chemistry 102(001) fall 2012

108
17-1 CHEM 102, Fall 2010, LA TECH CTH 328 10:00-11:15 am Instructor: Dr. Upali Siriwardane e-mail: [email protected] Office: CTH 311 Phone 257-4941 Office Hours: M,W 8:00-9:00 & 11:00-12:00 am; Tu, Th, F 8:00 - 10:00am.. Exams: 10:00-11:15 am, CTH 328. September 27, 2012 (Test 1): Chapter 13 October 18, 2012 (Test 2): Chapter 14 &15 November 13, 2012 (Test 3): Chapter 16 &18 Optional Comprehensive Final Exam : November 15, 2012 : Chapters 13, 14, 15, 16, 17, and 18 Chemistry 102(001) Fall 2012

Upload: jenny

Post on 24-Feb-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Chemistry 102(001) Fall 2012. CTH 328 10:00-11:15 am Instructor : Dr. Upali Siriwardane e-mail : [email protected] Office : CTH 311 Phone 257-4941 Office Hours : M,W 8:00-9:00 & 11:00-12:00 am; Tu , Th , F 8:00 - 10:00am.. Exams: 10 :00-11:15 am, CTH 328. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chemistry 102(001) Fall 2012

17-1CHEM 102, Fall 2010, LA TECH

CTH 328 10:00-11:15 am

Instructor: Dr. Upali Siriwardane

e-mail: [email protected]

Office: CTH 311 Phone 257-4941

Office Hours: M,W 8:00-9:00 & 11:00-12:00 am; Tu, Th, F 8:00 - 10:00am..

Exams: 10:00-11:15 am, CTH 328.

September 27,  2012 (Test 1): Chapter 13

October 18, 2012 (Test 2): Chapter 14 &15

November 13, 2012 (Test 3): Chapter 16 &18

Optional Comprehensive Final Exam: November 15, 2012 :

Chapters 13, 14, 15, 16, 17, and 18

Chemistry 102(001) Fall 2012

Page 2: Chemistry 102(001) Fall 2012

17-2CHEM 102, Fall 2010, LA TECH

Chapter 16.Aditional Aqueous Equilibria17.1 Buffer Solutions17.2 Acid-Base Titrations17.3 Acid Rain17.4 Solubility Equilibria and the Solubility Product Constant,

Ksp

17.5 Factors Affecting Solubility / Precipitation: Will It Occur?

Page 3: Chemistry 102(001) Fall 2012

17-3CHEM 102, Fall 2010, LA TECH

Reaction of a basic anion or acidic cation with water is an ordinary Brønsted-Lowry acid-

base reaction.

CH3COO-(aq) + H2O(l) CH3COOH(aq) + OH-(aq)

NH4+

(aq) + H2O(l) NH3 (aq) + H3O+

(aq)

This type of reaction is given a special name.

Hydrolysis

The reaction of an anion with water to produce the conjugate acid and OH-.

The reaction of a cation with water to produce the conjugate base and H3O+

.

Hydrolysis

Page 4: Chemistry 102(001) Fall 2012

17-4CHEM 102, Fall 2010, LA TECH

Acid-Base Properties of Typical Ions

Page 5: Chemistry 102(001) Fall 2012

17-5CHEM 102, Fall 2010, LA TECH

What salt solutions would be acidic, basic and neutral?1) strong acid + strong base =

neutral 2) weak acid + strong base =

basic 3) strong acid + weak base =

acidic 4) weak acid + weak base =

neutral, basic or an acidic solution

depending on the relative strengths of the acid and the base.

Page 6: Chemistry 102(001) Fall 2012

17-6CHEM 102, Fall 2010, LA TECH

What pH? Neutral, basic or acidic?

•a)NaCl • neutral•b) NaC2H3O2

• basic•c) NaHSO4 • acidic•d) NH4Cl• acidic

Page 7: Chemistry 102(001) Fall 2012

17-7CHEM 102, Fall 2010, LA TECH

1) If the following substance is dissolved in pure water, will the solution be acidic, neutral, or basic?

a) Solid sodium carbonate-(Na2CO3):

b) Sodium chloride- (NaCl):

c) Sodium acetate- (NaC2H3O2):

d) Ammonium sulfate-((NH4)2SO4):

Page 8: Chemistry 102(001) Fall 2012

17-8CHEM 102, Fall 2010, LA TECH

How do you calculate pH of a salt solution?Find out the pH, acidic or basic?If acidic it should be a salt of weak baseIf basic it should be a salt of weak acidif acidic calculate Ka from Ka= Kw/Kb

if basic calculate Kb from Kb= Kw/Ka

Do a calculation similar to pH of a weak acid or base

Page 9: Chemistry 102(001) Fall 2012

17-9CHEM 102, Fall 2010, LA TECH

What is the pH of 0.5 M NH4Cl salt solution? (NH 3; Kb = 1.8 x 10-5)Find out the pH, acidic

if acidic calculate Ka from Ka= Kw/Kb

Ka= Kw/Kb = 1 x 10-14 /1.8 x 10-5)

Ka= 5.56. X 10-10

Do a calculation similar to pH of a weak acid

Page 10: Chemistry 102(001) Fall 2012

17-10CHEM 102, Fall 2010, LA TECH

Continued NH4

+ + H2O H 3+O + NH3

[NH4+] [H3

+O ] [NH3 ]Ini. Con. 0.5 M 0.0 M 0.00 MChange -x x xEq. Con. 0.5 - x x x [H 3+O ] [NH3 ] Ka(NH4

+) = -------------------- = [NH 4+] x2

---------------- ; appro.:0.5 - x . 0.5 (0.5 - x)

Page 11: Chemistry 102(001) Fall 2012

17-11CHEM 102, Fall 2010, LA TECH

x2 Ka(NH4

+) = ----------- = 5.56 x 10 -10

0. 5 x2

= 5.56 x 10 -10 x 0.5 = 2.78 x 10 -10

x= 2.78 x 10 -10 = 1.66 x 10-5

[H+ ] = x = 1.66 x 10-5 MpH = -log [H+ ] = - log 1.66 x 10-5

pH = 4.77pH of 0.5 M NH4Cl solution is 4.77

(acidic)

Continued

Page 12: Chemistry 102(001) Fall 2012

17-12CHEM 102, Fall 2010, LA TECH

2) What is the pH of a 0.05 M aqueous NH4Cl solution? (Kb (NH3) = 1.8 x 10-5)

a) equilibrium reaction for the hydrolysis of salt:b) Ka for the conjugate acid NH4

+:c) ICE set-up:I:___________________________________________C:__________________________________________E___________________________________________d) Calculation of x, [H3O]+:e) pH of the solution:

Page 13: Chemistry 102(001) Fall 2012

17-13CHEM 102, Fall 2010, LA TECH

3) What is the pH of a 0.05 M aqueous NaC2H3O2 solution? (Ka (HC2H3O2) = 1.8 x 10-5)

a) equilibrium reaction for the hydrolysis of salt:b) Kb for the conjugate base C2H3O2

-:c) ICE set-up:I:___________________________________________C:__________________________________________E___________________________________________d) Calculation of x, [OH]-:e) pOH and pH of the solution:

Page 14: Chemistry 102(001) Fall 2012

17-14CHEM 102, Fall 2010, LA TECH

Acid-Base Chemistryof Some Antacids

Page 15: Chemistry 102(001) Fall 2012

17-15CHEM 102, Fall 2010, LA TECH

4) A 50.00-mL sample of 0.100 M KOH is being titrated with 0.100 M HNO3. Calculate the pH of the solution after 52.00 mL of HNO3 is added.

a) acid base reaction:

b) moles of KOH: c) moles of HNO3:

d) [H3O]+:

e) pH of the solution:

Page 16: Chemistry 102(001) Fall 2012

17-16CHEM 102, Fall 2010, LA TECH

Reaction of a basic anion with water is an ordinary Brønsted-Lowry acid-base reaction.

CH3COO-(aq) + H2O(l) CH3COOH(aq) + OH-(aq)

This type of reaction is given a special name.

Hydrolysis

The reaction of an anion with water to produce the conjugate acid and OH-.

The reaction of a cation with water to produce the conjugate base and H3O+.

Hydrolysis

Page 17: Chemistry 102(001) Fall 2012

17-17CHEM 102, Fall 2010, LA TECH

Common Ion Effect

Weak acid and salt solutionsE.g. HC2H3O2 and NaC2H3O2

Weak base and salt solutionsE.g. NH3 and NH4Cl. H2O + C2H3O2

- OH- + HC2H3O2 (common ion)

H2O + NH4 + H3+O + NH3

(common ion)

Page 18: Chemistry 102(001) Fall 2012

17-18CHEM 102, Fall 2010, LA TECH

Solutions that resist pH change when small amounts of acid or base are added.

Two types

Mixture of weak acid and its salt

Mixture of weak base and its salt

HA(aq) + H2O(l) H3O+(aq) + A-(aq)

Add OH- Add H3O+

shift to right shift to left

Based on the common ion effect.

Buffers

Page 19: Chemistry 102(001) Fall 2012

17-19CHEM 102, Fall 2010, LA TECH

The pH of a buffer does not depend on the absolute amount of the conjugate acid-base

pair. It is based on the ratio of the two.

Henderson-Hasselbalch equation.

Easily derived from the Ka or Kb expression.

Starting with an acid

pH = pKa + log

Starting with a base

pH = 14 - ( pKb + log )[HA]

[A-]

[A-]

[HA]

Buffers

Page 20: Chemistry 102(001) Fall 2012

17-20CHEM 102, Fall 2010, LA TECH

Henderson-Hasselbalch Equation

HA(aq) + H2O(l) H3O+(aq) + A-(aq)

[H3O+] [A-] Ka = ---------------- [HA]

[H3O+] = Ka ([HA]/[A-])

pH = pKa + log([A-]/[HA])

when the [A-] = [HA]pH = pKa

Page 21: Chemistry 102(001) Fall 2012

17-21CHEM 102, Fall 2010, LA TECH

Calcualtion of pH of BuffersHenderson Hesselbach Equation

[ACID]pH = pKa - log --------- [BASE] [BASE]pH = pKa + log --------- [ACID]

Page 22: Chemistry 102(001) Fall 2012

17-22CHEM 102, Fall 2010, LA TECH

Control of blood pH

Oxygen is transported primarily by hemoglobin in the red blood cells.

CO2 is transported both in plasma and the red blood cells.

CO2 (aq) + H2O H2CO3 (aq)

H+

(aq) + HCO3-(aq)

The bicarbonate

buffer is essential

for controlling

blood pH

Buffers and blood

Page 23: Chemistry 102(001) Fall 2012

17-23CHEM 102, Fall 2010, LA TECH

Buffer Capacity

Refers to the ability of the buffer to retard changes in pH when small amounts of acid or base are added

The ratio of [A-]/[HA] determines the pH of the buffer whereas the magnitude of [A-] and [HA] determine the buffer capacity

Page 24: Chemistry 102(001) Fall 2012

17-24CHEM 102, Fall 2010, LA TECH

Adding an Acid or Baseto a Buffer

Page 25: Chemistry 102(001) Fall 2012

17-25CHEM 102, Fall 2010, LA TECH

Buffer Systems

Page 26: Chemistry 102(001) Fall 2012

17-26CHEM 102, Fall 2010, LA TECH

5) For the (buffer effect) of HC2H3O2/NaC2H3O2

a) Acid dissociation reaction:

b) Salt hydrolysis reaction:

c) Common ions in both equilibria:

d) Which way salt hydrolysis equilibrium move adding

H3O+:

e) Which way salt hydrolysis equilibrium move adding

OH-:

Page 27: Chemistry 102(001) Fall 2012

17-27CHEM 102, Fall 2010, LA TECH

6) Describe the (buffer effect) of NH3/NH4Cl

a) Buffer type: (weak acid or base)/soluble salt):

b) Base dissociation reaction:

c) Salt hydrolysis reaction:

d) common ions in both equilibria:

e) Which way salt hydrolysis equilibrium move adding

H3O+:

f) Which way salt hydrolysis equilibrium move adding

OH-:

Page 28: Chemistry 102(001) Fall 2012

17-28CHEM 102, Fall 2010, LA TECH

7) What is the pH of a solution that is 0.2 M in acetic acid (Ka = 1.8 x 10-5) and 0.2 M in sodium acetate?

a) Is it a acid, base, salt or buffer solution?

b) Henderson-Hesselbalch equation:

c) pKa: d)

e) pH of the solution:

Page 29: Chemistry 102(001) Fall 2012

17-29CHEM 102, Fall 2010, LA TECH

Titrations ofAcids and Bases

TitrationAnalyteTitrant

analyte + titrant => products

Page 30: Chemistry 102(001) Fall 2012

17-30CHEM 102, Fall 2010, LA TECH

Acid-base indicators are highly colored weak acids or bases.

HIn In- + H+

color 1 color 2

They may have more than one color transition.

Example. Thymol blue

Red - Yellow - Blue

One of the forms may be colorless - phenolphthalein (colorless to pink)

Indicators

Page 31: Chemistry 102(001) Fall 2012

17-31CHEM 102, Fall 2010, LA TECH

Acid-Base Indicator

HIn + H2O H3O+ + In-

acid base color color

[H3O+][In-]Ka =

[HIn]They may have more than one color transition.

Example. Thymol blue Red - Yellow - Blue

Weak acid that changes color with changes in pH

Page 32: Chemistry 102(001) Fall 2012

17-32CHEM 102, Fall 2010, LA TECH

What is an Indicator?Indicator is an weak acid with different Ka, colors to

the acid and its conjugate base. E.g. phenolphthalein

Hin H+ + In-

colorless pinkAcidic colorlessBasic pink

Page 33: Chemistry 102(001) Fall 2012

17-33CHEM 102, Fall 2010, LA TECH

Selection of an indicator for a titration

a) strong acid/strong base b) weak acid/strong base c) strong acid/weak base d) weak acid/weak base

Calculate the pH of the solution at he equivalence point or end point

Page 34: Chemistry 102(001) Fall 2012

17-34CHEM 102, Fall 2010, LA TECH

pH and Color of Indicators

Page 35: Chemistry 102(001) Fall 2012

17-35CHEM 102, Fall 2010, LA TECH

Red Cabbage as IndicatorC O H

O

N N N

CH3

CH3

(aq)

C O-

O

N N N

CH3

CH3

(aq) + H3O+ (aq)

yellow

red

+ H2O (l)

Page 36: Chemistry 102(001) Fall 2012

17-36CHEM 102, Fall 2010, LA TECH

Acid-base indicators are weak acids that undergo a color change at a

known pH.

phenolphthalein

pH

Indicator examples

Page 37: Chemistry 102(001) Fall 2012

17-37CHEM 102, Fall 2010, LA TECH

8) If 50 ml of a 0.01 M HCl solution is titrated with a 0.01 M NaOH solution, what will be the concentration of salt (NaCl) the pH at the endpoint?

a) NaCl solution acidic, basic or neutral?

b) Concentration of [NaCl]:

c) pH of the solution?

d) Suitable indicator for the titration:

Page 38: Chemistry 102(001) Fall 2012

17-38CHEM 102, Fall 2010, LA TECH

Titration Apparatus

Burette delivering base to a flask containing an acid.

The pink color in the flask is due to the

phenolphthalein indicator.

Page 39: Chemistry 102(001) Fall 2012

17-39CHEM 102, Fall 2010, LA TECH

Endpoint vs. Equivalence Point

Endpointpoint where there is a physical change, such

as color change, with the indicator

Equivalence Point# moles titrant = # moles analyte

#molestitrant=(V M)titrant

#molesanalyte=(V M)analyte

Page 40: Chemistry 102(001) Fall 2012

17-40CHEM 102, Fall 2010, LA TECH

9) If 50 mL of a 0.01 M HCl solution is titrated with a 0.01 M NH3 (Kb = 1.8 x 10-5) solution, what will be

a) The initial pH (0.01 M NH3):

b) Concentration of NH4Cl at the endpoint:

c) pH at the endpoint:

d) Suitable indicator for the titration:

Page 41: Chemistry 102(001) Fall 2012

17-41CHEM 102, Fall 2010, LA TECH

10) If 50 ml of a 0.01 M HC2H3O2 solution is titrated with a 0.01 M NaOH solution, what will be the

a) Molarity of NaC2H3O2 at the endpoint:

b) The pH at the endpoint:

c) What indicator would be most suitable for this titration:

Page 42: Chemistry 102(001) Fall 2012

17-42CHEM 102, Fall 2010, LA TECH

Polyprotic Acids

Page 43: Chemistry 102(001) Fall 2012

17-43CHEM 102, Fall 2010, LA TECH

Organic or Carboxylic Acids

H C

H

H

C

H

H

C

H

H

C

O

O H

nonacidic hydrogens

butanoic acid

acidic hydrogen

CH 3 C

O

acetic acid

OH

electron-attractingoxygen atom

acidic hydrogenCH 3 C

O

OH

-

CH 3 C

O

O-

acetate ion

Page 44: Chemistry 102(001) Fall 2012

17-44CHEM 102, Fall 2010, LA TECH

FCH2CO2H (strongest acid) > ClCH2CO2H > BrCH2CO2H (weakest acid).

Acid Ka pKa

HCOOH (formic acid) 1.78 X 10-43 0.75CH3COOH (acetic acid) 1.74 X 10-54 0.76CH3CH2COOH (propanoic acid)1.38 x 10-5 4.86

Organic or Carboxylic Acids

Page 45: Chemistry 102(001) Fall 2012

17-45CHEM 102, Fall 2010, LA TECH

Acid-Base in the Kitchenvinegar - acetic acidlemon juice (citrus juice) - citric acidbaking soda - NaHCO3

milk - lactic acidbaking powder - H2PO4

- & HCO3-

Page 46: Chemistry 102(001) Fall 2012

17-46CHEM 102, Fall 2010, LA TECH

Household Cleaners

CH 3CH2CH 2CH2CH 2CH2CH 2CH 2CH 2CH 2CH2CH 2CH2CH 2 SO3-Na+

Oil-soluble part(hydrophobic)

Water-soluble part(hydrophilic)

A Typical Synthetic Detergent Molecule

CH 3(CH 2)4COO(CH 2)2O( CH2CH 2O) 2CH 2CH 2OH

esterlink

(hydro-philic)

etherlink

etherlink

(hydrophilic)

hydrocarbonchain

(hydro-phobic)

alcohol group(hydrophilic)

A nonionic detergent

Page 47: Chemistry 102(001) Fall 2012

17-47CHEM 102, Fall 2010, LA TECH

Dishwashing Detergent

Page 48: Chemistry 102(001) Fall 2012

17-48CHEM 102, Fall 2010, LA TECH

Acid-Base Indicator Behavioracid color shows when

[In-] 1

£ [HIn] 10

[H3O+

][In-] 1

= [H3O+

] = Ka [HIn] 10

base color shows when

[In-] 1 ³ [HIn] 10

[H3O+][In-] = 10 [H3O+] = Ka [HIn]

Page 49: Chemistry 102(001) Fall 2012

17-49CHEM 102, Fall 2010, LA TECH

Indicator pH Range

acid color shows when

pH + 1 = pKa

and base color shows when

pH - 1 = pKa

Color change range is

pKa = pH 1 or pH = pKa 1

Page 50: Chemistry 102(001) Fall 2012

17-50CHEM 102, Fall 2010, LA TECH

Titration curves

Acid-base titration curveA plot of the pH against the amount of acid or base

added during a titration.Plots of this type are useful for visualizing a titration.

It also can be used to show where an indicator undergoes its color change.

Page 51: Chemistry 102(001) Fall 2012

17-51CHEM 102, Fall 2010, LA TECH

Indicator and Titration Curve 0.1000 M HCl vs 0.1000 M NaOH

Page 52: Chemistry 102(001) Fall 2012

17-52CHEM 102, Fall 2010, LA TECH

EXAMPLE: Derive the titration curve for the titration of 35.00 mL of 0.1000 M HCl with 0.00, 15.00, 35.00, and 50.00 mL of 0.1000 M NaOH.at 0.00 mL of NaOH added, initial point

[H3O+

] = [HCl] = 0.1000 M

pH = 1.0000

Page 53: Chemistry 102(001) Fall 2012

17-53CHEM 102, Fall 2010, LA TECH

EXAMPLE: Derive the titration curve for the titration of 35.00 mL of 0.1000 M HCl with 0.00, 15.00, 35.00, and 50.00 mL of 0.1000 M NaOH.

at 15.00 mL of NaOH added

Va Ma > Vb Mb thus

(Va Ma) - (Vb Mb)

[H3O+] = (Va + Vb)

((35.00mL) (0.1000M)) - ((15.00mL) (0.1000M))

= (35.00 + 15.00)mL

= 4.000 10-2

M pH = 1.3979

Page 54: Chemistry 102(001) Fall 2012

17-54CHEM 102, Fall 2010, LA TECH

EXAMPLE: Derive the titration curve for the titration of 35.00 mL of 0.1000 M HCl with 0.00, 15.00, 35.00, and 50.00 mL of 0.1000 M NaOH.

at 35.00 mL of NaOH added

Va Ma = Vb Mb , equivalence point

at equivalence point of a

strong acid - strong base titration

pH º 7.0000

Page 55: Chemistry 102(001) Fall 2012

17-55CHEM 102, Fall 2010, LA TECH

EXAMPLE: Derive the titration curve for the titration of 35.00 mL of 0.1000 M HCl with 0.00, 15.00, 35.00, and 50.00 mL of 0.1000 M NaOH.

at 50.00 mL of NaOH added

Vb Mb > Va Ma , post equvalence point

(Vb Mb) - (Va Ma)

[OH-] = (Va + Vb)

((50.00mL) (0.1000M)) - ((35.00mL) (0.1000M))

=

(35.00 + 50.00)mL

= 1.765 10-2

M pOH = 1.7533

pH = 14.00 - 1.7533 = 12.25

Page 56: Chemistry 102(001) Fall 2012

17-56CHEM 102, Fall 2010, LA TECH

0

5

10

15

0 10 20 30 40 50

Volume of Base Added

pH equivalence point x

Titration of Strong Acid with Strong Base

Page 57: Chemistry 102(001) Fall 2012

17-57CHEM 102, Fall 2010, LA TECH

Titration of Weak Acid with Strong Base

Page 58: Chemistry 102(001) Fall 2012

17-58CHEM 102, Fall 2010, LA TECH

Effect of Acid Strength on Titration Curve

Page 59: Chemistry 102(001) Fall 2012

17-59CHEM 102, Fall 2010, LA TECH

Titration of Weak Base with Strong Acid

Page 60: Chemistry 102(001) Fall 2012

17-60CHEM 102, Fall 2010, LA TECH

Titration of Diprotic Weak Acid with Strong Base

Page 61: Chemistry 102(001) Fall 2012

17-61CHEM 102, Fall 2010, LA TECH

pH range of Indicatorslitmus (5.0-8.0)bromothymole blue (6.0-7.6) methyl red (4.8-6.0)thymol blue (8.0-9.6) phenolphthalein (8.2-10.0) thymolphthalein (9.4-10.6)

Page 62: Chemistry 102(001) Fall 2012

17-62CHEM 102, Fall 2010, LA TECH

Acid Rainacid rain is defined as rain with a pH < 5.6pH = 5.6 for rain in equilibrium with

atmospheric carbon dioxide

Page 63: Chemistry 102(001) Fall 2012

17-63CHEM 102, Fall 2010, LA TECH

Sulfuric Acid from Sulfur burning

SO2

S + O2 => SO2

SO3

2 SO2 + O2 => 2 SO3

Sulfuric AcidSO3 + H2O => H2SO4

Page 64: Chemistry 102(001) Fall 2012

17-64CHEM 102, Fall 2010, LA TECH

Nitric Acid2 NO2(g) + H2O(l) => HNO3(aq) + HNO2(aq)

Page 65: Chemistry 102(001) Fall 2012

17-65CHEM 102, Fall 2010, LA TECH

How Acid Precipitation Forms

Page 66: Chemistry 102(001) Fall 2012

17-66CHEM 102, Fall 2010, LA TECH

Acid Precipitation in U.S.

Page 67: Chemistry 102(001) Fall 2012

17-67CHEM 102, Fall 2010, LA TECH

Solubility Productsolubility-product - the product of the solubilitiessolubility-product constant => Ksp

constant that is equal to the solubilities of the ions produced when a substance dissolves

Page 68: Chemistry 102(001) Fall 2012

17-68CHEM 102, Fall 2010, LA TECH

Solubility Product Constant

In General:AxBy xA+y + yB-x

[A+y

]x [B-x

]yK =

[AxBy]

[AxBy] K = Ksp = [A+y

]x

[B-x

]y

Ksp = [A+y

]x [B

-x]y

For silver sulfate

Ag2SO4 2 Ag+

+ SO4-2

Ksp = [Ag+

]2[SO4

-2]

Page 69: Chemistry 102(001) Fall 2012

17-69CHEM 102, Fall 2010, LA TECH

Solubility Product Constant Values

Page 70: Chemistry 102(001) Fall 2012

17-70CHEM 102, Fall 2010, LA TECH

Dissolving Slightly Soluble Salts Using AcidsInsoluble salts containing anions of

Bronsted-Lowry bases can be dissolved in solutions of low pH

Page 71: Chemistry 102(001) Fall 2012

17-71CHEM 102, Fall 2010, LA TECH

Calcium CarbonateDissolved in Acid

Limestone Dissolving in Ground WaterCaCO3(S) + H2O + CO2 => Ca+2

(aq) + 2 HCO3-(aq)

Stalactite and Stalagmite FormationCa+2

(aq) + 2 HCO3-(aq) => CaCO3(S) + H2O + CO2

Page 72: Chemistry 102(001) Fall 2012

17-72CHEM 102, Fall 2010, LA TECH

The Common Ion Effectcommon ionsecond source which is completely dissociatedIn the presence of a second source of the ion,

there will be less dissolved than in its absencecommon ion effecta salt will be less soluble if one of its constitutent

ions is already present in the solution

Page 73: Chemistry 102(001) Fall 2012

17-73CHEM 102, Fall 2010, LA TECH

EXAMPLE: What is the molar solubility of AgCl in pure water and in 1.0 M NaCl?

AgCl Ag+ + Cl-

Ksp = [Ag+][Cl-] = 1.82 10-10M2

let x = molar solubility = [Ag+] = [Cl-](x)(x) = Ksp = [Ag+][Cl-] = 1.82 10-10M2

x = 1.35 10-5M

Page 74: Chemistry 102(001) Fall 2012

17-74CHEM 102, Fall 2010, LA TECH

EXAMPLE: What is the molar solubility of AgCl in pure water and in 1.0 M NaCl?

AgCl Ag+ + Cl-

Ksp = [Ag+][Cl-] = 1.82 10-10M2

let x = molar solubility = [Ag+][Cl-] = 1.0 M

Ksp = [Ag+][Cl-] = (x)(1.0M) = 1.82 10-10M2

x = 1.82 10-10M

Page 75: Chemistry 102(001) Fall 2012

17-75CHEM 102, Fall 2010, LA TECH

Formation of Complexesligand - Lewis basecomplexes - product of Lewis acid-base reaction

Ag+(aq) + 2 NH3(aq) [Ag(NH3)2(aq)]+

Ag+(aq) + Cl-

(aq) AgCl(s)

AgCl(s) + 2 NH3(aq) [Ag(NH3)2(aq)]+ + Cl-(aq)

Page 76: Chemistry 102(001) Fall 2012

17-76CHEM 102, Fall 2010, LA TECH

Sodium Thiosulfate Dissolves Silver Bromide

Page 77: Chemistry 102(001) Fall 2012

17-77CHEM 102, Fall 2010, LA TECH

11) For a saturated solution of a) AgCl in water:

i) Solubility equilibrium reaction:

ii) Ksp expression:

Page 78: Chemistry 102(001) Fall 2012

17-78CHEM 102, Fall 2010, LA TECH

11) For a saturated solution of b) CaF2 in water:i) Solubility equilibrium reaction:

ii) Ksp expression:

c) Fe2S3 in wateri) Solubility equilibrium reaction:

ii) Ksp expression:

Page 79: Chemistry 102(001) Fall 2012

17-79CHEM 102, Fall 2010, LA TECH

12) Which of following has the highest molar solubility (mole/L)?

Salt Ksp

a) CaCO3 5 × 10-9

b) PbCO 3 1.4 × 10-13

c) Li2CO3 2 × 10-3

d) NiCO3 1.2 × 10-7

Page 80: Chemistry 102(001) Fall 2012

17-80CHEM 102, Fall 2010, LA TECH

Formation Constants

Page 81: Chemistry 102(001) Fall 2012

17-81CHEM 102, Fall 2010, LA TECH

Amphoterism

Page 82: Chemistry 102(001) Fall 2012

17-82CHEM 102, Fall 2010, LA TECH

Reactant Quotient, Q

Reactant Quotient, Qion product of the initial concentrationsame form as solubility product constant

Q < Ksp - no precipitate forms an unsaturate solutionQ > Ksp - precipitate may form to restore

condition of saturated solutionQ = Ksp - no precipitate forms, saturated solution

Page 83: Chemistry 102(001) Fall 2012

17-83CHEM 102, Fall 2010, LA TECH

Will Precipitation Occur?

Page 84: Chemistry 102(001) Fall 2012

17-84CHEM 102, Fall 2010, LA TECH

13) For Li2CO3, Ksp is 2 × 10-3 M3. What is the concentration of Li+ in a saturated solution of Li2CO3?

Page 85: Chemistry 102(001) Fall 2012

17-85CHEM 102, Fall 2010, LA TECH

14) Chemical analysis gave [Pb2+] = 0.012 M, and [Br-] = 0.024 M in a solution. From a table, you find Ksp for PbBr2 has a value of 4 x 10-5 M3.

a) Solubility equilibrium reaction:

b) Qsp:

c) Ksp:d) Qsp < Ksp, Qsp = Ksp or Qsp > Ksp?e) Is the solution saturated, oversaturated or

unsaturated?

Page 86: Chemistry 102(001) Fall 2012

17-86CHEM 102, Fall 2010, LA TECH

Kidney StonesKidney stones are normally composed of:

calcium oxalatecalcium phosphate

magnesium ammonium phsphate

Page 87: Chemistry 102(001) Fall 2012

17-87CHEM 102, Fall 2010, LA TECH

Calcium OxalatePrecipitate formed from calcium ions from food rich

in calcium, dairy products, and oxalate ions from fruits and vegetables

Ca+2 + C2O4-2 CaC2O4

Page 88: Chemistry 102(001) Fall 2012

17-88CHEM 102, Fall 2010, LA TECH

PRECIPITATION REACTIONS

Page 89: Chemistry 102(001) Fall 2012

17-89CHEM 102, Fall 2010, LA TECH

Analysis of Silver Group

These salts formed are insoluble, they do dissolve to some SLIGHT extent.

AgCl(s) Ag+(aq) + Cl-(aq)When equilibrium has been

established, no more AgCl dissolves and the solution is SATURATED.

Ag+ Pb2+ Hg22+

AgCl PbCl2 Hg2Cl2

Page 90: Chemistry 102(001) Fall 2012

17-90CHEM 102, Fall 2010, LA TECH

Analysis of Silver Group

AgCl(s) Ag+(aq) + Cl-(aq)When solution is SATURATED, expt.

shows that [Ag+] = 1.67 x 10-5 M.(SOLUBILITY) of AgCl.What is [Cl-]?

Ag+ Pb2+ Hg22+

AgCl PbCl2 Hg2Cl2

Page 91: Chemistry 102(001) Fall 2012

17-91CHEM 102, Fall 2010, LA TECH

Analysis of Silver Group

AgCl(s) Ag+(aq) + Cl-(aq)Saturated solution has

[Ag+] = [Cl-] = 1.67 x 10-5 MUse this to calculate Ksp

Ksp = [Ag+] [Cl-] = (1.67 x 10-5)(1.67 x 10-5) = 2.79 x 10-10

Ag+ Pb2+ Hg22+

AgCl PbCl2 Hg2Cl2

Page 92: Chemistry 102(001) Fall 2012

17-92CHEM 102, Fall 2010, LA TECH

Because this is the product of “solubilities”, we call it

Ksp = solubility product constant See Table in the Text

Ksp = solubility product

Page 93: Chemistry 102(001) Fall 2012

17-93CHEM 102, Fall 2010, LA TECH

Lead(II) ChloridePbCl2(s) Pb2+(aq) + 2 Cl-(aq) Ksp = 1.9 x 10-5

Page 94: Chemistry 102(001) Fall 2012

17-94CHEM 102, Fall 2010, LA TECH

Consider PbI2 dissolving in waterPbI2(s) Pb2+(aq) + 2 I-(aq)Calculate Ksp if solubility = 0.00130 MSolution1. Solubility = [Pb2+]

= 1.30 x 10-3 M [I-] = 2 x [Pb2+] = 2.60 x 10-3 M2. Ksp = [Pb2+] [I-]2

= [Pb2+] {2 • [Pb2+]}2

= 4 [Pb2+]3 = 4 (solubility)3

Ksp = 4 (1.30 x 10-3)3 = 8.8 x 10-9

Solubility of Lead(II) Iodide

Page 95: Chemistry 102(001) Fall 2012

17-95CHEM 102, Fall 2010, LA TECH

Precipitating an Insoluble SaltHg2Cl2(s) Hg2

2+(aq) + 2 Cl-(aq)

Ksp = 1.1 x 10-18 = [Hg22+] [Cl-]2

If [Hg22+] = 0.010 M, what [Cl-] is req’d to just begin

the precipitation of Hg2Cl2?

(maximum [Cl-] in 0.010 M Hg22+ without forming

Hg2Cl2?)

Page 96: Chemistry 102(001) Fall 2012

17-96CHEM 102, Fall 2010, LA TECH

Precipitating an Insoluble SaltHg2Cl2(s) Hg2

2+(aq) + 2 Cl-(aq)

Ksp = 1.1 x 10-18 = [Hg22+] [Cl-]2

Recognize that

Ksp = product of maximum ion concs.

Precip. begins when product of ion Concs. EXCEEDS the Ksp.

Page 97: Chemistry 102(001) Fall 2012

17-97CHEM 102, Fall 2010, LA TECH

Precipitating an Insoluble SaltHg2Cl2(s) Hg2

2+(aq) + 2 Cl-(aq)

Ksp = 1.1 x 10-18 = [Hg22+] [Cl-]2

Solution

[Cl-] that can exist when [Hg22+] = 0.010 M,

If this conc. of Cl- is just exceeded, Hg2Cl2 begins to precipitate.

[Cl ] = Ksp0.010

= 1.1 x 10-8 M

Page 98: Chemistry 102(001) Fall 2012

17-98CHEM 102, Fall 2010, LA TECH

Precipitating an Insoluble SaltHg2Cl2(s) Hg2

2+(aq) + 2 Cl-(aq)Ksp = 1.1 x 10-18

Now raise [Cl-] to 1.0 M. What is the value of [Hg2

2+] at this point?Solution[Hg2

2+] = Ksp / [Cl-]2

= Ksp / (1.0)2 = 1.1 x 10-18 MThe concentration of Hg2

2+ has been reduced by 1016 !

Page 99: Chemistry 102(001) Fall 2012

17-99CHEM 102, Fall 2010, LA TECH

Separating Metal Ions Cu2+, Ag+, Pb2+

Ksp ValuesAgCl 1.8 x 10-10

PbCl2 1.7 x 10-5

PbCrO4 1.8 x 10-14

Cu2+

Ag+

Pb2+

Cl-

Insoluble

PbCl2 AgClSoluble

CuCl2

Heat

Insoluble

AgCl

Soluble

PbCl2

CrO4-2

Insoluble

PbCrO4

Page 100: Chemistry 102(001) Fall 2012

17-100CHEM 102, Fall 2010, LA TECH

Separating Salts by Differences in Ksp

A solution contains 0.020 M Ag+ and Pb2+. Add CrO42-

to precipitate Ag2CrO4 (red) and PbCrO4 (yellow). Which precipitates first?

Ksp for Ag2CrO4 = 9.0 x 10-12

Ksp for PbCrO4 = 1.8 x 10-14

SolutionThe substance whose Ksp is first exceeded

precipitates first. The ion requiring the smaller amount of CrO4

2- ppts. first.

Page 101: Chemistry 102(001) Fall 2012

17-101CHEM 102, Fall 2010, LA TECH

Separating Salts by Differences in Ksp

[CrO42-] to ppt. PbCrO4 = Ksp / [Pb2+]

= 1.8 x 10-14 / 0.020 = 9.0 x 10-13 M[CrO4

2-] to ppt. Ag2CrO4 = Ksp / [Ag+]2 = 9.0 x 10-12 / (0.020)2 = 2.3 x 10-8 M PbCrO4 precipitates first.

Solution

Calculate [CrO42-

] required by each ion.

Page 102: Chemistry 102(001) Fall 2012

17-102CHEM 102, Fall 2010, LA TECH

How much Pb2+ remains in solution when Ag+ begins to precipitate?

SolutionWe know that [CrO4

2-] = 2.3 x 10-8 M to begin to ppt. Ag2CrO4. What is the Pb2+ conc. at this point?[Pb2+] = Ksp / [CrO4

2-] = 1.8 x 10-14 / 2.3 x 10-8 M = 7.8 x 10-7 MLead ion has dropped from 0.020 M to < 10-6 M

Separating Salts by Differences in Ksp

Page 103: Chemistry 102(001) Fall 2012

17-103CHEM 102, Fall 2010, LA TECH

Common Ion EffectAdding an Ion “Common” to an Equilibrium

PbCl2(s) Pb2+

(aq) + 2Cl-(aq)

NaCl Na+

(aq) + Cl- (aq)

Page 104: Chemistry 102(001) Fall 2012

17-104CHEM 102, Fall 2010, LA TECH

Calculate the solubility of BaSO4 in (a) pure water and (b) in 0.010 M Ba(NO3)2.

Ksp for BaSO4 = 1.1 x 10-10

BaSO4(s) Ba2+(aq) + SO42-(aq)

Solutiona) Solubility in pure water = [Ba2+] = [SO4

2-] = xKsp = [Ba2+] [SO4

2-] = x2

x = (Ksp)1/2 = 1.1 x 10-5 M

The Common Ion Effect

Page 105: Chemistry 102(001) Fall 2012

17-105CHEM 102, Fall 2010, LA TECH

BaSO4(s) Ba2+(aq) + SO42-(aq)

Ksp = 1.1 x 10-10

Solutionb) Now dissolve BaSO4 in water already containing

0.010 M Ba2+. Which way will the “common ion” shift the

equilibrium? ___ Will solubility of BaSO4 be less than or greater than

in pure water?___

The Common Ion Effect

Page 106: Chemistry 102(001) Fall 2012

17-106CHEM 102, Fall 2010, LA TECH

BaSO4(s) Ba2+(aq) + SO42-(aq)

Solution [Ba2+] [SO4

2-]initialchangeequilib.

The Common Ion Effect

Page 107: Chemistry 102(001) Fall 2012

17-107CHEM 102, Fall 2010, LA TECH

Calculate the solubility of BaSO4 in (a) pure water and (b) in 0.010 M Ba(NO3)2.

Ksp for BaSO4 = 1.1 x 10-10

BaSO4(s) Ba2+(aq) + SO42-(aq)

Solution [Ba2+] [SO4

2-]initial 0.010 0change + y + yequilib. 0.010 + y y

The Common Ion Effect

Page 108: Chemistry 102(001) Fall 2012

17-108CHEM 102, Fall 2010, LA TECH

Ksp = [Ba2+] [SO42-] = (0.010 + y) (y)

Because y << x (1.1 x 10-5 M) 0.010 + y 0.010. Therefore,

Ksp = 1.1 x 10-10 = (0.010)(y)y = 1.1 x 10-8 M =

solubility in presence of added Ba2+ ion.

Le Chatelier’s Principle is followed!

The Common Ion Effect