chemical looping technology and co2 capture

34
Chemical Looping Technology and CO 2 Capture L. S. Fan Department of Chemical and Biomolecular Engineering The Ohio State University Columbus, Ohio 43210 by May 3, 2011

Upload: others

Post on 14-Apr-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chemical Looping Technology and CO2 Capture

Chemical Looping Technology and CO2 Capture

L. S. FanDepartment of Chemical and Biomolecular

Engineering The Ohio State University

Columbus, Ohio 43210

by

May 3, 2011

Page 2: Chemical Looping Technology and CO2 Capture

Chemical Looping for Hydrogen Production or Combustion

CO2

CxHy

Metal

Oxide

H2O

Metal

H2O

H2

Page 3: Chemical Looping Technology and CO2 Capture

3

Chemical Looping for Fossil Fuel Conversions

Two typical types of looping reaction systems

Oxygen Carrier (Type I)

Me/MeO, MeS/MeSO4

CO2 Carrier (Type II)

MeO/MeCO3

“1st Meeting of High Temperature Solids Looping Cycle

Network”, Oviedo, Spain, September 15-17 (2009).

“1st International Conference on Chemical

Looping”, Lyon, France, March 17-19 (2010).

Page 4: Chemical Looping Technology and CO2 Capture

4

Historical Development of Chemical Looping Technologiesfor Fossil Energy Conversions

TechnologiesLane Process and

Messerschmitt Process

Lewis and

Gilliland ProcessIGT HYGAS Process

CO2 Acceptor

Process

Time Early Twentieth Century 1950s 1970s 1970s

Looping Media Fe/FeO/Fe3O4 Cu2O/CuO FeO/Fe3O4 CaO/CaCO3

Reactor Design Fixed bed Fluidized bed Staged fluidized bed Fluidized bed

Lane Process

Lewis and Gilliland Process

IGT Process

CO2 Acceptor Process

Page 5: Chemical Looping Technology and CO2 Capture

5

IGT Steam Iron HYGAS Process

MO=> M M=> MO

Gas Conversion (%) 65 45

Solid inlet 80% Fe3O4- 20% FeO 95% FeO- 5% Fe

Temperature (oC) 900 900

Reactor Fluid Bed Fluid Bed

– Poor solid phase conversions: Used only about 25% oxygen

capacity of the particles.

– Low gas phase conversions:

– Used iron ore: Low reaction rates

– Only about 40% efficient

– The process not geared towards making pure CO2

Poor Thermo

Page 6: Chemical Looping Technology and CO2 Capture

CO2 Capture from Fossil Energy – Technological Solutions

Source: José D. Figueroa, National Energy Technology Laboratory (NETL), USDOE

Page 7: Chemical Looping Technology and CO2 Capture

7

ε ≈ 1

Partial oxidation

/Gasification

ε = 0.88

H2 + CO

407.7 kJ

358.9 kJ

0 Heat Loss

48.8 kJ Exergy Loss

Water Gas Shift

H2 +CO2

393.4 kJ

322.9 kJ

ε = 0.82

ε = 0.89

Fe

514.8 kJ

456.4 kJFe3O4 @1023K

(0.395 mol)

107.1 kJ

71.9 kJ

ε = 0.669

14.3 kJ Heat Loss

36 kJ Exergy Loss

H2 + Fe3O4

485.5 + 107.1 kJ

396.9 +71.9 kJ

ε = 0.82

Carbon

407.7 kJ/mol

407.7 kJ/mol

23.2 kJ Exergy Loss77.8 kJ thermal

energy @ 380 K

12.41kJ Exergy

ε = 0.16

Partial oxidation

I

II

Substance

Enthalpy of degradation

Exergy

Exergy Rate (ε)

Energy/Exery Loss

Additional Energy Input

Final Product

ε ≈ 1

Partial oxidation

/Gasification

ε = 0.88

H2 + CO

407.7 kJ

358.9 kJ

0 Heat Loss

48.8 kJ Exergy Loss

Water Gas Shift

H2 +CO2

393.4 kJ

322.9 kJ

ε = 0.82

ε = 0.89

Fe

514.8 kJ

456.4 kJFe3O4 @1023K

(0.395 mol)

107.1 kJ

71.9 kJ

ε = 0.669

14.3 kJ Heat Loss

36 kJ Exergy Loss

H2 + Fe3O4

485.5 + 107.1 kJ

396.9 +71.9 kJ

ε = 0.82

Carbon

407.7 kJ/mol

407.7 kJ/mol

23.2 kJ Exergy Loss77.8 kJ thermal

energy @ 380 K

12.41kJ Exergy

ε = 0.16

Partial oxidation

I

II

Substance

Enthalpy of degradation

Exergy

Exergy Rate (ε)

Energy/Exery Loss

Additional Energy Input

Final Product

I. Contional Process

Exergetic Efficiency

322.9/407.7 = 79.2%

II. Chemcial Looping Process

Exergetic Efficiency

396.9/(407.7 + 12.41)=94.5%

Exergy Analysis on Hydrogen Production

Page 8: Chemical Looping Technology and CO2 Capture

8

Chalmers University of Technology Gaseous Fuel CLC

Photo Courtesy of Professor Anders Lyngfelt

Up to 99% gaseous fuel conversion; Satisfactory (Ni) particle performance;

Solids inventory: 100 – 200 kg/MWth; Solids circulation rate: 4 kg/s·MWth

Page 9: Chemical Looping Technology and CO2 Capture

9State-of-the-art

OSU Syngas Chemical Looping Process

BFW

To Steam

Turbine

Coal

Candle

FilterHot Gas

Cleanup

Sulfur

Byproduct

2000 psi CO2 (with

H2S, Hg, HCl)

Steam

H2 (450 PSI)

Hot Spent Air

O2

N2

Compressor

Gas Turbine Generator

Fe3O4

Fe

Air Oxidation

Fe2O3

Fuel

ReactorH2

ReactorBFW

Fly

Ash

Hot

Syngas

Raw

Syngas

Compressor

Air

Makeup

Purge

Air

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, “Combustion Looping Using Composite Oxygen Carriers” U.S. Patent No. 7,767,191 (priority date 2003).

Page 10: Chemical Looping Technology and CO2 Capture

Zone 2

Enhancing Gas Fe

Coal/biomass

Fe2O3CO2/H2O

Discussions on Alternative Coal Direct Chemical Looping Reducer

Zone 1

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, “Combustion Looping Using Composite Oxygen Carriers” U.S. Patent No. 7,767,191 (priority date 2003)

Fan, L.-S., P. Gupta, L.G. Velazquez-Vargas, “Systems and Methods of Converting Fuels” WO 2007/082089 (2006)

Zone 1

Zone 2

Zone 3

Zone 4

Coal/biomass

Page 11: Chemical Looping Technology and CO2 Capture

Particle Fixed Bed Tests

Bench Scale Tests

Time

Sca

le

Sub-Pilot SCL

Integrated Tests

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35

Axil Position (inch)

So

lid

Co

nv

ers

ion

(%

)

0

10

20

30

40

50

60

70

80

90

100

Gas C

on

vers

ion

s (

%)

Solid H2 COParticle Reactivity Confirmed

Maximum Operating Temperature Determined

Reactor Performance Confirmed

Syngas Chemical Looping Process Development

Page 12: Chemical Looping Technology and CO2 Capture

12

Chemical Looping Reactor Design

FeOy

FeOx

CO/H2

CO2/H2O

(x>y)

FeOy CO/H2

(x>y)

FeOx CO2/H2O

Fluidized BedMoving Bed

FeOy CO/H2

(X>Y)

FeOx CO2/H2O

Fluidized Bed Moving Bed

Moving Bed – The Selected Reactor Type

FeOy

FeOx

CO/H2

CO2/H2O

(X>Y)

Fluidized Bed v.s. Moving Bed

Maximum Solid Conversion

Gas Velocity

Particle Size

11.11%

> Umfv

Small

50.00%

< Umfv

Large

Fluidized Bed v.s. Moving Bed

Maximum Solid Conversion

Gas Velocity

Particle Size

11.11%

> Umfv

Small

50.00%

< Umfv

Large

Maximum Solid Conversion

Gas Velocity

Particle Size

11.11%

> Umfv

Small

50.00%

< Umfv

Large

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

200 400 600 800 1000

Temperature (C)

PC

O2/P

CO

Fe2O3

Fe3O4

FeO

Fe

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

200 400 600 800 1000

Temperature (C)

PC

O2/P

CO

Fe2O3

Fe3O4

FeO

Fe

Fluidized Bed

Moving Bed

(x>y)

Page 13: Chemical Looping Technology and CO2 Capture

13

Coal/

O2

Particulateremoval

H2S Removal

F-Treactor

Productseparation

Liquid Fuel

Gas

Phase

HRSG

H2

H2/CO = 0,5

H2 /CO=2

Gas

ifie

r

Syngas Chemical Looping in CTL Applications – I

Fuel

Rea

ctor

H2

Rea

ctor

CO2

Air

N2

N2

Page 14: Chemical Looping Technology and CO2 Capture

14

Syngas Chemical Looping in CTL Applications – II

Steam

from F-T

Biomass

and F-T

byproduct

MeOx

H2 rich gas

MeOy (y < x)

MeOz

(y<z≤x)Air (Optional)

F-T and

Product Upgrade

CO2

H2O

Sequestrable CO2

H2O

Liquid Fuel

Product

Byproduct to

Reactor 1

H2O

(Cooling)

Steam to

Reactor 2

Reac

tor 3

Reac

tor 1

Reac

tor 2

Steam

from F-T

Biomass

and F-T

byproduct

MeOx

H2 rich gas

MeOy (y < x)

MeOz

(y<z≤x)Air (Optional)

F-T and

Product Upgrade

CO2

H2O

Sequestrable CO2

H2O

Liquid Fuel

Product

Byproduct to

Reactor 1

H2O

(Cooling)

Steam to

Reactor 2

Reac

tor 3

Reac

tor 1

Reac

tor 2

3H2 + CO2 -(CH2)- + 2H2O

C + H2O/O2 H2 + CO2/Heat

Page 15: Chemical Looping Technology and CO2 Capture

15

Chemical Looping Integrated with Fuel Cell – I

2H2 + O2 2H2O + Electricity

C + H2O/O2 H2 + CO2/Heat

Re

ac

tor 1Biomass

Sequestrable

CO2 and H2O

MeOx

An

od

e

Cath

od

e

H2 rich gasS

OF

C

Steam rich exhaust to Reactor 2

Compressed Air

Oxygen lean air

to Reactor 3

Oxygen lean air

from SOFC

cathode (Optional)

Re

ac

tor 3

Electric

Power

MeOy (y < x)MeOy (y < x)

MeOz

(y<z≤x)

Re

ac

tor 2

Re

ac

tor 1Biomass

Sequestrable

CO2 and H2O

MeOx

An

od

e

Cath

od

e

H2 rich gasS

OF

C

Steam rich exhaust to Reactor 2

Compressed Air

Oxygen lean air

to Reactor 3

Oxygen lean air

from SOFC

cathode (Optional)

Re

ac

tor 3

Electric

Power

MeOy (y < x)MeOy (y < x)

MeOz

(y<z≤x)

Re

ac

tor 2

Page 16: Chemical Looping Technology and CO2 Capture

16

Single Loop High Density CFB System (Kirbas et al., 2007)

Two Loop High Density CFB System (Kulah et al., 2008)

Kirbas G, Kim SW, Bi X, Lim J, Grace JR. Radial Distribution of Local Concentration Weighted Particle Velocities in High Density Circulating Fluidized Beds. Paper presented at: The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering; May 13-17, 2007; Vancouver, Canada.

Kulah G, Song X, Bi HT, Lim CJ, Grace JR. A NOVEL SYSTEM FOR MEASURING SOLIDS DISPERSION IN CIRCULATING FLUIDIZED BEDS. Paper presented at: 9th International Conference on Circulating Fluidized Beds; May, 13 – 16, 2008; Hamburg, Germany.

Circulating Fluidized Bed Systems

Page 17: Chemical Looping Technology and CO2 Capture

17

Particle Type Ni Cu Fe

Type of Data

Lab

Scale

CFB 120

kW

Lab

Scale CFB 10kW Lab Scale

CFB

300W

Moving Bed -H2

25 kW

Particle Type

NiO/

MgAl2O4

NiO/

MgAl2O4

CuO/

Al2O3 CuO/Al2O3

Fe2O3/

MgAl2O4

Fe2O3/

Al2O3 Composite Fe2O3

Air Flow Rate @1000 MWth and 10% Excess (mol/s) 11784 1309

Volumetric Air Flow Rate at 1 atm and 900 ºC (m3/s) 1134 126

Particle Circulation Rate @ 1000 MWth (kg/s) 4000 10000 3000 6000 8000 10000 800

Reducer Solids Inventory (tonne) 230 160 70total

2100

500 12001500 Total

Oxidizer Solids Inventory (tonne) 390 80 390 n/a 350

Medium Particle Size (μm) 153 120 300 200 153 151 2000

Particle Density (g/cm3) 1.9 5 2.5 2.5 4.1 2.15 2.5

Ut (m/s) 2 0.8 2 1.2 1.1 0.6 11

Uc (m/s) 4 4.8 4.9 4.2 4.8 3.6 4

Use (m/s) 6 6.7 7.5 6.1 6.9 4.9 9.7

Typical Riser Superficial Gas Velocity (m/s) 7.00 12

Bed Area Turbulent Section (if Required) at 1 atm (m2) 231.47 25.18

Bed Area Required for Riser Section at 1 atm (m2) 162.03 10.49

Corresponding Riser Diameter (m) 14.37 3.66

Solids Flux at 1 atm (kg/m2s) 24.69 61.72 18.52 37.03 49.37 61.72 76.23

Number of Beds Needed given 8 m ID Riser 3.23 <1

Number of Beds Needed given 1.5 m ID Riser 91.73 5.94

Ug for a Single 1.5 m ID Riser at 1 atm (m/s) 642.14 71.29

Ug for a Single 8 m ID riser at 1 atm (m/s) 22.58 2.5 (Ug < Ut; N/A)

Required Pressure for a Single 1.5m ID Riser (atm) 91.73 10.00

Solids Flux for a Single 1.5 m ID Riser (kg/m2s) 2264.69 5661.71 1699 3397.03 4529.37 5661.71 452.88

Required Pressure for a Single 8 m ID Riser (atm) 3.23Ug < Ut; N/A

Solids Flux for a Single 8 m ID Riser (kg/m2s) 79.62 199.04 59.71 119.43 159.24 199.04

4000 – 10000 kg/s or 14,000 – 36,000 ton/hour

< 3,000 ton/hour

Page 18: Chemical Looping Technology and CO2 Capture

Oxygen Carrier Selection

Primary Metal Fe Ni Cu Mn Co

Potential Supports Al2O3, TiO2, MgO, Bentonite, SiO2, etc

Cost + – – ~ –

Oxygen Capacity1(wt %) 30 21 20 253 21

Thermodynamics for

CLC

+ ~ + + +

Kinetics/Reactivity2 – + + + –

Melting Points + ~ – + +

Strength + – ~ ~ ~

Environmental& Health ~ – – ~ –

Hydrogen Production + – – – –

1. Maximum theoretical oxygen carrying capacity; 2. Reactivity with CH4; 3. Mn3O4 is the highest oxidation state based on thermodynamics, although not thermodynamically favorable, Mn is assumed to be the lowest oxidation state

Page 19: Chemical Looping Technology and CO2 Capture

Recyclability of Commercial Fe2O3

Page 20: Chemical Looping Technology and CO2 Capture

20

Performance of Composite Fe2O3

0

50

100

150

200

250

300

350

400

450

Fresh

10 Cycles

100 Cycles

Forc

e (N

)

100 Cycle Pellet Reactivity

100 Cycle Pellet Strength

Page 21: Chemical Looping Technology and CO2 Capture

21

Pellet Reaction Mechanism – Ionic

Diffusion for Unsupported Iron

Page 22: Chemical Looping Technology and CO2 Capture

22

Partially oxidized Fe with support Pt mapping

Pt Epoxy Resin PtPellet bulk phase

Pellet Reaction Mechanism – Ionic

Diffusion for Supported Iron

Page 23: Chemical Looping Technology and CO2 Capture

Structures of Iron Oxide

NaCl Type

oxygen close-packed

cubic pattern

iron occupy all

octahedral interstices

inverse Spinel Type

FeO Fe3O4

octahedral interstices

1/2 occupation rate

tetrahedral interstices

1/8 occupation rate

Page 24: Chemical Looping Technology and CO2 Capture

Role of Support – Oxidation of Fe and Fe/TiO2Simulation

Energy barrier for O2- can be reduced after support addition

Oxygen anion transfer in Wüstite and Ilemnite

Page 25: Chemical Looping Technology and CO2 Capture

Number of cycles

2 3 4 5 6 8 20 30 40 50 60 801 10 100

Wt

% C

O2 c

ap

ture

(g

-CO

2 / g

-so

rben

t)

0

10

20

30

40

50

60

70

80

90

PCCa

LCa

Li4SiO4b

PbOc

CaO (microns)d

dolomitee

Theoretical capacity

Comparisons with other HT sorbents

(acurrent work; bToshiba Corpn., cKato et al, 1999; dBarker, 1973; eHarrison et al, 2001, dBarker, 1974)

Page 26: Chemical Looping Technology and CO2 Capture

Atomic Investigation of CO2 Adsorption on CaO

(100)

(110)

(111)

:O :Ca : C

Relaxed adsorption images of CO2

molecule on CaO surfaces

Adsorption energy of CO2 molecules on various CaO surfaces

Surface (100) (110) (111)

Adsorption energy

(eV)

-0.90 -2.12 -0.71

Simulation:Vienna Ab-Initio Simulation Package (VASP)

Surface structure: semi-infinite model

extremely stable configuration may prohibit a further transformation of the intermediate

(CaO·CO2) into the calcium carbonate

Front View Side View

Page 27: Chemical Looping Technology and CO2 Capture

Microscopic

XRD spectra of the sintered sorbents (a) sintered (b) hydrated

800˚C 900˚C 1000˚C 1100˚C 1200˚C 1300˚C

Before 0.139 0.107 0.097 0.088 0.149 0.113

After 0.263 0.234 0.249 0.249 0.235 0.26

The main peak breadth (FWHM) of the sorbents before/after hydration

800˚C 900˚C

1000˚

C

1100˚

C

1200˚

C

1300˚

C

Before

hydration

(111) 19.17 18.70 17.15 18.44 18.12 17.35

(200) 50.82 54.55 51.81 51.55 52.66 50.60

(220) 30.02 26.75 31.04 30.00 29.22 32.05

After

hydration

(111) 20.87 19.84 19.87 22.16 20.36 20.45

(200) 51.19 55.87 53.84 55.40 56.18 55.17

(220) 27.94 24.29 26.29 22.44 23.46 24.38

The intensity of the first three planes on the CaO

surface of various sorbents before and after hydration

fraction of (111) and (100) increase! (110) decrease!

Page 28: Chemical Looping Technology and CO2 Capture

OSU CCR Process

CARBONATOR

CALCINER

HYDRATOR

BOILER

Page 29: Chemical Looping Technology and CO2 Capture

50.3249 48.31 48.71

47.67 47.549.18

46.8948.35

46.6248.44

47.17 46.545.62

44.0545.05

43.713y = -0.316x + 50.085

R² = 0.7591

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

% C

aptu

re c

apac

ity

Cycle number

Hydrated sample capture capacity

before hydration (Calcined)

After hydration

OSU CCR Process

Page 30: Chemical Looping Technology and CO2 Capture

CCR Process Demonstration

Page 31: Chemical Looping Technology and CO2 Capture

Calcium Looping Sub-pilot Unit for Hydrogen production

Page 32: Chemical Looping Technology and CO2 Capture

Comparison Among Gaseous Chemical Looping, Direct Coal Chemical Looping and Traditional Coal to Hydrogen/Electricity Processes

Assumptions used are similar to those adopted by the USDOE baseline studies.

Page 33: Chemical Looping Technology and CO2 Capture

33

My Graduate Students and Research Associates

Zhenchao Sun

S. Rao

William Wang

Songgeng Li

Andrew Tong

Nihar Phalak

Siwei Luo

Yao Wang

Niranjani Deshpande

Ted Thomas

Himanshu Gupta

Puneet Gupta

Alissa Park

Mahesh Iyer

Luis Velazquez-Vargas

Bartev Boghos Sakadjian

Danny Wong

Fanxing Li

Shwetha Ramkumar

Liang Zeng

FuChen Yu

Deepak Sridhar

Ray Kim

Fei Wang

Page 34: Chemical Looping Technology and CO2 Capture

34

Government Agencies and Industrial Corporations

• U. S. Department of Energy

• Ohio Coal Development Office

• U. S. Department of Defense

•Clear Skies

•Noblis/Metritek

•CONSOL Energy

•PSRI

•AEP

•Duke Energy

•Babcock & Wilcox

•Air Products

•Shell

•CRI/Criterion

•First Energy

•Carmeuse Lime and Stone

•LittleFord Day

•Southern Company