chemical modelling & data assimilation

44
A NICE PLACE 1 Chemical Modelling & Data Assimilation D. Fonteyn, S. Bonjean, S. Chabrillat, F. Daerden and Q. Errera Belgisch Instituut voor Ruimte – Aëronomie (Belgian Institute for Space Aeronomy) BIRA - IASB

Upload: tuwa

Post on 10-Feb-2016

51 views

Category:

Documents


3 download

DESCRIPTION

Chemical Modelling & Data Assimilation D. Fonteyn, S. Bonjean, S. Chabrillat, F. Daerden and Q. Errera Belgisch Instituut voor Ruimte – Aëronomie (Belgian Institute for Space Aeronomy) BIRA - IASB. >> OUTLINE. Introduction What is chemical data assimilation? - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chemical Modelling & Data Assimilation

A NICE PLACE 1

Chemical Modelling & Data Assimilation

D. Fonteyn, S. Bonjean, S. Chabrillat, F. Daerden and Q. Errera

Belgisch Instituut voor Ruimte – Aëronomie

(Belgian Institute for Space Aeronomy)

BIRA - IASB

Page 2: Chemical Modelling & Data Assimilation

A NICE PLACE 2

>> OUTLINE

• Introduction• What is chemical data assimilation? • Why do we need chemical data assimilation?• 4D –VAR chemical data assimilation system• Physical consistency, Self consistency, Independent

observations• Added value• Inverse modelling: emission estimations

Page 3: Chemical Modelling & Data Assimilation

A NICE PLACE 3

>> OUTLINE

Belgian Assimilation System of Chemical Observations

from Envisat (BASCOE) http://bascoe.oma.be

IMAGES

Page 4: Chemical Modelling & Data Assimilation

A NICE PLACE 4

>> Introduction

• Focus on the Stratosphere:– Chemical processes are well understood: high level of

confidence in modelling results. (?)

– Mature remote sensing technology (UARS, ENVISAT, SAGE, CRISTA, POAM …)

• If models are perfect, no data assimilation is needed

Page 5: Chemical Modelling & Data Assimilation

A NICE PLACE 5

>> Introduction >> Overview chemistry

Gas phase chemistryChapman Cycle

O2 + h 2O

O2 + O + M O3 + M

O3 + O 2O2

O3 + h O2 + O

Catalytic cyclesHydrogen radicals (HOx)

OH + O H + O2

H + O3 OH + O2

Net: O + O3 2 O2

OH + O H + O2

H + O2 + M HO2+ M

HO2 + O OH + O2

Net: O + O3 O2

HO2 + O OH + O2

OH + O3 HO2 + O2

Net: O + O3 2 O2

Hydrogen Source Gases: H2O, CH4

• Long term trends• HOx chemistry in the upper

stratosphere and mesosphere

Page 6: Chemical Modelling & Data Assimilation

A NICE PLACE 6

>> Introduction >> Overview chemistry

2. Nitrogen radicals (member of NOy)NO2 + O NO +

O2

NO + O3 NO2 + O2

Net: O + O3 2 O2

3. Chlorine radicals (member of Cly) ClO + O Cl +

O2

Cl + O3 ClO + O2

Net: O + O3 2 O2

Chlorine Source Gases: Organic Chlorine• Long term trends• Cly partitioning (in the lower

stratosphere: aerosols )

Nitrogen Source Gas: N2O (and …)• Long term trends• NOy partitioning (in the lower

stratosphere: aerosols )

Page 7: Chemical Modelling & Data Assimilation

A NICE PLACE 7

>> Chemical data assimilation

Chemical data assimilation

• Inert tracer assimilation

• Tracer with parameterized chemistry assimilation

• Multiple species with chemical interactions

Necessity

Page 8: Chemical Modelling & Data Assimilation

A NICE PLACE 8

>> Why chemical data assimilation >> Model shortcomings

TOMS total ozone 28 August 2003

Page 9: Chemical Modelling & Data Assimilation

A NICE PLACE 9

>> Why chemical data assimilation >> Model shortcomings

Free model total ozone 28 August 2003, 12 UTC

Page 10: Chemical Modelling & Data Assimilation

A NICE PLACE 10

>> Why chemical data assimilation >> Model shortcomings

-90 -60 -30 0 30 60 90

10-1

100

101

102

103

Latitude

Pres

sure

[hPa

]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

HALOE CH4 monthly gridded zonal mean, August 2003

ppmv

Page 11: Chemical Modelling & Data Assimilation

A NICE PLACE 11

>> Why chemical data assimilation >> Model shortcomings

-90 -60 -30 0 30 60 90

10-1

100

101

102

103

Latitude

Pres

sure

[hPa

]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

HALOE CH4 monthly gridded zonal mean, August 2003Free Model Run co-located, isolines

ppmv

Page 12: Chemical Modelling & Data Assimilation

A NICE PLACE 12

-80 -60 -40 -20 0 20 40 60 800

1

2

3

4

5

6

Latitude

Mea

n A

ge o

f Air

(yea

r)ERA40/ANAERA40/FOROPER/ANAOPER/FORCO2 observationsSF6 observations

>> Why chemical data assimilation >> Model shortcomings

Problem: input dynamics, confirmed by mean age of air experiment

Page 13: Chemical Modelling & Data Assimilation

A NICE PLACE 13

>> Why chemical data assimilation >> Model shortcomings

CH4

GEM STRATO (MSC) with BASCOE chemistry vs. BASCOE driven by ECMWF• 3 month free model run• Same initial conditions• Matching resolution• Identical chemistry• No Feedback

Page 14: Chemical Modelling & Data Assimilation

A NICE PLACE 14

CH4

BASCOE driven by GEM-STRATO vs BASCOE driven by ECMWF

>> Why chemical data assimilation >> Model shortcomings

Page 15: Chemical Modelling & Data Assimilation

A NICE PLACE 15

Ozone

BASCOE driven by GEM-STRATO vs BASCOE driven by ECMWF

>> Why chemical data assimilation >> Model shortcomings

Page 16: Chemical Modelling & Data Assimilation

A NICE PLACE 16

Total ozone

BASCOE driven by GEM-STRATO vs BASCOE driven by ECMWF

>> Why chemical data assimilation >> Model shortcomings

Page 17: Chemical Modelling & Data Assimilation

A NICE PLACE 17

Model Shortcomings:• Effect of dynamical assimilation• Effect of different dynamical assimilation systems

• Dynamics driven shortcomings

• Chemical modelling shortcomings (not shown)

>> Why chemical data assimilation >> Model shortcomings

Page 18: Chemical Modelling & Data Assimilation

A NICE PLACE 18

>> 4D – VAR

N

iii

oi

Tii

obTb tHttHtttttJ1

100

1000 )](x[)(yR)](x[)(y

21)(x)(xB)(x)(x

21

4D-var assimilation : find x(t0) minimizing J

With the constraint

x(t0): control variable n 5.6 106

xb: a priori state of the atmosphere ( background)yo(ti): observations, de dimension p 5 104 (-7 105)x(ti): model state H: observational operatorM: model operatorB: background error covariance matrixR: observational error covariance matrix

)]([)( tMdt

td xx

Page 19: Chemical Modelling & Data Assimilation

A NICE PLACE 19

>> 4D – VAR >> BASCOE

• Model (3D - Chemical Transport Model)– horizontal: 3°.75 x 3°.75 (96 x 49 pts); vertical: 37 pressure levels, surface → 0.1 hPa

(subset of ECMWF hybrid levels, keeping stratospheric levs)– 57 chemical species (control variables), 200 reactions– 4 types of PSC particles (36 size bins): NOT assimilated– Eulerian, driven by ECMWF 6h analyses/forecast– advection by Lin & Rood (1996) with 30’ time step

• Assimilation set-up– Adjoint of chemistry and transport– Assimilation time window: 24 hours– B diagonal; 20 % of first guess distribution (= univariate)– Quality check: 1st climatoligical behaviour; 2 nd first guess based QC

• Observations– ESA Envisat MIPAS L2 products, Near Real Time (NRT) and Offline (OFL)– O3, H2O, N2O, CH4, HNO3, NO2

– Representativeness error: 8.5 %

Page 20: Chemical Modelling & Data Assimilation

A NICE PLACE 20

4D – VAR >> BASCOE >> OFL number of observations

Jan03 Mar03 May03 Jul03 Sep03 Nov03 Jan040

1

2

3

4

5

6

7

8

9

10 x 104

Num

ber o

f Obs

.Total validPre-rejectedOIQC-rejected

Page 21: Chemical Modelling & Data Assimilation

A NICE PLACE 21

4D – VAR >> BASCOE >> Multi-variate nature

MJD 1315, 2.66 hPa local noon: Relative change w.r.t ozone

0.001 0.01 0.1 1 10

O3

HOX

NOYNO

NO2NO3

N2O5HNO3

CLYCLO

HOCLCLONO2

HCL

BRYBRO

HOBRBRONO2

HBR

N2OCH4H2O

CFC11

0.001 0.01 0.1 1 10

MJD 1315, 29 hPa, local midnight: Relative change w.r.t ozone

0.001 0.01 0.1 1 10

O3

HOX

NOYNO

NO2NO3

N2O5HNO3

CLYCLO

HOCLCLONO2

HCL

BRYBRO

HOBRBRONO2

HBR

N2OCH4H2O

CFC11

0.001 0.01 0.1 1 10

Multi variate nature– Diagonal B– (xa(t0)-xb(t0))– Local noon and local midnight– August, 7, 2003– Full: observed species– Striped: unobserved species

Page 22: Chemical Modelling & Data Assimilation

A NICE PLACE 22

4D – VAR >> BASCOE >> Physical consistency

O3 / ANA O3 / FMR

CH4 / ANA CH4 / FMR

N2O / ANA N2O / FMR

O3 / MIPAS / OFL

CH4 / MIPAS / OFL

N2O / MIPAS / OFL

August 5, 2003

35.8 hPa & obs within 1 km

Page 23: Chemical Modelling & Data Assimilation

A NICE PLACE 23

4D – VAR >> BASCOE >> Physical consistency

0 50 100 150 200 250 300 350 4000

1

2

CH4

N2O

0 50 100 150 200 250 300 350 4000

1

2

CH4

N2O

0 50 100 150 200 250 300 350 4000

1

2

CH4

N2O

Tracer correlations:CH4 vs N2O (Aug 5)TropicalSouth polar

MIPAS DATA

Co-located FMR

Co-located analysis= correlationNeeds validation

Page 24: Chemical Modelling & Data Assimilation

A NICE PLACE 24

4D – VAR >> BASCOE >> Self – consistency

-5 0 50

0.5

1O3

-5 0 50

0.5

1H2O

-5 0 50

0.5

1CH4

-5 0 50

0.5

1N2O

-5 0 50

0.5

1HNO 3

-5 0 50

0.5

1NO2

• OmF:– Observation – first guess– Normalized by R

– = Gaussian distribution– OFL– NRT– FMR– OFL vs NRT– Consistency – Added value w.r.p FMR

Page 25: Chemical Modelling & Data Assimilation

A NICE PLACE 25

4D – VAR >> BASCOE >> Self – consistency >> model improvement

0 2 4 6 8 10 12

10-1

100

101

102

103

Pres

sure

[hPa

]

Mixing ratio [ppmv]

MIPAS NRTNRT analysisNRT FMROFL FMR

NRT results:Ozone @ 1 hPa underestimated

– Analysis = free model– Model not constrained– O2 main source of O3

– O2 not a control variable

– JO2 increased by 25 %

– New free model

– Better agreement

Page 26: Chemical Modelling & Data Assimilation

A NICE PLACE 26

4D – VAR >> BASCOE >> Self – consistency

Self – consistency 4D – VAR:E[Janalysis] = p/2Time series Janalysis/p

NRTOFL

Monitoring capability

Page 27: Chemical Modelling & Data Assimilation

A NICE PLACE 27

4D – VAR >> BASCOE >> Self – consistency >> monitoring

Monitoring capabilityDaily mean MIPAS ozone, [-10,10]

at 14 hPa

Janalysis transients correlate with ozone daily mean transients

Page 28: Chemical Modelling & Data Assimilation

A NICE PLACE 28

0 0.5 1 1.5 2

x 10-6

10-1

100

101

102

Pre

ssur

e [h

Pa]

NRT CH4 [vmr]

0 0.2 0.4 0.6 0.8 1

x 10-5

10-1

100

101

102

Pre

ssur

e [h

Pa]

NRT H2O [vmr]

0 0.5 1 1.5 2

x 10-6

10-1

100

101

102

OFL CH4 [vmr]

0 0.2 0.4 0.6 0.8 1

x 10-5

10-1

100

101

102

OFL H2O [vmr]

4D – VAR >> BASCOE >> Example

Illustrative example:August 5, 2003Lat: -38.6° Lon: 83.3°

• NRT vs OFL data• Quality check

– Pre-check– OI qc

• First guess• Analysis

• At 1 hPa: methane rich tropical air, and tropical dry air

Page 29: Chemical Modelling & Data Assimilation

A NICE PLACE 29

0 0.5 1 1.5 2

10-1

100

101

102

103

VMR [ppmv]

Pres

sure

[hPa

]

20030805 Lat:-40 Lon:122

0 2 4 6 8 10

10-1

100

101

102

103

VMR [ppmv]

Pres

sure

[hPa

]

20030805 Lat:-40 Lon:122

4D – VAR >> BASCOE >> Independent observations

Independent observations:HALOE v19Periode: August 20031. Individual profiles2. Statistics

Individual profile

OFL analysisHALOEFree Model run

CH4

H2O

Page 30: Chemical Modelling & Data Assimilation

A NICE PLACE 30

-40 -30 -20 -10 0 10 20 30 40

10-1

100

101

102

103

Relative difference [%]

Pres

sure

[hPa

]

-40 -30 -20 -10 0 10 20 30 40

10-1

100

101

102

103

Relative difference [%]

Pres

sure

[hPa

]

-40 -30 -20 -10 0 10 20 30 40

10-1

100

101

102

103

Relative difference [%]

Pres

sure

[hPa

]

4D – VAR >> BASCOE >> HALOE August 2003

H2O CH4

O3(HALOE-BASCOE)/HALOE

OFL analysisNRT analysisHALOE error

Page 31: Chemical Modelling & Data Assimilation

A NICE PLACE 31

0 5 10 15 20

10-1

100

101

102

103

Mean volume mixing ratio [ppbv]

Pres

sure

[hPa

]

0 0.5 1 1.5 2 2.5 3 3.5

10-1

100

101

102

103

Mean volume mixing ratio [ppbv]

Pres

sure

[hPa

]

4D – VAR >> BASCOE >> HALOE August 2003

Mean HALOE and BASCOE co-located profiles:

OFL analysisNRT analysisHALOE

Ozone model bias & 4D – VAR chemical coupling reduces Cly

HCl

NOx

Page 32: Chemical Modelling & Data Assimilation

A NICE PLACE 32

-90 -60 -30 0 30 60 90

10-1

100

101

102

103

Latitude

Pres

sure

[hPa

] 0.4

0.81.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

4D – VAR >> BASCOE >> Added value

HALOE and BASCOE co-located gridded zonal monthly mean

OFL analysisFMRHALOE

OFL analyis vs Free Model

(Schoeberl et al., JGR 2003)

Page 33: Chemical Modelling & Data Assimilation

A NICE PLACE 33

TOMS total ozone 28 August 2003

4D – VAR >> BASCOE >> Added value

Page 34: Chemical Modelling & Data Assimilation

A NICE PLACE 34

Analysis total ozone 28 August 2003, 12 UTC

4D – VAR >> BASCOE >> Added value

Page 35: Chemical Modelling & Data Assimilation

A NICE PLACE 35

4D – VAR >> BASCOE >> Added value >> Chemical forecasts

The operational implementation with NRT MIPAS allows to produce chemical forecasts

Examples with verification

Page 36: Chemical Modelling & Data Assimilation

A NICE PLACE 36

4D – VAR >> BASCOE >> Added value Operational implementation

Page 37: Chemical Modelling & Data Assimilation

A NICE PLACE 37

4D – VAR >> BASCOE >> Added value

Page 38: Chemical Modelling & Data Assimilation

A NICE PLACE 38

4D – VAR >> BASCOE >> Conclusions

4D –VAR chemical data assimilation system– Multi-variate nature of 4D – VAR – Benefit– Model bias sensitivity

• Overall Consistency• Independent observations• Added value (non-exhaustive)

– Monitoring– Bias detection– Correction for dispersive dynamics– Chemical forecasts

• Potential related to efforts

Page 39: Chemical Modelling & Data Assimilation

A NICE PLACE 39

>> Inverse modelling

Inverse modelling at BIRA – IASB

J. – F. Muller & J. Stavrakou

Belgisch Instituut voor Ruimte – Aëronomie

(Belgian Institute for Space Aeronomy)

BIRA - IASB

Page 40: Chemical Modelling & Data Assimilation

A NICE PLACE 40

Focus: Tropospheric reactive gases (ozone precursors CO, NOx,

non-methane VOCs)

>> Inverse modelling

Page 41: Chemical Modelling & Data Assimilation

A NICE PLACE 41

>> Inverse modelling

J(f)=½Σi (Hi(f)-yi)T E-1(Hi(f)-yi)+ ½ (f-fB)TB-1(f-fB)

observationsModel operator

acting on the controlvariables

first guess valuefor the controlparameters

Matrix of errorson the emission

parametersMatrix of errors

on the observations

Page 42: Chemical Modelling & Data Assimilation

A NICE PLACE 42

• Find best values of emission parameters, i.e. minimize the cost function

• Previous studies for reactive gases (CO, NOx, CH2O) inverted for a small number of emission parameters (big-region approach)

• Most previous studies used a linearized CTM, (i.e. OH unchanged by emission updates) straightforward minimization of the cost (matrix inversion)

• Non-linearity is best handled using the adjoint model technique (Muller & Stavrakou 2005) also used in 4D-Var assimilation

• This technique allows also to perform grid-based inversions

>> Inverse modelling

Page 43: Chemical Modelling & Data Assimilation

A NICE PLACE 43

Grid – based inversion• Observations used: CO columns from

MOPITT (05/2000 – 04/2001)• Model used: IMAGES, 5°x5° (Müller and Stavrakou 2005)• Number of control parameters >> number of independent

observations need additional information : correlations between errors on

a priori emissions, estimated based on country boundaries, ecosystem distribution, geographical distance

>> Inverse modelling

Page 44: Chemical Modelling & Data Assimilation

A NICE PLACE 44

>> Inverse modelling