid hardening high strength cements 3.4.7.2 GAMc(MODF)

Partial safety factors Partial safety factor for concrete (GAMc 1) ( c=1.5 default value).

ALP(MODF)

Additional reduction factor for sustained compression (0 ALP 1). The default values are ALP = 0.85 for Eurocode 2 1991. ALP = 1.00 for Eurocode 2 2008.

3.4.7.3 fck(LIBR)

Mechanical properties Concrete characteristic 28-day compressive strength (+Compression fck 0)

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-33

Chapter 3 Materials

fcm(MODF)

Mean 28-day compressive strength (+ Compression) fcm fcm = fck + 8 N/mm2, in which fcm, and fck are in MPa.

0

fcd(LOCK)

Design 28-day compressive strength (+Compression) fcd = fck/GAMc Mean tensile strength (+ Tension) fctm = 0.3*(fck2/3); fck 50 MPa fctm = 2.12*ln(1+(fcm/10)); fck > 50 MPa (fctm, fcm and fctk in MPa)

fctm(MODF)

fctk_005(MODF)

Lower characteristic tensile strength (percentile-5%) (+Tension) fctk_005 = 0.7*(fctm) Upper characteristic tensile strength (percentile-95%) (+Tension) fctk_095 = 1.3*(fctm) Strain value of the peak compressive strength (- Compression). The default value is: EPSc1 = -0.0022 for Eurocode 2 1991 and fck EPSc1 = 0.7*fcm0.31 < 2.8 for Eurocode 2 2008 50MPa

fctk_095(MODF)

EPSc1(LIBR)

EPScu(LIBR)

Ultimate strain in compression (-Compression). Coefficient which depends on the type of cement. S: N: R: RS: s = 0.38 s = 0.25 s = 0.25 s = 0.20

s(MODF)

3.4.7.4 BETcc(LOCK)

Time dependent mechanical properties Coefficient which depends on the concrete age. BETcc = exp {s*[1-(28/Age)1/2]} (Age is expressed in days) fcm_t = BETcc*fcm fck_t = fcm_t - 8 (fck_t and fcm in MPa)

fcm_t(Age) Mean compressive strength. (+ Compression)(MODF)

fck_t(Age) Characteristic t-day compressive strength. (+ Compression)(MODF)

fcd_t(Age) Design t-day compressive strength (+Compression) fcd_t = fck_t/GAMc(LOCK)

Ecm(Age)(MODF)

Secant modulus of elasticity. Ecm = 9500*[(fck_t+8)1/3] (fck_t and Ecm in MPa) Tangent modulus of elasticity, Ec = 1.05*Ecm Design modulus of elasticity, Ecd = Ecm/GAMc

Ec(t)(MODF)

Ecd(t)

3-34

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.4 Specific Code Properties

(LOCK)

3.4.7.5

Stress-strain diagrams for structural analysis

The different types of stress-strain concrete diagrams available according to Eurocode 2 are: TSASSD= 0 TSASSD= 1 TSASSD= 2 3.4.7.5.1 User defined Elastic Short-term loads

Definition of the elastic stress-strain diagram (TSASSD = 1):

The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 2 points (NPSASSD = 2) has been selected for the definition of the stressstrain diagram. Strain values are the following: SAEPS (1) SAEPS (2) = = -10-2 10-2

For these points, stress values are the following: SASGM (i) = SAEPS (i) * Ex 3.4.7.5.2 Definition of the stress-strain diagram for short term loads (TSASSD = 2):

The sign criterion for the definition of stress-strain diagram points is the following one: +Tension, -Compression A total of 20 points (NPSDSSD = 20) has been chosen for the definition of the stressstrain diagram. The strain values are the following: SAEPS (1) SAEPS (2) SAEPS (3) SAEPS (4) SAEPS (5) SAEPS (6) SAEPS (7) SAEPS (8) SAEPS (9) SAEPS (10) = = = = = = = = = = 1.000*(EPScu-EPSc1)+EPSc1 0.793*(EPScu-EPSc1)+EPSc1 0.617*(EPScu-EPSc1)+EPSc1 0.468*(EPScu-EPSc1)+EPSc1 0.342*(EPScu-EPSc1)+EPSc1 0.234*(EPScu-EPSc1)+EPSc1 0.143*(EPScu-EPSc1)+EPSc1 0.066*(EPScu-EPSc1)+EPSc1 1.000*EPSc1 0.964*EPSc1

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-35

Chapter 3 Materials

SAEPS (11) SAEPS (12) SAEPS (13) SAEPS (14) SAEPS (15) SAEPS (16) SAEPS (17) SAEPS (18) SAEPS (19) SAEPS (20)

= = = = = = = = = =

0.922*EPSc1 0.873*EPSc1 0.816*EPSc1 0.749*EPSc1 0.669*EPSc1 0.575*EPSc1 0.465*EPSc1 0.335*EPSc1 1.181*EPSc1 0.000

For these points, stress values are the following: SASGM(i) = -[(k*Eta(i) -Eta(i) 2)/((1+(k-2)*Eta(i))]*fcm_t Where: K= 1.10*Ecm*EPSc1/(-fcm_t) for Eurocode 2 1991 1.05*Ecm*EPSc1/(-fcm_t) for Eurocode 2 2008 Eta(i) = SAEPS(i) / EPSc1 3.4.7.6 Stress-strain diagrams for section analysis

The different types of stress-strain diagrams available for concrete, according to Eurocode 2 are the following: TSDSSD= 0 TSDSSD= 1 TSDSSD= 2 User defined Parabolic-rectangular Bilinear

3-36

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.4 Specific Code Properties

3.4.7.6.1

Definition of the parabolic-rectangular stress-strain diagram (TSDSSD = 1): NPSDSSD = 12

Number of diagram points The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain values for this diagram are the following: SDEPS (1) SDEPS (2) SDEPS (3) SDEPS (4) SDEPS (5) SDEPS (6) SDEPS (7) SDEPS (8) SDEPS (9) SDEPS (10) SDEPS (11) SDEPS (12) where:cu2 cu2 c2

= =

cu2 c2 c2 c2 c2 c2 c2 c2 c2 c2 c2

= 0.9 * = 0.8 * = 0.7 * = 0.6 * = 0.5 * = 0.4 * = 0.3 * = 0.2 * = 0.1 * = 0.0

= -0.0035 if fck

50 MPa

= -(2.6+35[(90-fck)/100]4)/1000 if fck > 50 MPa 50 MPa = -(2.0+0.085(fck-50)0.53)/1000 if fck > 50 MPa

= -0.0020 if fck

cu2

(fck in MPa) The corresponding stress values are the following: For the first 11 points: SDSGM(i) = 1000*SDEPS(i) *(250*SDEPS(i) +1)*ALP*fcd_t for Eurocode 2 1991 SDSGM(i) = -[1-(1-SDEPS(i) / n = 2.0 for fck For point 12: SDSGM(i) = -ALP*fcd_tn c2) ]*ALP*fcd_t

for Eurocode 2 2008

50 MPa

n = 1.4+23.4*[(90-fck)/100]4 for fck > 50 MPa

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-37

Chapter 3 Materials

3.4.7.6.2

Definition of the bilinear diagram (TSDSSD = 2): NPSDSSD = 3

Number of diagram points The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression A total of 3 points (NPSDSSD = 3) has been chosen for the definition of the stressstrain diagram. Strain values have been taken conforming to article Art. 4.2.1.3.3 (b) of Eurocode 2 and are the following: SDEPS (1) = SDEPS (2) = Wherecu3 cu3 c3 c3 c3 cu3 c3

SDEPS (3) = 0.000 = -0.0035 for fck 50 MPa

= -0.001*(2.6+35*[(90-fck)/100]4) for fck > 50 MPa 50 MPa and Eurocode 2 1991 50 MPa and Eurocode 2 2008

= -0.00135 for fck = -0.00175 for fck

= -0.001*(1.75+0.55*(fck-50)/40) for fck > 50 MPa

Stress points are the following: SDSGM (1) = -ALP*fcd_t SDSGM (2) = -ALP*fcd_t SDSGM (3) = 0.000

3.4.83.4.8.1 GAMs(MODF)

Eurocode 2 (Reinforcement Steel)Partial safety factors Steel partial safety factor (GAMs 0)s

For this type of materials (Type = 3) the following properties are defined: = 1.15 (default value)

3.4.8.2 fyk(LIBR)

Mechanical properties Characteristic yield stress- Indicates the characteristic value of the applied load over the area of the transverse section. Design yield stress. fyd = fyk/GAMs Characteristic tensile stress. Refers to the characteristic value of the maximum axial load in tension over the area of the transverse section. Characteristic elongation at maximum load. EPSuk 0

fyd(LIBR)

ftk(LIBR)

EPSuk

3-38

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.4 Specific Code Properties

(LIBR)

3.4.8.3 Duct(LIBR)

Ductility Ductility- The default value depends on ftk, fyk and EPSuk If EPSuk > 0.050 and ftk/fyk > 1.08 If EPSuk > 0.025 and ftk/fyk > 1.05 Any other case Duct = HIGH Duct = NORMAL Duct = NONE

3.4.8.4

Stress-strain diagrams for structural analysis TSASSD= 0 TSASSD= 1 TSASSD= 2 User defined Elastic Bilinear

The different types of stress-strain diagrams available are the following:

3.4.8.4.1

Definition of the elastic diagram (TSDSSD = 1): NPSASSD = 2

Number of diagram points: The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain points are the following: SAEPS (1) SAEPS (2) = -1.0E-2 = 1.0E-2

Stress points are the following: SASGM (1) = SAEPS(1)*Ex SASGM (2) = SAEPS(2)*Ex 3.4.8.4.2 Definition of the bilinear diagram (TSDSSD = 2): NPSASSD = 4 The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain points are the following: SAEPS (1) SAEPS (2) SAEPS (3) SAEPS (4) = -EPSuk = -fyk/Ex = fyk/Ex = EPSuk Number of diagram points:

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-39

Chapter 3 Materials

Stress points are the following: SASGM (1) = -ftk SASGM (2) = -fyk SASGM (3) = fyk SASGM (4) = ftk 3.4.8.5 Stress-strain diagrams for section analysis TSDSSD= 0 TSDSSD= 1 TSDSSD= 2 3.4.8.5.1 User defined Bilinear with horizontal top branch Bilinear with inclined top branch

The different types of stress-strain diagrams available are the following:

Definition of the bilinear diagram with horizontal top branch stressstrain (TSDSSD = 1): NPSDSSD = 4

Number of diagram points The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain points are the following: SDEPS (1) SDEPS (2) SDEPS (3) SDEPS (4) SDSGM (1) SDSGM (2) SDSGM (3) SDSGM (4) 3.4.8.5.2 = -EPSuk = -fyd/Ex = fyd/Ex = EPSuk = -fyd = -fyd = fyd = fyd Definition of the bilinear diagram with inclined top branch stressstrain (TSDSSD = 2): NPSDSSD = 4

The corresponding stress points are the following:

Number of diagram points

3-40

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.4 Specific Code Properties

The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain points are the following: SDEPS (1) = -EPSuk SDEPS (2) = -fyd/Ex SDEPS (3) = fyd/Ex SDEPS (4) = EPSuk The corresponding stress points are the following: SDSGM (1) = -ftk/GAMs SDSGM (2) = -fyd SDSGM (3) = fyd SDSGM (4) = ftk/GAMs

3.4.9

Eurocode 2 (Prestressing steel)

For this type of materials (Type = 4) the following properties are defined: 3.4.9.1 GAMs(MODF)

Safety factors Safety factor (GAMs 1)

3.4.9.2 fpk(LIBR)

Mechanical properties Characteristic tensile strength. fpk 0 0.1% Proof-stress. fp01 0 Characteristic elongation at maximum load. EPSuk 0.035) Relaxation Relaxation for 1000hours and 60%fmax. Relaxation for 1000hours and 70%fmax. Relaxation for 1000hours and 80%fmax. Ratio between long-term relaxation losses and 1000 hours relaxation losses. 0 (by default =

fp01(LIBR)

EPSuk(LIBR)

3.4.9.3 Ro_60(MODF)

Ro_70(MODF)

Ro_80(MODF)

LtRat(MODF)

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-41

Chapter 3 Materials

3.4.9.4

Stress-strain diagrams for structural analysis TSASSD= 0: User defined TSASSD= 1: Elastic TSASSD= 2: Bilinear

The different types of stress-strain diagrams are the following:

3.4.9.4.1

Definition of the Bilinear diagram (TSDSSD = 1): NPSASSD = 2

Number of diagram points The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain points are the following: SAEPS (1) SAEPS (2) = -10-2 = 10-2

The corresponding stress points are the following: SASGM (1) = SAEPS (1)Ex SASGM (2) = SAEPS (2)Ex 3.4.9.4.2 Definition of the Bilinear diagram (TSDSSD = 2): NPSASSD = 3 The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain points are the following: SAEPS (1) SAEPS (2) SAEPS (3) = 0.0 = 0.9fpk/Ex = EPSuk

Number of diagram points

The corresponding stress points are the following: SASGM (1) = 0.0 SASGM (2) = 0.9fpk SASGM (3) = fpk

3-42

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.4 Specific Code Properties

3.4.9.5

Stress-strain diagrams for section analysis TSDSSD= 0: User-defined TSDSSD= 1: Bilinear with horizontal top branch TSDSSD= 2: Bilinear with inclined top branch

The different types of stress-strain diagrams are the following:

3.4.9.5.1

Definition of the bilinear diagram with horizontal top branch stressstrain (TSDSSD = 1): NPSDSSD = 3

Number of diagram points: The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain points are the following: SDEPS (1) SDEPS (2) SDEPS (3) SDSGM (1) SDSGM (2) SDSGM (3) 3.4.9.5.2 = 0.0 = 0.9fpk/(Ex.GAMs) = EPSuk = 0.0 = 0.9fpk/GAMs = 0.9fpk/GAMs Definition of the bilinear diagram with inclined top branch stressstrain (TSDSSD = 2): NPSDSSD = 3 The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain points are the following: SDEPS (1) = 0.0 SDEPS (2) = 0.9fpk/(Ex.GAMs) SDEPS (3) = EPSuk The corresponding stress points are the following: SDSGM (1) = 0.0 SDSGM (3) = 0.9fpk/GAMs SDSGM (4) = fpk/GAMs

The corresponding stress points are the following:

Number of diagram points

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-43

Chapter 3 Materials

3.4.10

ACI (Concrete)

For this type of materials (Type = 2) the following properties are defined: 3.4.10.1 CuTp(MODF)

Type of cement and curing Type of curing (ACI-219R-4 Art. 2.2.1) MOIST: moist cured (default value) STEAM: steam cured Type of cement (ACI-219R-4 Art. 2.2.1) I: cement type I (default value) III: cement type III

CeTp(MODF)

3.4.10.2 fc(LIBR)

Mechanical properties Specified compressive strength (Art. 5.1 of the ACI-318) (+ Compression) Constant which depends on the type of cement and curing (table 2.2.1 of the ACI-209R-4). Cutp = Moist Cutp = Moist CeTp = I a = 4.00 a = 4.00 CeTp = III a = 4.00

a(MODF)

Cutp = Steam CeTp = I BET(MODF)

Cutp = Steam CeTp = III a = 4.00 Constant which depends on the type of cement and curing (table 2.2.1 of the ACI-209R-4). Cutp = Moist Cutp = Moist CeTp = I BET = 0.85 BET = 0.95 CeTp = III BET = 0.92

Cutp = Steam CeTp = I

Cutp = Steam CeTp = III BET = 0.98 3.4.10.3 fc_t(Age)(LIBR)

Time dependent mechanical properties Concrete compressive strength (ACI-209R-4 Art. 2.2.1) (+ Compression) fc_t = Age / (a+BET*Age)*fc Modulus of rupture (ACI-318 Art. 9.5.2.3) fr

fr (Age)(LIBR)

7.5

fc _ t

Ec(Age)(LIBR)

Modulus of elasticity (Art. 8.5.1 of the ACI-318) Ec = RHO1.5*fc_t1/2 (with RHO in lb/ft3) Factor that allows transforming the parabolic stress distribution of the beam compressive zone to a rectangular one (Art. 10.2.7.3 of the ACI318). This factor 1 varies depending on the concrete characteristic

BET1(LIBR)

3-44

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.4 Specific Code Properties

strength. The different values this factor may have are described bellow: fc 8000 psi fc fc 4000 psi 4000 psi 8000 psi 1= 0.85 1= 0.85 - 0.05*(fc-4000)/1000 1= 0.65

Note: All these formulae are valid for a fc of 28 days. EPS0(Age) Strain of the maximum compressive stress for parabolic stress-strain (LIBR) diagram (ACI 318-95 article Art. 10.2.7 Figure 6-8) (+Compression) EPS0 = 2* (0.85*fc_t)/Ec 3.4.10.4 Stress-strain diagrams for structural analysis

The different types of stress-strain diagrams available for concrete, according to the ACI code are the following: TSASSD= 0: TSASSD= 1: TSASSD= 2: 3.4.10.4.1 User defined Elastic PCA Parabolic

Definition of the elastic stress-strain diagram (TSASSD = 1): +Tension, -Compression

The sign criterion for the definition of stress-strain diagram points is the following one: A total of 2 points (NPSASSD = 2) has been chosen for the definition of the stressstrain diagram. Strain values are the following: SAEPS (1) SAEPS (2) = = -1.0E-2 1.0E-2

For these points, stress values are the following: SASGM (i) = SAEPS (i) * Ex 3.4.10.4.2 Definition of the PCA parabolic stress-strain diagram (TSASSD = 2): NPSASSD = 12 The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain points have been taken according to notes expressed in ACI-318 article Art. 10.2.6 and are the following: SAEPS (1) SAEPS (2) SAEPS (3) SAEPS (4) = -0.0030 = -EPS0 = -9/10*EPS0 = -8/10*EPS0

Number of diagram points

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-45

Chapter 3 Materials

SAEPS (5) SAEPS (6) SAEPS (7) SAEPS (8) SAEPS (9) SAEPS (10) SAEPS (11) SAEPS (12)

= -7/10*EPS0 = -6/10*EPS0 = -5/10*EPS0 = -4/10*EPS0 = -3/10*EPS0 = -2/10*EPS0 = -1/10*EPS0 = 0.000

Stress points are the following: If 0 > SAEPS(i) > (-EPS0) SASGM(i) = SASGM(i) = 0.85*fc_t*[2*(SAEPS(i) /-EPS0)-(SAEPS(i) /-EPS0)2] 0.85*fc_t If (-EPS0) > SAEPS(i)

3.4.10.5

Stress-strain diagrams for section analysis

The different types of stress-strain diagrams available for concrete, according to the ACI code are the following: TSDSSD= 0: TSDSSD= 1: TSDSSD= 2: 3.4.10.5.1 Number of diagram points NPSDSSD = 12 The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain points have been taken according to notes expressed in ACI-318 article Art. 10.2.6 and are the following: SDEPS (1) SDEPS (2) SDEPS (3) SDEPS (4) SDEPS (5) SDEPS (6) SDEPS (7) = -0.0030 = -EPS0 = -9/10*EPS0 = -8/10*EPS0 = -7/10*EPS0 = -6/10*EPS0 = -5/10*EPS0 User defined PCA Parabolic Rectangular

Definition of the PCA Parabolic diagram (TSDSSD = 1):

3-46

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.4 Specific Code Properties

SDEPS (8) SDEPS (9) SDEPS (10) SDEPS (11) SDEPS (12)

= -4/10*EPS0 = -3/10*EPS0 = -2/10*EPS0 = -1/10*EPS0 = 0.000

The corresponding stress points are the following: If 0 > SDEPS(i) > (-EPS0) SDSGM (i) = 0.85*fc_t*[2*(SDEPS(i) /-EPS0)-(SDEPS(i) /-EPS0)2] If (-EPS0) > SDEPS SDSGM (i) = 0.85*fc_t 3.4.10.5.2 Definition of the rectangular diagram (TSDSSD = 2): NPSDSSD = 0 For rectangular diagrams, it does not make sense to consider any specific point in this diagram because stresses do not depend on strains, but on the distance between the outer most compressed fiber and the neutral axis. Number of diagrams points

3.4.11

ACI (Reinforcement steel)

For this type of materials (Type = 3) the following properties are considered: 3.4.11.1 fy(LIBR)

Mechanical properties Yield strength (Art. 3.5 of the ACI-318)

3.4.11.2

Stress-strain diagrams for structural analysis

The different types of stress-strain diagrams available for reinforcement steel, according to the ACI code are the following: TSASSD= 0 TSASSD= 1 TSASSD= 2 3.4.11.2.1 Number of diagram points: NPSASSD = 2 User defined Elastic Bilinear

Definition of the elastic diagram (TSASSD = 1):

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-47

Chapter 3 Materials

The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain values for the stress-strain diagram have been taken as: SAEPS (1) SAEPS (2) = -1.0E-2 = 1.0E+2

The corresponding stress values are: SASGM (1) = SAEPS(1)*Ex SASGM (2) = SAEPS(2)*Ex 3.4.11.2.2 Definition of the bilinear diagram (TSASSD = 2): NPSASSD = 4 The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain values for the stress-strain diagram have been taken as: SAEPS (1) SAEPS (2) SAEPS (3) SAEPS (4) = -0.01 = -fy/Ex = fy/Ex = 0.01 Number of diagram points:

The corresponding stress values are: SASGM (1) = -fy SASGM (2) = -fy SASGM (3) = fy SASGM (4) = fy 3.4.11.3 Stress-strain diagram for section analysis

The different types of stress-strain diagrams available for reinforcement steel, according to the ACI code are the following: TSDSSD= 0 TSDSSD= 1 3.4.11.3.1 Number of diagrams points NPSDSSD = 4 User defined Bilinear

Definition of the bilinear diagram (TSDSSD = 1):

3-48

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.4 Specific Code Properties

The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain values for the stress-strain diagram have been taken as: SDEPS (1) = -0.01 SDEPS (2) = -fy/Ex SDEPS (3) = fy/Ex SDEPS (4) = 0.01 The corresponding stress values are: SDSGM (1) = -fy SDSGM (2) = -fy SDSGM (3) = fy SDSGM (4) = Fy

3.4.12

ACI (Prestressing steel)

For this type of materials (Type = 4) the following properties are considered: 3.4.12.1 StTp(MODF)

Mechanical properties Prestessing steel type 0: 1: Low-relaxation Stress-relieved

fpu fpy

Specific tension strenght Yield strength

(LIBR) (LIBR)

3.4.12.2 Rlcf1(MODF)

Relaxation Coefficient 1 for the relaxation calculation Coefficient 1 for the relaxation calculation

Rlcf2(MODF)

3.4.12.3

Stress-strain diagrams for structural analysis

The different types of stress-strain diagrams available for prestressing steel, according to the ACI code are the following: TSASSD= 0 TSASSD= 1 User defined Elastic

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-49

Chapter 3 Materials

TSASSD= 2 3.4.12.3.1

Bilinear

Definition of the elastic diagram (TSASSD = 1): NPSASSD = 2

Number of diagram points The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain values for the stress-strain diagram have been taken as: SAEPS (1) SAEPS (2) = -10-2 = 10-2

The corresponding stress values are: SASGM (1) = SAEPS (1)Ex SASGM (2) = SAEPS (2)Ex 3.4.12.3.2 Definition of the bilinear diagram (TSASSD = 2): NPSASSD = 3 The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain values for the stress-strain diagram have been taken as: SAEPS (1) SAEPS (2) SAEPS (3) = 0.0 = fpy/Ex = 0.035

Number of diagram points

The corresponding stress values are: SASGM (1) = 0.0 SASGM (2) = fpy SASGM (3) = fpu 3.4.12.4 Stress-strain diagram for section analysis

The different types of stress-strain diagrams available for prestressing steel, according to the ACI code are the following: TSDSSD= 0 TSDSSD= 1 User defined Bilinear

3-50

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.4 Specific Code Properties

3.4.12.4.1

Definition of the bilinear diagram (TSDSSD = 1): NPSDSSD = 3

Number of diagrams points The sign criterion for the definition of points of the stress-strain diagram is the following: +Tension, -Compression Strain values for the stress-strain diagram have been taken as: SDEPS (1) = 0.0 SDEPS (2) = fpy/Ex SDEPS (3) = 0.035 The corresponding stress values are: SDSGM (1) = 0.0 SDSGM (2) = fpy SDSGM (3) = fpu

3.4.13

CEB-FIP (Concrete)

For this type of materials (Type = 2) the following properties are defined: 3.4.13.1 CeTp(MODF)

Type of cement Type of cement (appendix d.4.2.1) S: N: R: Slow hardening cements Normal hardening cements (default value) Rapid hardening cements

RS: Rapid hardening high strength cements 3.4.13.2 GAMc(MODF)

Safety factors Partial safety factor for concrete (Art. 1.6.4.4) (GAMc c=1.5 (default value) Mechanical properties Characteristic compressive strength (+ Compression) fck 0 1)

3.4.13.3 fck(LIBR)

fcd(LOCK)

Design compressive strength at 28 days (Art. 1.4.1 b) (+ Compression) fcd = fck/GAMc Mean compressive strength (Art. 2.1.3.2) (+ Compression fcm fcm = fck + 8 N/mm2, in which fcm, and fck are in N/mm2. 0)

fcm(MODF)

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3-51

Chapter 3 Materials

fctk_min(MODF)

Lower characteristic tensile strength (Art. 2.1.3.3.1 (2.1-2)) (+ Tension) fctk_min = 0.95*[(fck/10)2/3] (fctk_min and fck in N/mm2) Upper characteristic tensile strength (Art. 2.1.3.3.1 (2.1-3)) (+ Tension) fctk_max = 1.85*[(fck/10)2/3] (fctk_max and fck in N/mm2) Mean tensile strength (Art. 2.1.3.3.1 (2.1-4)) (+ Tension) fctm = 1.40*[(fck/10)2/3] (fctm and fck in N/mm2) Coefficient which depends on the type of cement and is used to calculate the characteristic concrete resistance at a specific age (Art. 2.1.6.1) Cetp= S: Cetp= N: Cetp= R: Cetp= RS: s = 0.38 s = 0.25 s = 0.25 s = 0.20

fctk_max(MODF)

fctm(MODF)

s(MODF)

3.4.13.4 BETcc(Age)(LOCK)

Time dependent mechanical properties Coefficient which depends on concrete age (Art. 2.1.6.1 (2.1-54)) BETcc = exp {s*[1-(28/Age)1/2]} (Age is expressed in days.) Mean t day compressive strength (Art. 2.1.6.1 (2.1-53)) (+Compression) fcm_t = BETcc*fcm Characteristic t-day compressive strength (Art. 2.1.3.2) (+Compression) fck_t = fcm_t - 8 (in MPa) Design t-day compressive strength (Art. 1.4.1 b) (+Compression) fcd_t = fck_t/GAMc Uniform strength for uncracked regions (Art. 6.2.2.2) fcd1 = 0.85*(1-fck_t/250)*fcd_t (fcd1, fck_t and fcd_t in N/mm2) Uniform strength for cracked regions (Art. 6.2.2.2) fcd2 = 0.60*(1-fck_t/250)*fcd_t (fcd2, fck_t and fcd_t in N/mm 2) Strength ratio. This coefficient refers to the ratio of tension over compression resistance. Its value is taken from article (Art. 2.1.3.4) K = fctm / fcm Tangent modulus of elasticity (Art. 2.1.4.2) Eci = (BETcc)1/2 *2.15E4*{[(fcm_t)/10]1/3} (in N/mm2) Reduced modulus of elasticity (article 2.1.4.2) Ec = 0.85*Eci Secant modulus of elasticity (Art. 2.1.4.4.1) Ec1 = (BETcc)1/2 *fcm_t/(-EPSc1) Strain of the maximum compressive stress (Art. 2.1.4.4.1) (-Compression) EPSC1 = -0.0022

fcm_t(Age)(MODF)

fck_t(Age)(MODF)

fcd_t(Age)(LOCK)

fcd1(Age)(LOCK)

fcd2(Age)(LOCK)

k(MODF)

Eci(Age)(MODF)

Ec(Age)(MODF)

Ec1(Age)(MODF)

EPSc1(LIBR)

3-52

CivilFEM Theory Manual 300609. Ingeciber, S.A.

3.4 Specific Code Properties

EPSc_lim(Age) Maximum concrete str