chm315109 - chemistry - assessment report · pdf file•...

15
Chemistry Course Code: CHM315109 2013 Assessment Report Page 1 of 10 EXAMINERS’ COMMENTS PART 1 CRITERION 5 GENERAL: When answering questions, students should consider the number of marks allocated to each; e.g. a 3 mark question usually requires 3 good points to be made in the answer. Reactions involving nitrate ions were frequently used incorrectly throughout this booklet. In redox questions students should provide halfequations in their answers more frequently, even if the question does not ask for them explicitly. Question 1 a) Generally well done Some students: o Were not explicit in showing which oxidation number belonged to which vanadium species. o Incorrectly assigned a negative oxidation state to V 3+ and V 2+ . o Did not include + or – sign with their answer. This did not get full marks. o Incorrectly reported the oxidation state in the form of ions. b) Most students picked the correct VO 4 3 species but many students neglected to explain why this was the most powerful oxidiser. Commenting on “highest oxidation state” was not enough in the explanation. Students needed to relate to ability to gain electrons or potential to be reduced. c) This question was marked as “all or nothing”. The biggest mistake was assigning 4H 2 O rather than 3H 2 O. Queston 2 Many students missed the second part of the question “Identify the reducer and the oxidiser, if relevant”. a) A number of students incorrectly found changes of oxidation state in this question.

Upload: buinga

Post on 22-Mar-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

Chemistry Course Code: CHM315109

2013 Assessment Report

Page  1  of  10  

EXAMINERS’  COMMENTS    PART  1  -­‐  CRITERION  5    GENERAL:    • When  answering  questions,  students  should  consider  the  number  of  marks  allocated  to  each;    

e.g.  a  3  mark  question  usually  requires  3  good  points  to  be  made  in  the  answer.  • Reactions  involving  nitrate  ions  were  frequently  used  incorrectly  throughout  this  booklet.  • In  redox  questions  students  should  provide  half-­‐equations  in  their  answers  more  frequently,  even  

if  the  question  does  not  ask  for  them  explicitly.    Question  1    a)  

• Generally  well  done  • Some  students:  

o Were  not  explicit  in  showing  which  oxidation  number  belonged  to  which  vanadium  species.  

o Incorrectly  assigned  a  negative  oxidation  state  to  V3+  and  V2+.  o Did  not  include  +  or  –  sign  with  their  answer.  This  did  not  get  full  marks.  o Incorrectly  reported  the  oxidation  state  in  the  form  of  ions.    

b)  • Most  students  picked  the  correct  VO4

3-­‐  species  but  many  students  neglected  to  explain  why  this  was  the  most  powerful  oxidiser.  

• Commenting  on  “highest  oxidation  state”  was  not  enough  in  the  explanation.  Students  needed  to  relate  to  ability  to  gain  electrons  or  potential  to  be  reduced.    

c)  • This  question  was  marked  as  “all  or  nothing”.  • The  biggest  mistake  was  assigning  4H2O  rather  than  3H2O.  

   Queston  2    • Many  students  missed  the  second  part  of  the  question  “Identify  the  reducer  and  the  oxidiser,  if  

relevant”.    

a)  • A  number  of  students  incorrectly  found  changes  of  oxidation  state  in  this  question.  

   

2013  Assessment  Report  

Page  2  of  10  

b)  • Some  students  didn’t  say  it  was  a  redox  reaction.  • Frequently  Ca2+  or  Ca  were  incorrectly  identified  as  the  oxidiser  or  reducer.  

 Question  3    • Some  students  had  their  oxidation  and  reduction  ½  equations  the  wrong  way  around.    Oxidation  ½  equation    • Students  could  present  either  the  H2C2O4  or  C2O4

2-­‐  half  equation  • Some  students  neglected  2CO2  in  the  products  which  made  the  balancing  incorrect.    Reduction  ½  equation    • Many  students  incorrectly  gave  the  Br2/Br-­‐  half  equation  • Often  the  charge  was  left  off    BrO3

-­‐  which  made  the  balancing  of  electrons  incorrect.  • Some  students  included  Na  with  NaBrO3  but  did  not  have  Na+  on  the  product  side.    Net  Redox  equation    • Errors  were  carried  forward  into  this  part  of  the  question  and  full  marks  given  if  the  right  

technique  was  used.      Question  4    • Many  students  were  incorrectly  using  nitrate  ions  throughout  this  question.  • Some  students  incorrectly  thought  Sn(s)  was  present  in  the  Sn(NO)3  ½  cell.  

 a)  

• Often  students  labelled  the  anode/cathode  and  their  polarity,  however,  did  not  label  which  electrode  was  Pt(s)  or  Cu(s).  

• The  anode  and  cathode  was  frequently  identified  the  wrong  way  around.    

b)  –  d)  • Errors  were  carried  forward  in  these  questions  from  how  the  cell  was  labelled  in  (a).  • Students  often  assigned  Sn  →  Sn2+  +  2e-­‐  rather  than  Sn2+  →  Sn4+  +  2e-­‐  

 d)  

• The  position  of  the  Pt(s)  in  the  shorthand  representation  was  often  incorrect.      e)  

• Students  need  to  be  careful  when  discussing  oxidisers.  They  need  to  refer  to  the  metal  ion  e.g.  Ag+  as  the  oxidiser,  not  just  Ag,  as  this  is  a  reducer.  

• Students  should  be  referring  to  the  ‘half-­‐cell’  rather  than  the  ‘cell’  when  talking  about  what’s  happening  at  the  anode  and  cathode;  e.g.  “silver  half-­‐cell”  or  “copper  half-­‐cell”,  not  “silver  cell”.  

2013  Assessment  Report  

Page  3  of  10  

• Despite  the  tin  half-­‐cell  being  removed  from  the  system,  a  number  of  students  were  still  including  it  in  their  answer.  

• For  full  marks,  students  needed  to  discuss  what  happened  at  both  the  anode  and  cathode.  • Often  Ag2+  was  reported  rather  than  Ag+.  

 Question  5      a)  

• Many  students  only  gave  generic  corrosion  answers  here  rather  than  relating  it  to  differential  aeration.  

• Some  students  talked  about  stress  points  which  also  gained  some  marks  • Generally,  there  was  a  lack  of  half-­‐equations  in  these  answers.  

 b)  

• The  diagram  needed  to  be  completed  and  labelled  to  gain  full  marks  on  this  question.    It  was  often  left  blank.  

• The  direction  of  the  battery  was  frequently  the  wrong  way  around.  • There  were  a  number  of  students  who  incorrectly  connected  the  impressed  current  to  both  

ends  of  the  pipe  rather  than  to  the  pipe  cathode  and  another  piece  of  metal  as  the  anode.  • It  was  common  for  students  to  start  talking  about  sacrificial  anodes  as  part  of  this  question  

too.  The  anode  can  be  inert  or  any  reactive  metal,  not  necessarily  stronger  reducers.      Question  6    • Many  students  were  incorrectly  using  nitrate  ions  throughout  this  question.  

 a)  

• Again,  students  are  confusing  Mg/Mg2+  when  discussing  oxidisers.    Mg2+  is  an  oxidiser,  Mg  is  a  reducer,  these  must  not  be  used  interchangeably.  

• Some  students  incorrectly  said  there  was  no  reaction  as  there  was  no  oxidising  agent  present  as  the  electrodes  were  inert.  

• Half-­‐equations  were  lacking  in  this  question.    

b)  • Most  students  accurately  said  to  use  molten  Mg2+compounds.  • Some  people  followed  this  with  the  inaccurate  ½  equation  using  Mg2+(aq)  rather  than  Mg2+(l).  • Some  students  incorrectly  talked  about:  

o Using  more  reactive  electrodes  o Using  molten  Mg  rather  than  a  molten  Mg2+  compound.  o Increasing  the  concentration  of  the  magnesium  nitrate  solution.  o Although  molten  magnesium  nitrate  would  decompose,  no  marks  were  deducted  for  

using  this  electrolyte.          

2013  Assessment  Report  

Page  4  of  10  

Question  7    • Many  students  were  incorrectly  using  nitrate  ions  throughout  this  question.      a)  

• Students  needed  to  state  what  was  happening  at  both  the  anode  and  cathode.  • Half-­‐equations  need  to  be  labelled  to  show  which  is  the  anode  and  cathode.  

 b)  

• Students  needed  to  indicate  the  sequence  of  products  that  would  form  over  time  at  the  cathode.    

• Frequently  students  didn’t  write  about  the  reduction  of  water  (after  Cu2+  and  Pb2+).  • Many  students  incorrectly  said  Na(s)  would  form!  • There  was  a  group  of  students  also  talking  about  the  copper  then  oxidising  again  back  to  

Cu2+  rather  than  moving  to  the  next  strongest  oxidiser.  • Some  discussed  the  formation  of  anode  ‘mud’  which  had  no  relevance  to  this  question.  

   Question  8    a)  

• The  reasoning  to  go  with  the  order  of  reducers  was  often  unclear.  • Students  should  be  referring  to  weaker/stronger  oxidisers/reducers  rather  than  “above”  or  

“below”  on  the  ECS  or  SRP  • There  was  confusion  in  explanations  regarding  reducers.    It  is  important  students  refer  to  

the  metal  rather  than  the  metal  ion  when  talking  about  reducers.  • Many  students  has  the  sequence  correct,  but  reported  it  backwards  or  in  the  form  of  metal  

ions.    

b)  • This  needed  to  be  a  metal  not  a  metal  ion.  • Many  students  did  not  pick  up  on  the  ‘colourless’  product  with  the  reaction  of  A  with  acid,  

which  discounts  many  metal  ions  (such  as  copper)  from  this  answer.  • Many  students  inaccurately  picked  Ag  or  Cu.  • This  question  was  often  left  unattempted.  • Some  students  even  had  non-­‐metals  as  their  answer.  

   

PART  2  -­‐  CRITERION  6    In  general,  this  section  of  the  exam  was  handled  competently  by  students.    Question  9    a)   Almost  all  students  got  this  correct.  b)     Most  performed  very  well  in  this  question,  with  some  getting  the  process  involved  confused  and  

occasionally  ‘inverted’.  

2013  Assessment  Report  

Page  5  of  10  

c)       Whilst  the  general  shape  of  the  endothermic  reaction  potential  diagram  was  competently  done  with  ΔH  correctly  identified,  many  students  incorrectly  labelled  the  activation  energy.  

d)     Students  provided  a  variety  of  valid  answers  to  this  question,  with  many  receiving  full  marks.      Question  10    a) Students  performed  well  on  this  question.    Some  incorrect  answers  confused  ‘matches’  with  

catalysts.  b) The  key  to  success  to  this  question  was  identifying  that  the  catalytic  convertor  was  acting  as  a  

catalyst!    When  this  was  identified,  the  rest  of  the  question  proceeded  well.  c) Almost  all  students  got  this  correct,  identifying  the  large  surface  area  provided  by  the  catalyst  

within  the  catalytic  convertor.      Question  11    This  was  a  challenging  question  with  many  students  getting  some  way  towards  a  solution.    The  exam  markers  would  advise  that  students  give  clear  processing  instructions  for  each  step  in  future  Hess’  Law  questions,  as  many  ‘part  marks’  can  be  awarded  in  such  questions.      Question  12    a) Many  students  performed  well  on  this  question.    Care  needs  to  be  taken  when  calculating  the  

activation  energy  of  an  exothermic  reaction  given  the  ‘reverse’  exothermic  data.  b) Almost  all  students  were  able  to  indicate  a  decreased  Ea*  pathway  for  the  catalysed  reaction.  

   Question  13    a)   A  number  of  students  were  unable  to  write  the  formula  for  ammonia,  NH3.    (The  formula  was  

given  in  question  14).    A  number  of  unfortunately  incorrect  formulae  for  ammonia  were  given,  which  created  subsequent  calculation  issues.  

b)   In  general,  this  question  was  carried  out  very  competently,  albeit  with  many  ‘errors  carried  forward’.  

   Question  14    Many  students  were  able  to  correctly  apply  LCP  to  this  question.  There  was  some  confusion  about  the  role  that  the  high  temperature  (900oC)  played  here,  where  a  reaction  kinetics  solution  was  required  for  full  marks.  As  there  was  an  element  of  ‘real  world  extension’  in  this  question  marks  were  given  for  answers  that  included  ‘removal  of  product  (NO)’  and  ‘economic  considerations’,  etc.  Exam  markers  would  recommend  that  a  separate  treatment  of  each  dot  point  would  assist  in  similar  questions.      

2013  Assessment  Report  

Page  6  of  10  

Question  15    

a) Most  students  correctly  identified  the  ICl3(g)  partial  pressure  increase  at  t  =  7  minutes  and  applied  LCP  to  it  gaining  2  marks.  The  more  subtle,  more  ‘gradual’,  temperature  change  where  the  reverse  exothermic  reaction  was  favoured  was  not  handled  as  well.  

b) Many  students  correctly  identified  the  pressure  increase  at  t  =  10  minutes  and  applied  LCP  to  it.    The  graphical  representations  were  variable  in  quality.    Full  marks  were  awarded  for  recognition  of  a  pressure/concentration  increase,  the  correct  analysis  of  this,  including  the  changed  ratios  of  reactants  and  products  as  a  new  (fourth)  equilibrium  was  established.  

   PART  3  -­‐  CRITERION  7     Question  16      a)     This  was  either  answered  poorly  or  not  at  all  by  a  significant  number  of  candidates  who  were  not  

able  to  apply  their  knowledge  of  the  kinetic  theory.        b)     Knowledge  of  ideal  and  real  gases  and  intermolecular  attraction  between  different  molecules  was  

not  clearly  understood  by  many  candidates.      Question  17    Most  candidates  demonstrated  an  understanding  of  ionisation  energies,  but  not  all  explained  that  the  first  ionisation  energy  for  Al  with  removal  of  a  3p  electron  required  less  energy  than  removal  of  a  3s  electron  from  Mg,  as  the  3p  electron  was  at  a  higher  energy  level.      Question  18  This  question  was  only  answered  well  by  a  small  number  of  candidates.    The  formation  of  sulfurous  acid,  H2SO3,  by  dissolving  of  SO2  in  water  was  generally  not  identified  and  sulfuric  acid  was  frequently  being  shown  as  the  acid  instead.  The  dissociation  of  the  acid  to  provide  H+

(aq)  ions  was  often  not  provided.      Question  19    a) This  part  was  answered  correctly  by  the  majority  of  candidates.      

 b) In  this  part  there  was  significant  confusion  between  atomic  and  ionic  radii  demonstrated.      Question  20    This  was  generally  quite  well  done.    Some  common  errors  however,  included  not  naming  with  alkyl  side  groups  in  alphabetical  order  e.g.  3-­‐methyl-­‐3-­‐ethylpentanal,  instead  of  3-­‐ethyl-­‐3-­‐methylpentanal.    The  writing  of  the  empirical  formula  for  the  final  structure  demonstrated  that  the  formula  for  benzene  is  generally  not  well  understood.    

2013  Assessment  Report  

Page  7  of  10  

 Question  21    This  question  was  either  well  answered  or  poorly  answered  by  candidates.    Question  22    Most  candidates  answered  this  question  well.  A  number  of  possible  isomers  were  acceptable.      Question  23    Some  errors  for  this  question  included  the  naming  of  the  organic  product  in  (a)  and  (b).  The  product  in  (b)  is  butanone.  Butan-­‐2-­‐one  was  provided  by  many  students,  which  is  not  correct  but  was  accepted  in  this  exam.    There  was  confusion  about  what  is  an  observation.    In  part  (a)  hydrogen  gas  is  produced,  but  this  can  only  be  confirmed  after  testing.    The  observation  would  be  that  a  gas  was  produced.      Question  24      This  was  the  most  challenging  question  for  candidates  with  very  few  students  gaining  full  marks.    The  majority  of  students  did  not  recognise  that  compound  A  was  an  unsaturated  primary  alcohol.    Another  difficulty  was  that  it  was  generally  not  identified  that  the  unsaturated  part  of  compound  A  became  saturated  with  the  addition  of  steam,  the  H2O  adding  on  across  the  double  bond  with  another  –OH  group  resulting  on  the  chain.  This  reaction  is  included  on  the  information  sheet.    In  part  (b)  the  catalyst  (concentrated  sulfuric  acid)  needed  to  be  included  for  full  marks.    A  significant  number  of  candidates  were  not  able  to  correctly  write  the  formula  for  the  pentanoate  ester,  frequently  providing  an  ester  with  5  carbons  in  total.      PART  4  -­‐  CRITERION  8    This  section  was  long  as  indicated  by  several  scripts  which  were  left  blank  towards  the  end,  despite  the  ‘harder’  earlier  questions  being  dealt  with  correctly.    Students  should  note  that  illegible  information  does  not  earn  marks.    The  examiners  try  very  hard  but  some  words  and  numbers  were  indecipherable!    Students  should  be  proficient  with  the  calculator  they  bring  to  the  examination.    There  were  many  instances  of  everything  being  correct,  all  working  was  shown  but  the  final  calculated  answer  was  incorrect.    It’s  sad  to  note  that  bad  algebra  is  still  present.    Several  students  had  trouble  rearranging  equations,  e.g.  c  =  nV  !!      

2013  Assessment  Report  

Page  8  of  10  

Question  25    No  problems,  mostly  done  correctly.    Almost  all  students  recognized  the  molar  relationship  that    n(HCl)  =  2  x  n(Pb(NO3)2).    Question  26    a) Mostly  done  well.    

 A  few  students  divided  the  masses  by  atomic  numbers  instead  of  the  relative  atomic  mass  of  the  element.    A  common  mistake  was  reading  Fe  as  F  and  using  atomic  mass  of  19.00  instead  of  55.85.    Another  error  was  not  rounding  off  13.9  to  14.  Several  students  appeared  to  not  know  what  ‘empirical  formula’  meant.    

b) This  question  was  generally  found  to  be  difficult  by  many  students.    Many  who  figured  that  one  formula  unit  has  126  g  mol-­‐1  of  water  and  hence  7  H2O,  incorrectly  wrote  the  formula  as  FeSO11H14.7H2O    or    FeS.7H2O.    Comparatively  few  students  saw  that  7H2O  still  leaves  4O,  hence  it  must  have  been  FeSO4.7H2O.  

   Question  27    This  question  was  badly  done  with  very  few  getting  this  totally  correct.    Even  fewer  remembered  that  ∆H  is  (–)ve,  which  cost  them  ½  mark.    The  most  common  mistake  was  to  us  E  =  mc∆T,  where  m  was  5.00  g  and  c  was  the  calibration  factor.    Another  mistake  was  the  addition  of  273  to  the  value  of  ∆T,  and  hence  an  incorrect  value  for  the  calibration  factor.        This  is  disappointing  considering  both  ∆T  and  the  calibration  factor  (cf)  are  defined  on  the  information  sheet!    For  the  work  and  emotion  involved,  this  question  probably  should  have  been  worth  4  marks.        Question  28    This  question  was  answered  well.    Most  remembered  to  halve  n(e-­‐)  to  get  n(Cl2).    Common  mistake  was  to  use  Cl  instead  of  Cl2.    Calculation  of  volume  of  Cl2  using  the  gereral  gas  equation  was  answered  correctly  by  nearly  everyone.      Question  29    

2013  Assessment  Report  

Page  9  of  10  

a) Most,  but  not  all  recognized  that  one  of  the  reactants  was  limited.    One  mark  was  lost  for  not  acknowledging  that.    Once  that  was  figured,  there  was  no  problem.  

  A  surprising  number  calculated  the  mass  of  CO2  rather  than  its  volume.  A  few  forgot  that  CO2  is  a  gas  and  used  n  =  cV  to  calculate  volume  (of  a  solution  of  CO2?)    

b) This  part  was  not  answered  well.    Mostly  students  calculated  pH  based  on  the  concentration  of  HCl(aq),  forgetting  that  some  of  it  had  reacted.    

 Question  30    This  was  an  ‘all  or  nothing’  question.    Those  who  attempted  it  did  it  correctly.    Many  seemed  to  put  it  in  the  ‘too  hard’  category  and  did  not  even  try.    A  common  mistake  was  to  calculate  the  moles  of  silver  chloride  instead  of  moles  of  silver,  and  then  get  stuck  because  that  was  greater  than  the  mass  of  the  original  sample!      Question  31    a) This  was  well  done  although  a  few  did  not  put  in  a  two  way  arrow,  which  cost  half  a  mark.  b) This  was  not  done  well.    The  equilibrium  concentrations  of  CF4  and  CO2  were  generally  used  as  

(0.308/20)  rather  than  the  correct  (0.154/20).  c) Similarly,  this  was  not  done  well.    Many  went  down  the  path  of  (x  –  0.3)  and  got  into  unnecessary  

strife  with  the  quadratic  formula.    Recognizing  that  Kc  remained  unchanged,  earned  1  mark.  Common  mistakes  with  students  who  used  the  correct  equilibrium  ratio  formula,  was  to  forget  to  calculate  the  square  root.      

Question  32      a) This  question  was  confusing  and  difficult  to  mark  too,  since  errors  carried  forward  still  earned  

some  marks.    The  most  common  mistake  was  to  miss  the  fact  that  n(H2O2)  =  5/2  x  n(MnO4

-­‐).    The  other  common  mistake  was  to  calculate  the  mass  of  H2O2  in  20.00  mL  instead  of    25.00  mL  as  asked.    

b) Very  few  students  managed  to  get  this  part  correct.    Two  different  but  correct  calculation  methods  were  used.  Some  calculated  the  mass  of  H2O2  in  one  mL  using  mass  =  34.02  x  cV;  and  then  since  1  mL  of  bleach  has  mass  of  1.12g,  the    %  by  mass  could  be  calculated.    An  alternative  method  was  to  calculate  the  mass  of  25.00  mL  of  bleach  as  (25.00  x  1.120)  g  =  28.00  g  and  hence  the  %  by  mass  could  be  calculated  as  this  25.00  mL  contains  the  mass  of  H2O2  found  in  part  (a).        

     

2013  Assessment  Report  

Page  10  of  10  

GENERAL  COMMENTS    As  in  previous  years,  there  are  a  number  of  key  points  that  need  to  be  re-­‐emphasised,  especially  for  this  'calculation'  section  where  many  students  lost  marks  due  to  poor  answering  technique  or  errors  in  expressing  their  answers.      - 'Significant  figure'  misuse  was  frequently  encountered  and  usually  penalised  by  a  ½  mark.  As  a  

general  rule,  expressing  final  answers  to  3  significant  figures  is  usually  sufficient.  Many  gave  answers  to  1  or  sometimes  9  sig  figs!    

- Students  must  take  more  care  with  setting  out  calculations.    All  calculations  should  be  labelled  (e.g.  n(HCl)  =  ...  rather  than  n  =  ...)  and  calculation  steps  should  follow  sequentially.    

 - Students  should  avoid  rounding  off  numerical  answers  prematurely;       e.g.  in  250.0  mL  of  0.400  mol  L-­‐1  X(aq)  the  n(X(aq))  =  0.100  mol  not  0.1  mol    - For  most  chemical  equations,  the  reactant  and  product  states  should  be  indicated  as  subscripts.    

 - Students  should  be  advised  to  write  in  pen  (not  pencil)  and  not  to  cross  out  any  answer  part  until  

they  are  sure  it  has  been  replaced  by  a  preferred  answer.  In  some  cases  we  saw  correct  answers  that  had  been  crossed  out  but  not  replaced  by  anything  else.  

 - Students  need  to  be  reminded  to  consider  whether  their  answer  is  within  the  limits  of  possibility;  

i.e.  “does  my  answer  sound  reasonable?”    

TASMANIAN QUALIFICATIONS AUTHORITY

ASSESSMENT PANEL REPORT

CHM315109 Chemistry

20% (105) 24% (124) 20% (101) 36% (186) 516

24% (137) 30% (169) 24% (135) 23% (131) 572

11 % 19 % 39 % 31 %

22 % 26 % 27 % 25 %

11 % 19 % 39 % 30 %

51% (265) 49% (251) 0% (1) 100% (515)

55% (312) 45% (260) 0% (2) 100% (569)

53% 47% 0% 100%

This year

Last year

Previous 5 years

EA HA CA SA Total

Previous 5 years (all examined subjects)

Last year (all examined subjects)

Award Distribution

Student Distribution (SA or better)

This year

Last year

Previous 5 years

Male Female Year 11 Year 12