cigre+ieee+tutorial+2012+part+3+tlf dufournet+&+janssen

75
Transformer Limited Fault TRV Transformer Limited Fault TRV Denis Dufo urnet (Alstom Grid) – Anton J anssen (Liander) (Convenor & Secretary of CIGRE WG A3-28) GRID Tutorial made at the IEEE Switchgear Committee Meeting in San Diego (USA), on October 4 th , 2012.

Upload: twinvbooks

Post on 29-Oct-2015

60 views

Category:

Documents


0 download

DESCRIPTION

jgggkj

TRANSCRIPT

Page 1: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 1/75

Transformer Limited Fault TRVTransformer Limited Fault TRV

Denis Dufournet (Alstom Grid) – Anton Janssen (Liander)

(Convenor & Secretary of CIGRE WG A3-28)

GRID

Tutorial made at the IEEE Switchgear CommitteeMeeting in San Diego (USA), on October 4th, 2012.

Page 2: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 2/75

Tutorial CIGRE WG A3-28_TLF - P 2

1. Introduction on Transformer Limited Fault (TLF)

2. Options for the specification of TLF in IEEE C37.011-2011

3. Transformer natural frequency and Model

4. Surge capacitance of a transformer & TRV from FRAmeasurements

5. Influence of external capacitances between circuit breaker andtransformer

6. TLF TRV peak (k p, amplitude factor, voltage drop ratio)

7. Standardization of TLF for UHV in IEC 62271-100

8. Conclusion

9. Annexes

10. Bibliography

Content

Page 3: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 3/75

11 -- IntroductionIntroduction

Page 4: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 4/75

Tutorial CIGRE WG A3-28_TLF - P 4

• Severe TRV conditions may occur when there is a fault with ashort-circuit current fed by a transformer without any appreciable

capacitance between the transformer and the circuit breaker*.These faults are called Transformer Limited Faults (TLF).

In such case, the rate-of-rise of recovery voltage (RRRV) exceedsthe values specified in the standards for terminal faults.

For example in case of a 362 kV 63 kA circuit breaker, the RRRV(Rate of Rise of Recovery Voltage) in ANSI Guide C37.06.1 is

− 2.2 to 4.4 times the value for a terminal fault with a short-circuitcurrent respectively equal to 7% and 30% of rated value, i.e.

− 15.4 kV/µs and 22.2 kV/µs respectively for breaking currents of4.4 kA and 18.9 kA.

TLF / Introduction

* In usual cases TLF is covered by terminal fault test duties T10 and T30.

Page 5: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 5/75

Tutorial CIGRE WG A3-28_TLF - P 5

• In Standards or Guides, the TLF duty covers two cases

TLF / Introduction

Page 6: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 6/75

22 -- Options for the Specification of Options for the Specification of TLF in IEEE C37.011TLF in IEEE C37.011--20112011

Page 7: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 7/75

Tutorial CIGRE WG A3-28_TLF - P 7

• As explained in IEEE C37.011-2011 (Guide for the Application ofTRV for AC High-Voltage Circuit Breakers), the user has several

basic possibilities1. Specify a fast TRV for TLF with values taken from standards or

guides (e.g. ANSI C37.06.1),

2. Specify a TRV calculated for the actual application taking into

account

− the natural frequency of the transformer,

− and/or (depending on the knowledge of system parameters)additional capacitances present in the substation, sum of straycapacitance, busbar, CVT etc

3. Add a capacitor to reduce the RRRV

TLF / Options for Specification

Page 8: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 8/75

Tutorial CIGRE WG A3-28_TLF - P 8

• Option 1: Specify a fast TRV for TLF with values taken fromGuides (e.g. ANSI C37.06.1)

− ANSI Guide C37.06.1 is assumed to cover the large majority of allcases for this switching duty.

− TLF TRVs are given for two fault currents: 7% and 30% of ratedshort-circuit current.

− They are based on the assumption of a negligible capacitancebetween the circuit breaker and the transformer.

TLF / Options for Specification

Page 9: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 9/75

Tutorial CIGRE WG A3-28_TLF - P 9

• Option 1 (Cont’d): TRV values in ANSI C37.06.1

TLF / Options for Specification

Page 10: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 10/75

Tutorial CIGRE WG A3-28_TLF - P 10

TLF / Options for Specification

• Explanation on TRV value in ANSI C37.06.1

Case: U r = 362 kV , I sc= 63 kA, I TLF = 7% I sc

− Load voltage at the time of interruption

− TRV peak (neglecting the contribution on the supply side)

with k pp = 1.5 (assumed in ANSI C37.06.1) and k af = 1.83

93.022 r  ppaf load af c

U k k U k U  ××××=××=

( ) SC S SC  LS S  I  X  I  X  X U  ×=×+= 07.0

S  L X  X  93.007.0 =S  L X  X 

07.0

93.0=

S SC S SC  Lload  U  I  X  I  X U  93.093.007.0 ==×=

kV U c 7423

3625.193.028.1 =×××=

U sX s X L

ReactancetransformerReactancesupply

U load

Page 11: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 11/75

Tutorial CIGRE WG A3-28_TLF - P 11

• Option 1 (Cont’d): TRV values in ANSI C37.06.1

TLF / Options for Specification

Ur Ur sqrt(2/3) kp kaf kvd Calculated Uc ANSI C37.06.1

rated voltagesystem peak

phase-ground voltagepole-to-clear factor amplitude factor

voltage drop

across transformerTRV peak TRV peak

kV kV pu pu pu kV kV

123 100,4 1,5 1,8 0,93 252,2 253

145 118,4 1,5 1,8 0,93 297,3 299

170 138,8 1,5 1,8 0,93 348,5 350

Calculation TLF TRV peak - Case 7% rated short-circuit current

Page 12: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 12/75

Tutorial CIGRE WG A3-28_TLF - P 12

• Questions at this point

− What are the relevant factors (k p, k af and k vd) for highercurrents (e.g. 30% Isc) ?

− What are the relevant factors for higher rated voltages (e.g.362 kV and above) ?

• Answers from CIGRE WG A3-28 will be given in section 6.

TLF / Options for Specification

Note:k p is the pole to clear factor (for any pole)

k pp is the first pole to clear factor

Page 13: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 13/75

Tutorial CIGRE WG A3-28_TLF - P 13

• Option 1 (Cont’d)

− As indicated in ANSI/IEEE Std C37.016-2006, time t 3 is given by the

following equation:

where U r is the rated voltage in kV, C  is equal to the lumped equivalent

terminal capacitance to ground of the transformer in pF, and I TLF isequal to the transformer-limited fault current in kA.

C = 1480 + 89 I TLF (pF) for rated voltages less than 123 kV

C = 1650 + 180 I TLF (pF) for rated voltages 123 kV and above

− For U r ≥ 123 kV, time t 3 can be also expressed as follows:

TLF / Options for Specification

TLF 

 I 

C U t 

×= 106.03

21.03

18.3

TLF 

 I 

U t 

×=

t 3 decreases (and RRRV increases)when the fault current increases.

Page 14: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 14/75

Tutorial CIGRE WG A3-28_TLF - P 14

• Option 2a Check the actual TRV time to peak from the naturalfrequency of the transformer(s)

where T 2 is the time to TRV peak (= 1.15 t 3)

f nat is the natural frequency of the transformer

− If T 2 is longer than the value in ANSI C37.06.1 it may be cross-checked with available test results.

− Determination of the transformer natural frequency can be done inseveral ways as explained in part 3.

TLF / Options for Specification

nat2

2

1

 f T 

×=

Page 15: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 15/75

Tutorial CIGRE WG A3-28_TLF - P 15

• Option 2b TRV calculation for a given application

− Calculate the TRV for the given application, taking into account

additional available capacitances or additional addedcapacitances i.e. line to ground capacitors, CVT’s, gradingcapacitors etc.

− The additional capacitance increases the time to TRV peak

(T 2mod) and reduces the stress for the circuit breaker accordingto the following equations

where

TLF / Options for Specification

)( addnatmod2 C C  LT  +×= π  

 

  

 −×

××

×

= 12

3 sc

sc

r

pp

 I 

 I 

 I  f 

U k 

 Lr π  

) /()( LT C  ××=22

2nat 42 π  

Page 16: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 16/75

Tutorial CIGRE WG A3-28_TLF - P 16

• Option 2b (Cont’d)

where

k  pp is the first pole to clear factor

U  r is the rated maximum voltage

I sc is the rated short circuit current

I  is the transformer limited fault currentf  r is the power frequency

L  is the equivalent inductance of the transformer

C  nat

is the equivalent capacitance of the transformer (2/3 of the surgecapacitance in case of 3-phase ungrounded fault)

C  add is the equivalent additional capacitance (2/3 of the capacitanceadded phase to ground in case of 3-phase ungrounded fault)

TLF / Options for Specification

Page 17: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 17/75

Tutorial CIGRE WG A3-28_TLF - P 17

• Option 2b (Cont’d) : Example

− Rated maximum voltage : 362 kV

− Rated short circuit current : 63 kA− Based on 30% of rated short circuit current, the required test

current is 18.9 kA.

− TRV parameters as defined in ANSI C37.06.1

• T 2 = 37.1 µs u c = 720 kV− The equivalent inductance and capacitance of the transformer

are derived using previous equations

• L = 30.7 mH C nat = 4.54 nF

− Taking into account additional (equivalent) capacitances presentin the substation (sum of stray capacitance, busbar, CVT etc. )of 3.5nF, the modified time to peak T 2mod is equal to 49 µs. ThisT 2mod would be the shortest time to peak TRV that the breakerhas to withstand in service and during testing.

TLF / Options for Specification

Page 18: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 18/75

Tutorial CIGRE WG A3-28_TLF - P 18

• Option 3 Additional capacitor

− Test reports may be available for the circuit breaker showing a

certain T 2 value which is higher than the T 2 value given in ANSIC37.06.1.

− Such a breaker could be used for this application by adding acapacitor to ground which changes the actual T 2 to a value where aproof for the circuit breaker capability exists.

where T 2 test value is the time to peak of tested TRV.

− If for example, a circuit breaker has been tested with a time T 2 test of70 µs, a current equal to 30 % of its rated short circuit current of63kA and a rated maximum voltage of 362 kV, this would requirean additional capacitance of 11.6 nF in order to make the breakerfeasible for this application.

TLF / Options for Specification

C T  L

C nat2

2

test2add −

×

=

π  

Page 19: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 19/75

33 -- Transformer Frequency & ModelTransformer Frequency & Model

Page 20: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 20/75

Tutorial CIGRE WG A3-28_TLF - P 20

TLF / Transformer Frequency & Model

• The transformer frequency can be derived from measurements by

− Current injection,

− Resonant frequency measurement,

− Daini-kyodai method.

• The transient response on the transformer side is quitecomplicated in most cases, so that two approaches are possible:

1. A simplified model with an equivalent RLC circuit that givesthe main TRV frequency and associated amplitude factor.

2. Detailed models that are able to reproduce the multi-frequency phenomena,

Examples are given in the following, taken from papers A3-107 [3] & A3-108 [4] presented at CIGRE session 2012.

Page 21: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 21/75

Tutorial CIGRE WG A3-28_TLF - P 21

TLF / Transformer Frequency & Model

• Current injection method

− The method is described in Annex F of IEC 62271-100

− It provides the TRV for the first-pole-to-clear

− TRVs for the second and third-pole-to-clear can also measuredwith the core type by removing the earthing points at A or at Aand B, respectively.

Determination of transformer natural frequency

Page 22: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 22/75

Tutorial CIGRE WG A3-28_TLF - P 22

TLF / Transformer Frequency & Model

• Current injection method (Cont’d)− Example of TRV measurement (CIGRE paper A3-108_2012)

Determination of transformer natural frequency

Page 23: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 23/75

Tutorial CIGRE WG A3-28_TLF - P 23

TLF / Transformer Frequency & Model

Tutorial CIGRE WG A3-28_TLF - P 23

Page 24: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 24/75

Tutorial CIGRE WG A3-28_TLF - P 24

TLF / Transformer Frequency & Model

• Resonant frequency measurement (FRA)

− Test circuit and example of measurement

Determination of transformer natural frequency

V0

V1

R Transformer(One phase)

Frequency

Generator

SeriesWinding

CommonWinding

TertiaryWinding

Tertiary

Primary

Secondary

I0

Page 25: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 25/75

Tutorial CIGRE WG A3-28_TLF - P 25

TLF / Transformer Frequency & Model

• Daini-kyodai method

− Test circuit

Determination of transformer natural frequency

Rm

V1

Step voltage

Generator

r

Transformer(One phase)

SeriesWinding

CommonWinding

TertiaryWinding

Tertiary

Primary

Secondary

   R m 

 r

Test objectOscilloscopeStep voltage

source

C L R

 Zx 

 R m >> r, Zx 

Reference

resistor

Constant current 

Page 26: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 26/75

Tutorial CIGRE WG A3-28_TLF - P 26

TLF / Transformer Frequency & Model

• Daini-kyodai method

− Example of measurement

Determination of transformer natural frequency

Page 27: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 27/75

Tutorial CIGRE WG A3-28_TLF - P 27

a1

a2

t 1

t 2

Measured waveform for  Zx

Measured waveform for r

 y

 a1=r

× 

×× 

× 

 y 1 /y (Ω 

ΩΩ 

Ω 

)

 y1

 y2

 a2=r

× 

×× 

× 

 y 2 /y (Ω 

ΩΩ 

Ω 

)

TLF / Transformer Frequency & Model

• Daini-kyodai method

The oscillation waveform of Zx directly shows the transient impedance of

the test object.

The components C , R and L of Zx can be calculated from the waveformof Zx by a comparison with the waveform obtained with r (see Annex B).

Determination of transformer natural frequency

Page 28: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 28/75

Tutorial CIGRE WG A3-28_TLF - P 28

TLF / Transformer Frequency & Model

• Comparison of frequency measurement and Daini-kyodai

method

Determination of transformer natural frequency

Page 29: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 29/75

Tutorial CIGRE WG A3-28_TLF - P 29

TLF / Transformer Frequency & Model

• In this example L, C , and R values are evaluated from the slope ofthe gain and the gain at the resonant frequency obtained by FRA(Frequency Response Analysis) measurements for the first-pole-to-clear at the primary and the secondary sides of a shell-typetransformer.

Transformer Model: Simplified RLC Model from FRA

Page 30: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 30/75

Tutorial CIGRE WG A3-28_TLF - P 30

TLF / Transformer Frequency & Model

• First example from CIGRE paper A3_108_2012 [4]

− Multi-mesh and lumped models

Transformer Model: Detailed Model

Page 31: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 31/75

Tutorial CIGRE WG A3-28_TLF - P 31

TLF / Transformer Frequency & Model

• 2nd

example from CIGRE paper A3_107_2012 [3]− Conventional model with capacitances to earth & between

windings (manufacturer model)

Transformer Model: Detailed Model

Page 32: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 32/75

Tutorial CIGRE WG A3-28_TLF - P 32

TLF / Transformer Frequency & Model

• 2nd

example from CIGRE paper A3_107_2012 (Cont’d)− Black-box model having an admittance matrix with self and mutual

components that are frequency dependent. Fitting technique leadsto

where R is a residue matrix, D and E are real matrices.

− This model can be implemented in MATLAB using MatrixFitting.

− Comparison of transformer modeling and field measurements doneby A. Rocha et al. is given in the next slide.

Transformer Model: Detailed Model

 E  j D

a j

 R jY 

m

m

ω  

ω  

ω   ++−

=∑ =1)(

Page 33: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 33/75

Tutorial CIGRE WG A3-28_TLF - P 33

TLF / Transformer Frequency & Model

• 2nd example from CIGRE paper A3_107_2012 (Cont’d)

− Comparison of 25 MVA single-phase transformer self-admittance andangle by black box model with rational fitting (black curve) and by fieldmeasurement (blue curve).

Transformer Model: Detailed Model

Page 34: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 34/75

Tutorial CIGRE WG A3-28_TLF - P 34

TLF / Transformer Frequency & Model

• 2nd example from CIGRE paper A3_107_2012 (Cont’d)

− Comparison of 3-phase ungrounded transformer secondary fault TRVwith conventional model (in blue) and black-box or rational fitting model(in green). Fault current is 2 kA.

Transformer Model: Detailed Model

Comparison of RRRV

9.1 kV/µs : conventional model

5.07 kV/µs : rational fitting model

Note: AS (curve in red) is another

method called asymptotic synthesis

described in the next slide, it gives an

RRRV of 5.09 kV/µs

Page 35: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 35/75

Tutorial CIGRE WG A3-28_TLF - P 35

TLF / Transformer Frequency & Model

• 2

nd

example from CIGRE paper A3_107_2012 (Cont’d)− Asymptotic synthesis model

Conventional 50/60Hz transformer model with terminals connectedto RLC circuits calculated in order to fit the self-admittance of each

of the windings (primary and two secondary in this case).

Transformer Model: Detailed Model

For three winding transformersecondary fault, the terminaladmittance considered to modelthe transformer is dependent onthe winding where the shortcircuit-circuit occurred.

Page 36: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 36/75

Tutorial CIGRE WG A3-28_TLF - P 36

TLF / Transformer Frequency & Model

• Example of dependence of TRV on short-circuit point (onsecondary or tertiary)*

ABRE_DISJ_ALTA_CUR_SEC_TRAFO_3FISOLADA_TER.pl4:v:X0003A-M3A

ABRE_DISJ_ALTA_CUR_SEC_TRAFO_3FISOLADA.pl4: v:X0003A-M3A

0 4 8 12 16 20[ms]

-300

-200

-100

0

100

200

300

400

500

[kV]

* CIGRE 2012 SCA3 PS1Angélica C. O. ROCHA

(Brazil) CEMIG GT

442kV

5.09 kV/ µs320kV2,11 kV/µs

• Green line: short-circuit at tertiary

• Red line: short-circuit at secondary

More than one model

is necessary torepresent all the short-circuit conditions

Page 37: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 37/75

44 – –Surge Capacitance of a TransformerSurge Capacitance of a Transformerand TRV from FRA Measurementsand TRV from FRA Measurements

Page 38: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 38/75

Tutorial CIGRE WG A3-28_TLF - P 38

101

102

103

104

105

106

107

101

102

103

104

105

106

107

Frequency [Hz]

   Z   [   O   h  m   ]

LV terminal shorted

LV

terminalopen

Tutorial CIGRE WG A3-28_TLF - P 38

TLF / Surge Capacitance of a Transformer

• From the initial part of the FRA-measurement an equivalent inductance(short-circuit inductance) can be determined, whereas in the higherfrequency region (some hundreds of kHz) the surge capacitance can be

approached.

• Example

80 MVA, 400 kV

L=640 mH, C=400 pF

Page 39: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 39/75

Tutorial CIGRE WG A3-28_TLF - P 39

Reverse Fourier Transform

FRA = Z(ω) and I(t) = S*t with S = 2πf√2 * Irms

TRV(ω) = I(ω)*Z(ω) = S*Z(ω)/ ω² → TRV(t)

Tutorial CIGRE WG A3-28_TLF - P 39

E l TRV f FRA t

Page 40: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 40/75

Tutorial CIGRE WG A3-28_TLF - P 40

Examples TRV from FRA-measurements(KEMA HPL)

Tutorial CIGRE WG A3-28_TLF - P 40

E l TRV f FRA t

Page 41: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 41/75

Tutorial CIGRE WG A3-28_TLF - P 41

Examples TRV from FRA-measurements(KEMA HPL)

Tutorial CIGRE WG A3-28_TLF - P 41

Examples TRV from FRA measurements

Page 42: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 42/75

Tutorial CIGRE WG A3-28_TLF - P 42

Examples TRV from FRA-measurements(KEMA HPL)

Tutorial CIGRE WG A3-28_TLF - P 42

Examples TRV from FRA measurements

Page 43: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 43/75

Tutorial CIGRE WG A3-28_TLF - P 43

Examples TRV from FRA-measurements(KEMA HPL)

Tutorial CIGRE WG A3-28_TLF - P 43

Examples TRV from FRA measurements

Page 44: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 44/75

Tutorial CIGRE WG A3-28_TLF - P 44

Examples TRV from FRA-measurements(KEMA HPL)

Tutorial CIGRE WG A3-28_TLF - P 44

Examples TRV from FRA measurements

Page 45: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 45/75

Tutorial CIGRE WG A3-28_TLF - P 45

Examples TRV from FRA-measurements(KEMA HPL)

Tutorial CIGRE WG A3-28_TLF - P 45

Examples TRV from FRA-measurements

Page 46: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 46/75

Tutorial CIGRE WG A3-28_TLF - P 46

Examples TRV from FRA-measurements(KEMA HPL)

Tutorial CIGRE WG A3-28_TLF - P 46

Page 47: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 47/75

Tutorial CIGRE WG A3-28_TLF - P 47

Comparison with single frequency model

Based on short-circuit inductance and surge capacitance

2-parameter TRV values

Tutorial CIGRE WG A3-28_TLF - P 47

Case 4 Case 8 Case 9 Case 10 Case 11 Case 12

KEMA* t3 (µs) 39.2 61.1 33.4 64.6 50.5 46.3

Simple t3 (µs) 43.5 53.0 35.0 49.0 56.5 33.5

KEMA* AF 1.75 1.69 1.66 1.65 1.54 1.71

Simple AF 1.80 1.84 1.74 1.80 1.78 1.78

KEMA* kV/ µs 44.6 27.7 49.7 25.5 30.5 36.9

Simple kV/ µs 41.4 34.7 49.7 36.7 31.6 53.1

KEMA*: from reverse Fourier transformSimple: from LCR parallel circuit

Page 48: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 48/75

55 – – Influence of External CapacitancesInfluence of External CapacitancesBetween Circuit Breaker & TransformerBetween Circuit Breaker & Transformer

I fl f l i

Page 49: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 49/75

Tutorial CIGRE WG A3-28_TLF - P 49

Influence of external capacitance

Tutorial CIGRE WG A3-28_TLF - P 49

TLF / Additi l C it

Page 50: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 50/75

Tutorial CIGRE WG A3-28_TLF - P 50

TLF / Additional Capacitances

Capacitance according to IEEE C37.011-2011

• Busbar for air-insulated bus: 8.2-18.0 pF/m.

• Surge arrester 80-120 pF

• CT / VT

− the capacitance of an outdoor current transformer is: 150–450 pF

− the capacitance of an outdoor potential transformer is: 150–450 pF

• CVT

2 000–6 200800

1 500–6 300550

2 150–9 500362

3 000–12 500245

4 000-16 500170

4 000–22 000145

Capacitance(pF)

Voltage class(kV)

TLF / Additi l C it

Page 51: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 51/75

Tutorial CIGRE WG A3-28_TLF - P 51

TLF / Additional Capacitances

• Example of connection between circuit breaker andtransformer: Hydro Quebec 735kV side of transformer

TLF / Additional Capacitances

Page 52: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 52/75

Tutorial CIGRE WG A3-28_TLF - P 52

TLF / Additional Capacitances

• Example of connection between circuit breaker andtransformer: Hydro Quebec 230kV side of transformer

MOSA

transformer DS DS

CB

Page 53: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 53/75

66 – – TLF TRV Peak FactorsTLF TRV Peak Factors

PolePole--toto--clear factor, Amplitude Factorclear factor, Amplitude Factor

& Voltage Drop Ratio& Voltage Drop Ratio

TLF TRV Peak / Pole to clear factor

Page 54: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 54/75

Tutorial CIGRE WG A3-28_TLF - P 54

TLF TRV Peak / Pole-to-clear factor

• The TRV peak is function of 3 factors as shown in the followingequation

k p = pole-to-clear factor, k af = amplitude factor, k vd= voltage dropacross the transformer

• Pole-to-clear factor

− On the EHV or UHV side, the transformer neutral is effectivelygrounded,

as a consequence, pole-to-clear factors are between 1.0 and1.15 (see calculation in Annex).

− A conservative value could be taken as equal to 1.3.

3

2r vd af  pc

U k k k U  ×××=

TLF / TRV Amplitude Factor

Page 55: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 55/75

Tutorial CIGRE WG A3-28_TLF - P 55

TLF / TRV Amplitude Factor

• From the initial part of the FRA-measurement an equivalentinductance can be determined. In the higher frequency region(some hundreds of kHz) the equivalent capacitance can be

approached.

• From these two values (L and C ) both a single frequency can bedetermined and an equivalent value Z.

• The ratio between the highest peak of the FRA-impedancemeasurement and this value Z determines the amplitude factor.

• A ratio R/Z of 5, as found in a case studied by WG A3-28, givesan amplitude factor of 1.73.

• In CIGRE paper A3-108-2012, values of amplitudes factors areequal or lower than 1.62.

Damping or Amplitude factor

Page 56: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 56/75

Tutorial CIGRE WG A3-28_TLF - P 56

Single frequency model

Alan Greenwood’s: Electrical Transients in Power Systems , 2nd

Tutorial CIGRE WG A3-28_TLF - P 56

TLF / Voltage Drop Ratio

Page 57: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 57/75

Tutorial CIGRE WG A3-28_TLF - P 57

TLF / Voltage Drop Ratio

• In IEC & IEEE standards, the voltage drop ratio is assumed to be 0.9for terminal fault test duty T10.

• The voltage drop ratio is function of the ratio of TLF current (Ip-TLF) and

the bus short-circuit current minus the contribution from the faulted

transformer (Ip-net)

Considering the circuit breaker

at the primary side, the voltagedrop in case of transformersecondary fault (TSF) is

net  p

TLF  p

 I 

 I 

V −

−=∆ 1

TLF / Voltage Drop Ratio

Page 58: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 58/75

Tutorial CIGRE WG A3-28_TLF - P 58

TLF / Voltage Drop Ratio

• Based on the previous equation, the voltage drop can be expressedas function of the ratio TLF fault current divided by rated short-circuitcurrent (in percentage) assuming different possible values of the busshort-circuit current

ITLF in % of rated short-circuit current Isc

Voltagedrop in %

TLF / Voltage Drop Ratio

Page 59: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 59/75

Tutorial CIGRE WG A3-28_TLF - P 59

TLF / Voltage Drop Ratio

• CIGRE WG A3.28 has started a survey of voltage drop values forEHV and UHV. Preliminary results for 550kV in Japan (TEPCO) aregiven below. The maximum value is 72%.

• First results for EHV show that for TLF currents in the range 25-30%Isc the voltage drop is close to 70% (or voltage factor = 0.7).

Voltagedrop in %

Page 60: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 60/75

77 – – Standardization of TLFStandardization of TLFfor UHV in IEC 62271for UHV in IEC 62271--100100

Standardization of TLF for UHVi IEC 62271 100

Page 61: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 61/75

Tutorial CIGRE WG A3-28_TLF - P 61

• Transformer limited fault (TLF) is covered in Annex M.

• M.4 is for rated voltages higher than 800kV

− The system TRV can be modified by a capacitance and then bewithin the standard TRV capability envelope. As an alternative, theuser can choose to specify a rated transformer limited fault (TLF)current breaking capability.

− The rated TLF breaking current is selected from the R10 series in

order to limit the number of testing values possible. Preferredvalues are 10 kA and 12,5 kA.

− TRV parameters are calculated from the TLF current, the ratedvoltage and a capacitance of the transformer and liaison of 9 nF.

− The first-pole-to clear- factor corresponding to this type of fault is1,2. Pending further studies, conservative values are taken for theamplitude factor and the voltage drop across the transformer. Theyare respectively equal to 1,7 and 0,9.

in IEC 62271-100

Standardization of TLF for UHVin IEC 62271 100

Page 62: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 62/75

Tutorial CIGRE WG A3-28_TLF - P 62

in IEC 62271-100

Calculation of TLF TRV by IEC MT36 TF UHV (Pierre Riffon)

• Calculation assumptions

− First-pole-to-clear factor: 1,2− Fault currents: 10 and 12,5 kA (50Hz and 60Hz)− Amplitude factor: 1,7 x 0,9 (90% voltage drop in the transformer)

• Basic circuit

Back 

 fault 

 I 

U  X 

×=

31

1330 X  , X n ×=

1

1

3

9

C C 

nF C 

n =

=

Standardization of TLF for UHVin IEC 62271 100

Page 63: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 63/75

Tutorial CIGRE WG A3-28_TLF - P 63

in IEC 62271-100

• Equivalent circuit for first-pole-to-clear

• The worst case regarding RRRV is for 60 Hz, values in IEC are basedon 60Hz and cover the need for 50 Hz.

• Equation for TRV peak value

• Time delay

• Reference voltage coordinate

Back 

3

9071212 , , ,U U  r 

c

××××=

3150 t  ,t d  ×=

3cU 

' u =

Standardization of TLF for UHVin IEC 62271 100

Page 64: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 64/75

Tutorial CIGRE WG A3-28_TLF - P 64

in IEC 62271-100

• Reference time coordinate

• TRV Table

d t  RRRV 

' u' t  +=

Page 65: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 65/75

88 -- ConclusionConclusion

Conclusion

Page 66: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 66/75

Tutorial CIGRE WG A3-28_TLF - P 66

• Transformer-limited-faults produce fast TRVs with a high RRRV ifthere is a low capacitance between the transformer and thecircuit-breaker.

• For this duty, it is important to properly evaluate the capacitance(frequency) of the transformer and the capacitance of the liaisonbetween the circuit breaker and the transformer.

• Several methods were presented for the evaluation of a

transformer surge capacitance/ TRV frequency: by currentinjection or from FRA measurements.

• RRRV is also function of the TRV peak, as it is the ratio of theTRV peak by the time to peak (related to the TRV frequency).

• TRV peak is function of several factors (pole-to-clear, amplitudefactor, voltage drop across transformer) that must be properlychosen in standards.

Page 67: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 67/75

99 -- Annexes Annexes

 Annex A - Calculation of k  pp for TLF

 Annex B - Calculation C  , R and L by Daini-kyodai method

Annex A / Calculation of k pp for TLF

Page 68: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 68/75

Tutorial CIGRE WG A3-28_TLF - P 68

pp

Case: Three-phase to ground fault

Annex A / Calculation of k pp for TLF

Page 69: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 69/75

Tutorial CIGRE WG A3-28_TLF - P 69

• First-pole-to-clear factor for 3-phase to ground faults

− First-pole-to-clear factor for TLF was evaluated in case of a power

transformer with delta connection for tertiary winding providinglower voltage networks with short-circuit power of 50kA (systemwith effectively-grounded neutral).

− The study shows that

• k pp for a primary fault is lower than 1.15

• k pp for a secondary fault is lower than 0.95.

Annex B / Calculation C ,R and L byDaini-kyodai method

Page 70: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 70/75

Tutorial CIGRE WG A3-28_TLF - P 70

Daini kyodai method

Annex B / Calculation C ,R and L byDaini-kyodai method

Page 71: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 71/75

Tutorial CIGRE WG A3-28_TLF - P 71

a yoda et od

(see Figure 4)

Annex B / Calculation C ,R and L byDaini-kyodai method

Page 72: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 72/75

Tutorial CIGRE WG A3-28_TLF - P 72

y

Page 73: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 73/75

1010 -- BibliographyBibliography

Bibliography

Page 74: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 74/75

Tutorial CIGRE WG A3-28_TLF - P 74

1. R.H. Harner, J. Rodriguez, “Transient Recovery Voltages Associated withPower-System, Three-Phase Transformer Secondary Faults”, IEEETransactions, vol. PAS-91, pp. 1887–1896 (1972-09/10).

2. A. Morched, L. Marti, J. Oevangera, “A High Frequency Transformer Model

for the EMTP”, IEEE Transactions on Power Delivery, Vol. 8, N°3 (1993-07)3. M. Steurer, W. Hribernik, J. Brunke. “Calculating the TRV Associated with

Clearing Transformer Determined Faults by Means of Frequency ResponseAnalysis ”, IEEE Transactions on Power Delivery, vol. 19, N°1 (2004-01).

4. A.C.O. Rocha, G.H.C. Oliveira, R.M. Azevedo, A.C.S. Lima, “ Assessment of

Transformer Modeling Impact on Transient Recovery Voltage in TransformerLimited Faults ”, Paper A3-107, CIGRE Session 2012

5. Y. Yamagata, M. Kosakada, H. Ito et al., “Considerations on TransformerLimited Fault duty for GCB in UHV and EHV networks with large capacitypower transformers ”, Paper A3-108, CIGRE Session 2012.

6. R. Horton, R. Dugan, K. Wallace, D. Hallmark, “Improved Autotransformer

Model for Transient Recovery Voltage (TRV Studies) ”, IEEE Transactions onPower Delivery, Vol. 27, N°2 (2012-04)

Page 75: CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

7/14/2019 CIGRE+IEEE+Tutorial+2012+Part+3+TLF Dufournet+&+Janssen

http://slidepdf.com/reader/full/cigreieeetutorial2012part3tlf-dufournetjanssen 75/75

Thank you for your attentionThank you for your attention

Questions ?Questions ?

Thanks to Members of CIGRE WG A3-28 for their input and toDr Hiroki Ito (Chairman of CIGRE SC A3).

Skyline of Downtown San Diego by Wikipedia / J.Dewes