chemelot ventures master thesis

85
Master Thesis Global Management Understanding how startups utilize innovative materials and process technologies to disruptively impact industry and market dynamics. The research will reveal the market dynamics of the orthopedic implants market, the trends of various materials used for implants and the advancements in process technologies related to implant manufacturing. Furthermore, this analysis will be the foundation for measuring the attractiveness of startups as viable investment opportunities. Internship: Submitted in order to obtain the degree of Master of Global Management Academic Year 20152016 June 10th, 2016 Master Of Global Management Antwerp Management School Master Thesis Group Members: Emanuel Ponzo Dieu (Antwerp Management School) Michael Calo (Antwerp Management School) Master Thesis Supervisors: Drs. P. Vervinckt (Antwerp Management School) Drs. L. Berghman (CoReader University of Antwerp) M.Sc J. Williams (Chemelot Ventures)

Upload: michael-calo

Post on 16-Apr-2017

118 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Chemelot Ventures Master Thesis

                                                       

Master  Thesis  Global  Management

Understanding  how  startups  utilize  innovative  materials  and  process  technologies  to  disruptively  impact  industry  and  market  dynamics.  

The  research  will  reveal  the  market  dynamics  of  the  orthopedic  implants  market,  the  trends  of  various  

materials  used  for  implants  and  the  advancements  in  process  technologies  related  to  implant  manufacturing.  Furthermore,  this  analysis  will  be  the  foundation  for  measuring  the  attractiveness  of  

startups  as  viable  investment  opportunities.

Internship:  Submitted  in  order  to  obtain  the  degree  of  Master  of  Global  Management  

Academic  Year  2015-­‐2016

June  10th,  2016 Master  Of  Global  Management   Antwerp  Management  School  

Master  Thesis  Group  Members:  

Emanuel  Ponzo  Dieu                                 (Antwerp  Management  School) Michael  Calo                         (Antwerp  Management  School)  

Master  Thesis  Supervisors:  

Drs.  P.  Vervinckt                       (Antwerp  Management  School)         Drs.  L.  Berghman                       (Co-­‐Reader  University  of  Antwerp)         M.Sc  J.  Williams                                           (Chemelot  Ventures)  

 

Page 2: Chemelot Ventures Master Thesis

1

Executive  Summary  

The  main  objective  of  this  thesis  is  to  understand  the  orthopedic  implant  market  from  a  market  

dynamics,  materials  and  process  technology  point  of  view  in  order  to  identify  startups  that  are  potential  

investment  opportunities  for  Chemelot  Ventures.  The  central  research  question  of  this  thesis  is:  ‘‘what  

are  the  critical  criteria  for  selecting  startups  in  the  orthopedic  implant  market?’’  

To  solve  this  research  question,  the  Business  Model  Canvas  framework  of  Alexander  Osterwalder  

and  Yves  Pigneur,  2010  has  been  applied.  Qualitative  research  has  been  conducted  by  interviewing  

various  industry  specialists  in  order  to  understand  the  trends  in  market,  materials  and  process  

technologies  that  are  impacting  the  implant  industry.  The  criteria  identified  in  the  interviews  with  

industry  experts  have  been  combined  with  the  Business  Model  Canvas  framework  as  well  as  objective  

criteria  from  the  LuxResearch  and  Pitchbook  databases.  The  management  team,  technological  value,  

addressable  market  size  and  growth  rate,  industry  competitiveness,  regulatory  factors,  IP  positions  and  

key  partnerships  have  been  identified  as  being  the  most  important  criteria  for  potential  startups  to  

become  successful  in  the  orthopedic  industry.    

The  aforementioned  criteria  have  been  used  consequently  for  analyzing  208  startups  in  the  

LuxResearch  and  Pitchbook  databases,  as  well  as  additional  sources.  Each  startup  could  score  1-­‐5  points  

on  each  criteria  with  an  average  score  of  approximately  27.  From  the  208  startup  companies,  11  have  

been  chosen  for  more  analysis  due  to  their  above  average  scores  and  alignment  with  the  Chemelot  

campus.  Out  of  the  11  startups,  4  have  been  identified  as  having  the  highest  investment  potential  for  

Chemelot  Ventures.  These  4  startups,  BRECA  Healthcare,  Nanovis,  Meotec  and  Syseng  are  thus  

recommended  for  further  analysis  and  contact  by  the  Chemelot  Ventures  investment  team.  These  

startup  companies  fulfill  the  critical  criteria  for  selecting  startups  in  the  orthopedic  implant  market,  as  

well  as  align  with  the  Chemelot  Ventures  investment  profile.    

By  using  the  PESTEL  analysis  to  understand  the  market  dynamics,  the  regulatory  environment  

surrounding  implant  certification  emerged  as  the  greatest  determinant  of  the  future  trends  in  

orthopedic  implant  manufacturing.  The  tendency  dragging  the  potential  down  is  the  resistance  by  

medical  teams  to  adopt  new  technologies.  These  uncertainties  in  the  regulatory  acceptance  of  new  

orthopedic  implant  practices  serve  as  the  largest  threat  for  orthopedic  implant  manufacturers.  To  

facilitate  the  regulatory  interactions  with  government,  many  startups  are  cooperating  with  

physiotherapists  and  government-­‐supported  research  centers  in  hopes  of  pushing  the  regulatory  

adoption  of  emerging  implant  manufacturing  materials  and  process  technologies.  Another  important  

factor  impacting  the  market  dynamics  and  value  chain  is  the  presence  of  key  partnerships  with  suppliers  

Page 3: Chemelot Ventures Master Thesis

2

and  the  level  of  control  a  startup  has  over  aspects  in  the  value  chain.  For  this  reason,  many  startups  are  

attempting  to  bring  more  manufacturing-­‐related  control  in  house,  in  order  to  add  more  value  to  the  

startups  position  in  the  value  chain.    

The  original  scope  of  research  was  in  the  field  of  high-­‐performance  thermoplastic  (HPTP)  

polymer  implants.    Upon  thorough  analysis,  findings  began  to  imply  that  the  orthopedic  implant  

manufacturing  market  had  several  material  alternatives  to  high  performance  thermoplastic  polymers,  

with  their  own  distinct  advantages  and  disadvantages.  Additional  materials  included  magnesium,  

titanium  and  regenerative  stem  cells.  The  main  findings  regarding  the  progression  of  implant  materials  

are  focused  around  the  transition  from  biocompatible  implants  to  implants  with  more  active  and  

regenerative  capabilities.  Due  to  the  various  strength,  weight  load  and  processing  cost  characteristics  of  

the  different  implant  materials,  there  has  been  an  array  of  responses  regarding  the  optimal  implant  

material.  Interviews  with  industry  experts  have  indicated  that  the  preferred  materials  are  implant  and  

patient  specific,  thus  many  startups  have  addressed  this  trend  by  utilizing  various  material  combinations  

that  best  serve  their  desired  customer  segment.  

From  a  process  technology  point  of  view  there  has  been  intense  industry  attention  and  hype  

invested  in  the  potential  for  3D  printing  to  replace  CNC/lean  manufacturing  as  the  status  quo  for  implant  

manufacturing.  Similarly  to  trends  in  implant  materials,  the  belief  in  3D  printing  capabilities  as  the  future  

status  quo  varies  from  startup  to  startup  depending  on  what  key  activities  make  up  their  core  

competencies.  As  a  result  of  the  research  and  interviews  conducted,  it  is  apparent  that  the  increase  in  

3D-­‐printing  capabilities  is  directly  correlated  to  the  trending  development  of  more  complex,  patient-­‐

specific,  customizable  implants.  As  this  trend  gains  momentum  and  regulatory  support,  many  implant  

manufacturing  startups  are  investing  in  R&D  to  develop  these  key  resources  capabilities,  while  

continuing  to  develop  standardized  implants  via  CNC  and  lean  manufacturing  techniques,  such  as  

injection  molding.

As  a  result  of  the  research  conducted  throughout  the  thesis,  10  of  the  original  208  startups  have  

been  recognized  for  investment  potential  with  4  ultimately  being  recommended.  Given  the  analysis  

provided,  Chemelot  Ventures  is  advised  to  conduct  further  analysis  and  establish  contact  with  these  10  

startups.  The  findings  have  implied  that  the  startups  responsible  for  creating  the  most  value  in  the  

orthopedic  implant  value  chain  are  the  implant  manufacturers.  It  is  thus  recommended  that  Chemelot  

Ventures  continue  analysis  on  startups  that  engage  in  implant  manufacturing,  with  both  3D  printing  and  

lean  manufacturing  capabilities,  as  well  as  R&D  in  the  field  of  active  and  regenerative  implants.    

 

Page 4: Chemelot Ventures Master Thesis

3

Acknowledgements    

We would first like to acknowledge, Jeffrey Williams, Investment Analyst at Chemelot Ventures, for

serving as our project supervisor throughout the thesis. His constant advice and assistance played an

integral role in completing all aspects of the research and thesis construction.  

We would like to thank the investment managers at Chemelot Ventures, including Marcel Kloosterman,

Casper Bruens, Kim de Boer and Patrick Claessen for welcoming our participation as interns at

Chemelot Ventures, as well as their willingness to continuously assist in our understanding of the venture

capital arena and the realm of startup investments.

We would like to acknowledge members of the Brightlands Innovation Factory for their assistance in

understanding the Business Development process and the relevant materials, process technologies and

market dynamics at play in the orthopedic implant market. Key contributors included Patrick van der

Meer, Kurt Gielen and Ed Rousseau.  

We would like to thank Jose Manuel Baena, CEO of BRECA Healthcare and Regemat 3D, Dario

Porchetta, intern at Meotec GmbH & Co. KG and Simon Vanooteghem of Materialise, for their

contributions to our interview process. Their input assisted in the understanding of the orthopedic implant

value chain, as well as the key differentiating criteria for startups looking to emerge in the implant market.  

We would like to thank industry experts, Jens Thies, Director of Science and Innovation and Jac Koenen,

Biomedical Materials Scientist, of DSM contributing to our understanding of megatrends of implant

materials and process technologies.  

We would like to thank orthopedic surgeon, Tony Van Tienen, for providing his perspective on the

downstream orthopedic implant market and value chain.  

We would like to thank Amanda Tobin, knowledge expert at McKinsey & Company, for establishing a

foundation of knowledge regarding market dynamics in the field of orthopedic implants.  

We would finally like to thank Jeffrey Lutje Spelberg, Investment Manager at LIOF, for providing an

alternative perspective regarding the process of startup valuation and gauging of investment potential.    

Page 5: Chemelot Ventures Master Thesis

4

Table  Of  Contents  

Executive  Summary  Acknowledgments      Chapter  1:  Research  Proposal    ......................................................................................................................  5  

1.1  Company  &  problem  background  ....................................................................................................  5  

1.2  Demarcation  ....................................................................................................................................  6  

1.3  Introduction  to  research  method  ....................................................................................................  8  

1.4  Academic  &  managerial  relevance  ..................................................................................................  9  

1.5  Report  structure  ..............................................................................................................................  9  

Chapter  2:  Literature  review  ......................................................................................................................  10  

         2.1  External  macro  environment  framework  .....................................................................................  10  

2.2  Industry  competitive  landscape  model      .......................................................................................  10  

2.3  What  is  the  Business  Model  Canvas?  ...........................................................................................  10  

2.4  Value  chain  analysis  framework  ...................................................................................................  15  

Chapter  3:  Research  methodology  ............................................................................................................  16  

3.1  Data  collection  methodology  .......................................................................................................  16  

3.2  Data  analysis  methodology  ...........................................................................................................  18  

Chapter  4:  Results  ......................................................................................................................................  20  

4.1  Qualitative  results  .........................................................................................................................  20  

4.2  Quantitative  results  ......................................................................................................................  25  

Chapter  5:  Discussion  and  conclusion  .......................................................................................................  28  

5.1  Discussion  .....................................................................................................................................  28  

5.2  Conclusion  ....................................................................................................................................  36  

5.3  Practical  recommendations  ..........................................................................................................  37  

5.4  Shortcomings  and  limitations  .......................................................................................................  38  

Chapter  6:  Appendices  ...............................................................................................................................  39  

Works  cited  .........................................................................................................................................  39  

Interview  questionnaire  .....................................................................................................................  42  

Research  population    ..........................................................................................................................  43  

Interviews  ...........................................................................................................................................  45  

Desk  research  data  .............................................................................................................................  78  

 

Page 6: Chemelot Ventures Master Thesis

5

Chapter  1  -­‐  Research  Proposal    

This  first  chapter  serves  as  an  introduction  of  the  thesis  by  introducing  the  company,  explaining  the  

problem  together  with  the  applicable  problem  statement  and  research  questions.  Next,  the  research  

method  will  be  formulated  and  the  academic  and  managerial  relevance  will  be  presented.

1.1     Company  and  Problem  Background  

1.1.1     Company  Background  

Chemelot  Ventures  (CV)  is  an  independent  regional  venture  capital  fund  in  the  south  of  the  Netherlands,  

with  a  focus  on  smart  materials  and  life  sciences.  Chemelot  Ventures  was  established  in  2014  as  a  Dutch  

limited  liability  company.  The  limited  partners  of  the  fund  who  have  each  a  commitment  of  €  10  million  

are  DSM  Nederland,  NV  Industriebank  LIOF,  Limburg  Province  and  Rabobank.  The  capital  fund  invests  in  

product-­‐based  as  well  as  technology  startups,  whose  long-­‐term  visions  align  with  the  ecosystem  of  the  

Brightlands  campuses.  Chemelot  Ventures  proactively  searches  for  startups  in  three  focus  areas:  

sustainable  chemicals  &  materials,  regenerative  medicine  &  biomedical  materials  and  diagnostics  &  

analytics.  There  is  a  great  deal  of  overlap  between  these  focus  areas  and  the  activities  that  take  place  

within  the  Brightlands  Chemelot  campus.  This  report  will  primarily  discuss  investment  opportunities  

regarding  startups  that  have  the  potential  to  add  value  to  the  regenerative  medicine  and  biomedical  

materials  focus  areas.  The  investment  opportunities  should  result  into  a  short  list  of  corresponding  warm  

leads  (startups)  that  Chemelot  Ventures  as  well  as  Brightlands  Innovation  Factory  can  follow-­‐up  on.  

1.1.2     Mission  and  Vision

Mission:  “We  aim  to  accelerate  your  company’s  growth  and  to  quickly  enable  your  breakthrough  innovations  by  

sharing  funding  opportunities,  as  well  as  a  unique  Dutch/German/Belgian  ecosystem  of  chemical,  technology  &  

supporting  businesses,  knowledge  institutes,  governmental  bodies  and  co-­‐investors.  

 

Vision:  “CV  believes  in  a  world  where  people,  companies  and  organizations  work  together  in  a  highly  diverse  

ecosystem  that  aims  to  improve  the  quality  of  life  with  ongoing  innovation.  

 

Company  Objective:  Achieve  status  as  #1  Player  in  all  focus  areas,  across  Europe,  by  2025.

Page 7: Chemelot Ventures Master Thesis

6

1.1.3     Problem  Background

The  problem  addressed  in  the  research  report  surrounds  the  disruptive,  process  and  material  

innovations  within  the  orthopedic  implant  industry  and  how  these  technologies  can  be  integrated  into  

the  market  at  a  comparably,  affordable  cost  to  current  practices.  Due  to  the  fact  that  product  

customization  is  integral  to  the  development  of  orthopedic  implants,  this  research  will  delve  into  the  

potential  of  numerous  startups  to  foster  technologies  that  can  customize  while  being  cost-­‐conscious.  

Ultimately,  the  problem  being  addressed  is  the  universal  affordability  of  orthopedic  implants.  With  

today’s  process  technologies  and  materials,  orthopedic  implants  are  too  costly  for  the  majority  of  our  

global  population.  This  research  will  address  how  startups  are  attempting  to  reduce  these  costs  through  

the  development  of  alternative  implant  materials  and  innovative  process  technologies  that  allows  

implants  to  be  developed  and  customized  at  a  significantly  lower  cost.  

1.1.4     Research  Question

What  are  the  critical  criteria  for  selecting  startups  in  the  orthopedic  implant  market?

1.1.5     Sub-­‐questions

Ø What  innovative  materials  are  used  in  the  creation  of  orthopedic  implants?    

Ø How  does  the  3D  printing  technology  impact  the  ability  of  startups  to  manufacture  

orthopedic  implants  in  comparison  to  conventional  methods?  

Ø How  does  the  introduction  of  innovative  materials  and  process  technologies  impact  the  

market  dynamics  of  the  orthopedic  implant  industry?  

Ø What  are  key  indicators  of  a  startup’s  investment  potential,  according  to  industry  specialists?  

1.2     Demarcation    

The  demarcation  of  this  thesis  is  segmented  into  three  distinct  aspects:  the  relevant  materials  scope,  

process  technologies  scope  and  market  dynamics  scope,  relating  to  the  orthopedic  implant  industry.

1.2.1     Material  Scope

The  history  of  orthopedic  implant  technology  has  been  highly  impacted  by  the  development  and  use  of  

biomaterials  such  as  metals,  polymers  and  ceramics  that  are  placed  in  the  human  body  to  replace  an  

important  bodily  function.    The  scope  of  this  report  will  cover  megatrends  in  the  materials  used  for  

implant  manufacturing  in  the  past,  present  and  their  future  implications  on  the  orthopedic  implant  

industry.  To  narrow  the  scope  of  the  materials  analyzed  within  this  report,  the  focus  of  the  research  will  

Page 8: Chemelot Ventures Master Thesis

7

be  around  polymer-­‐based,  high-­‐performance  thermoplastics  (HPTP)  such  as  Polyetheretherketone  

(PEEK)  and  Polyetherketoneketone  (PEKK),  that  present  innovative  implant  material  alternatives.  The  

emergence  of  these  polymer-­‐based  materials  will  be  compared  to  the  current  use  of  metal  alloys,  as  well  

as  the  introduction  of  active  and  regenerative,  cell-­‐based  implant  materials.  

1.2.2     Process  Technology  Scope

How  are  metal  implants  traditionally  created  and  implemented  and  how  is  3D  printing  changing  the  

game?  The  orthopedic  implant  market  has  been  revolutionized  with  the  introduction  of  the  3D  printing  

technology.  As  the  technology  continues  to  develop,  a  wide  variety  of  materials  are  being  introduced  to  

the  possibility  of  being  3D-­‐printable.  The  scope  of  this  report,  regarding  the  process  technology,  will  

surround  how  the  introduction  of  3D  printing  will  impact  the  manufacturing  of  orthopedic  implants.  

Despite  the  currently  high  tooling  costs  to  manufacture  a  printer  and  then  use  that  printer  to  create  an  

implant,  advances  in  the  technology  are  creating  3D  printers  that  are  precise  and  affordable.  This  report  

will  analyze  the  advantages  and  disadvantages  that  this  technological  development  has  in  relation  to  

lean  manufacturing  and  CNC  processes.  

1.2.3    Market  Dynamics  Scope

Within  this  scope  of  the  research  report,  the  market  dynamics  of  the  orthopedic  implant  industry  will  be  

analyzed  through  a  business  model  canvas  approach.  This  focus  will  allow  a  deeper  understanding  of  

how  the  industry  supply  chain  is  impacted  by  emerging  megatrends  in  the  realm  of  3D  printing  and  the  

use  of  HPTP  polymers  as  a  potential  implant  material  alternative  to  titanium.  With  the  growth  of  3D  

printing  as  a  viable  future  for  implant  manufacturing,  it  is  important  that  this  report  critically  analyze  

how  value  is  created  at  every  stage  from  the  production  of  the  raw  material  to  the  surgical  procedure  of  

inserting  the  orthopedic  implant  into  the  patient.  With  these  rapidly  growing  and  continuously  improving  

developments  in  the  3D  printing  technology,  a  shift  in  the  industry’s  implant  manufacturing  standard  will  

impact  how  the  market  conducts  business  and  how  startups  and  other  key  players  utilize  their  core  

competencies  to  develop  a  sustainable  competitive  advantage.    

 

 

 

Page 9: Chemelot Ventures Master Thesis

8

1.3     Introduction  to  Research  Method  

1.3.1     Literature  Review

In  order  to  provide  a  list  of  warm  startup  leads  in  the  field  of  orthopedic  implants,  an  in-­‐depth  

understanding  of  the  industry  characteristics  and  market  dynamics  is  crucial.  In  addition  to  market  

information  found  through  desk  research  and  the  LuxResearch  and  PitchBook  databases,  the  PESTLE  

analysis  as  well  as  the  Porters  5  Forces  Model  are  thus  applied  to  provide  an  understanding  of  the  

opportunities,  threats  and  trends  present  in  the  orthopedic  implant  market.  Once  the  market  is  

understood,  the  startup  will  be  assessed  through  the  lens  of  the  Business  Model  Canvas,  discussed  in  

the  book  ‘’Business  Model  Generation,’’  written  by  Alexander  Osterwalder  and  Yves  Pigneur.  Lastly,  a  

traditional  Value  Chain  Analysis  will  be  implemented  to  assist  in  understanding  which  key  players  

provide  the  most  added  value.  

1.3.2     Qualitative  Research

The  findings  of  the  literature  review  will  be  used  as  the  starting  point  for  the  qualitative,  in-­‐depth  

interviews.  In-­‐depth  interviews  will  be  conducted  with  industry  specialists,  startups,  investment  bankers  

and  business  developers,  by  using  a  flexible  questionnaire  set  that  can  be  catered  to  the  desired  

audience.  The  main  objective  of  the  qualitative  research  questioning  is  to  gain  insights  about  market  

dynamics,  megatrends  from  various  industry  perspectives  and  develop  criteria  for  assessing  potential  

startups.  To  ensure  the  validity  of  the  qualitative  research,  all  of  the  interviews  conducted  will  be  

recorded  and  the  full  interview’s  content  will  be  typed  and  provided  in  the  appendices.  

1.3.3     Quantitative  Research

By  understanding  the  market  dynamics  as  depicted  through  our  in-­‐depth  interviews,  objective  criteria  

will  be  developed  to  find  startups  that  present  potential  investment  opportunities.  Once  establishing  a  

list  of  objective  criterion,  each  startup  will  be  assessed  and  directly  compared  on  a  standardized  scale.  To  

assist  in  the  search  for  these  startups,  databases  such  as  LuxResearch  and  Pitchbook  will  be  used.  

 

Page 10: Chemelot Ventures Master Thesis

9

1.4     Academic  and  Managerial  Relevance  

The  relevance  of  this  research  topic  and  report  is  founded  in  the  multi-­‐faceted  importance  that  venture  

capital  plays  in  the  funding  of  businesses  and  the  introduction  of  innovative  technologies  across  

countless  industries.  This  research  and  report  bridges  the  worlds  of  biomedical  technology  and  the  

entrepreneurial  spirit  of  startups,  through  the  lens  of  a  venture  capitalist.  In  addition  to  the  complex,  

technical  nature  of  manufacturing  polymer-­‐based  materials  and  the  process  innovations  such  as  3D  

printing,  the  need  for  analytically  comprehending  the  past,  present  and  future  market  trends  within  the  

orthopedic  implant  industry  is  also  of  ultimate  importance.  By  understanding  the  startup  development  

cycle  and  the  dynamics  of  the  orthopedic  implant  market,  the  report’s  scope  connects  the  academic  

theories  covered  within  the  curriculum  to  the  capital  investment  decisions  that  are  relevant  to  

investment  managers’  attempts  to  maximize  returns.  

1.5     Report  Structure  

Below  is  an  outline  of  the  research  and  report  construction  process,  originating  at  market  analysis  and  

arriving  at  a  list  of  warm  startup  leads.  

 

 

 

   

Page 11: Chemelot Ventures Master Thesis

10

Chapter  2  -­‐  Literature  Review  

In  this  chapter,  the  frameworks  that  assist  in  identifying  potential  startups  will  be  addressed.  Through  the  

use  of  the  Business  Model  Canvas  as  the  foundational  framework,  the  investment  potential  of  each  

startup’s  business  model  will  be  assessed.

2.1     External  Macro-­‐Environment  Framework:  PESTEL  

To  begin  understanding  the  environment  in  which  startups  in  the  orthopedic  implant  market  exist,  it  is  

key  to  first  uncover  what  macro-­‐environmental  factors  are  most  impactful  in  determining  the  

opportunities  and  threats  startups  face,  given  their  position  in  the  value  chain.  The  model  used  to  

understand  these  factors  is  known  as  the  PESTEL  Analysis  Framework,  originally  created  by  Harvard  

professor,  Francis  Aguilar  in  1967.  The  factors:  political,  economic,  socio-­‐cultural,  technological,  legal  and  

environmental,  provide  indications  of  an  organization’s  external  macro-­‐environment.  This  framework  

will  provide  a  foundation  for  understanding  the  influential  factors  that  may  assist  or  inhibit  a  startup’s  

attempt  to  create  a  sustainable  competitive  advantage  in  the  orthopedic  implant  market.  

2.2     Industry  Competitive  Landscape  Model:  Porter’s  5  Forces    

Once  the  influential  macro-­‐environmental  factors  are  identified,  the  Porter’s  5  Forces  framework  is  

implemented  to  analyze  the  attractiveness/value  of  the  industry’s  structure.  As  designed  by  Michael  

Porter,  the  model  gauges  the  impact  of  five  distinct  industry  forces  including:  bargaining  power  of  buyers  

and  suppliers,  threat  of  new  entrants  and  substitutes  and  rivalry  among  existing  firms.“  The  5  Forces  

Model  provides  an  “outside-­‐in”  perspective  that  enables  competitor  analysis,  competitive  strategic  

adjustments,  as  well  as  industry  evolution.”  The  framework  provides  a  clear  understanding  of  how  

startups  differentiate  themselves  in  the  implant  market  and  where  the  opportunities  and  threats  to  a  

sustainable  competitive  advantage  exist.  

2.3     What  is  the  Business  Model  Canvas?  

The  Business  Model  Canvas,  discussed  in  the  book  ‘’Business  Model  Generation,’’  was  written  by  

Alexander  Osterwalder  and  Yves  Pigneur  and  published  in  2010.  The  objective  of  the  business  model  

canvas  is  to  develop  a  shared  language  for  describing,  visualizing,  assessing  and  changing  business  

models.  According  to  Osterwalder  and  Pigneur  is:    ‘‘a  business  model  describes  the  rationale  of  how  an  

organization  creates,  delivers  and  captures  value.’’  (Osterwalder,  2010)  Figure  1  below  shows  the  9  fields  

of  the  Business  Model  Canvas  that  will  be  applied  in  this  report  to  address  the  three  designated  research  

scopes:  innovative  materials,  process  technologies  and  the  market  dynamics.  The  business  model  canvas  

Page 12: Chemelot Ventures Master Thesis

11

will  be  the  foundational  framework  of  the  report,  used  in  combination  with  other  relevant  models  that  

relate  to  understanding  specific  fields  within  the  Business  Model  Canvas.  

Figure  1:  The  Business  Model  Canvas  

2.3.1     Key  Partnerships

“Alexander  Osterwalder  and  Yves  Pigneur  define  the  key  partnerships  building  block  as  “the  network  of  

suppliers  and  partners  that  make  the  business  model  work.”  Partnerships  are  created  to  optimize  

business  models,  acquire  resources  and  minimize  uncertainty  and  risk.  There  are  four  partnership  

models  to  consider:  

Ø Strategic  alliances  between  non-­‐competitors  

Ø Coopetition:  Strategic  partnerships  between  competitors    

Ø Joint  ventures  to  develop  new  businesses  

Ø Buyer-­‐supplier  relationships  to  assure  reliable  supplies  

To  comprehend  the  orthopedic  implant  value  chain  and  assess  startups’  investment  potential,  a  startup’s  

partnerships  are  a  key  indicator.  For  example,  a  startup  that  specializes  in  implant  manufacturing,  that  

also  has  a  stable  buyer-­‐supplier  relationship  with  a  material  producer,  is  in  an  advantageous  position  to  

assure  reliable  supplies  at  a  reasonable  price.  Assessing  key  partnerships  among  startups  in  the  

Page 13: Chemelot Ventures Master Thesis

12

orthopedic  implant  market  provides  an  understanding  of  which  startups  have  a  network  of  relationships  

that  can  create  sustainable  growth  and  a  viable  investment  opportunity  for  Chemelot  Ventures.  

2.3.2     Key  Activities

The  Key  Activities  Building  block  describes  the  most  important  things  a  company  must  do  to  make  its  

business  model  work.”  Similar  to  key  resources,  these  activities  are  needed  to  provide  a  value  

proposition  that  reaches  the  market,  maintains  long-­‐term  customer  relations  and  ultimately  earns  

revenues.  When  assessing  startups  that  fit  scope  of  research,    (orthopedic  implant  and  3D  markets)  this  

building  block  will  be  integral  in  understanding  what  each  startup  does  that  is  truly  innovative  and  

valuable  to  the  customer.  Due  to  the  variety  of  business  models  within  the  orthopedic  implant  value  

chain,  the  key  activities  of  each  startup  that  provide  value  to  customers  will  be  subjective  to  the  model.  

2.3.3     Key  Resources

This  building  block  describes  the  resources/assets  necessary  to  create  and  offer  a  value  proposition,  

reach  markets,  maintain  relationships  with  customer  segments  and  earn  revenues.  Resources  can  be  

physical,  financial,  intellectual  or  human  and  are  often  subjectively  related  to  the  type  of  business  

model.  In  relation  to  the  report,  potential  startups  within  each  part  of  the  value  chain  are  likely  to  have  a  

wide  assortment  of  physical,  financial,  intellectual  and  human  resources.  For  example,  the  polymer  

manufacturer  is  likely  to  have  capital-­‐intensive  production  facilities  as  well  as  intellectual  resources  such  

as  patents  and  proprietary  knowledge  regarding  the  creation  of  innovative  polymers.  By  understanding  

the  business  models  behind  startups  at  each  point  in  the  orthopedic  implant  value  chain,  an  analysis  into  

the  positioning  and  investment  potential  of  each  startup  can  be  conducted.    

2.3.4     Value  Proposition:  

The  value  proposition  building  block  addresses  the  questions:  ‘‘what  bundles  of  products  and  services  

are  we  offering  to  each  customer  segment?”  and  ‘‘which  one  of  our  customer’s  problem  are  we  helping  

to  solve?”  According  to  Alexander  Osterwalder  and  Yves  Pigneur  does  a  value  proposition  define  the  

creation  of  value  for  a  customer  segment  through  a  distinct  mix  of  elements?  The  values  can  be  

quantitative  such  as  price,  speed  of  service  or  qualitative  such  as  design  and  customer  experience.  Other  

distinct  elements  can  be  product  newness,  product  performance,  product  customization,  brand  

awareness,  cost  reduction,  risk  reduction  accessibility  and  usability.  The  value  proposition  theory  of  

Alexander  Osterwalder  and  Yves  Pigneur  will  be  applied  by  assessing  startups  that  form  an  eventual  

Page 14: Chemelot Ventures Master Thesis

13

investment  opportunity.  Elements  such  as  product  performance  and  cost  reduction  will  be  taken  into  

account  by  assessing  the  different  startups.

2.3.5     Customer  Relationships

Alexander  Osterwalder  and  Yves  Pigneur  define  customer  relationships  as  the  type  of  relationships  a  

company  develops  with  specific  customer  segments.  The  questions  addressed  in  this  building  block  are:  

‘‘what  type  of  relationship  does  each  of  our  Customer  Segments  expect  us  to  establish  and  maintain  with  

them?’’  The  customer  relationship  can  be  established  due  to  customer  acquisition,  customer  retention  

or  for  boosting  the  sales  (upselling).  The  relationships  can  range  from  personal  to  automated.  Alexander  

Osterwalder  and  Yves  Pigneur  distinguish  between  several  categories  of  customer  relationships:  Personal  

assistance,  dedicated  personal  assistance,  self  service,  automated  services,  communities  and  co-­‐

creation.  By  assessing  startups  on  the  motivation  behind  establishing  relationships  with  a  specific  

customer  segment,  the  way  the  relationship  can  be  maintained  can  be  understand.  Due  to  the  nature  of  

startups,  will  the  ability  for  customer  acquisition  be  assessed  when  looking  for  startups  as  an  investment  

opportunity?    

2.3.6     Channels

According  to  the  text,  the  channels  building  block  “describes  how  a  company  communicates  with  and  

reaches  its  customer  segments  to  deliver  the  value  proposition.”  Channels  are  specifically  the  customer  

touch  points  that  are  an  integral  part  of  the  customer  experience.  Functions  include:  raising  customer  

awareness,  helping  customers  evaluate  the  value  proposition,  allowing  customers  to  complete  purchase,  

deliver  value  proposition  and  provide  post-­‐purchase  customer  support.  Channels  can  be  categorized  by  

being  direct/indirect  or  owned/partner  channels,  each  of  which  provides  their  own  advantages  and  

disadvantages  when  interacting  with  customer  segments.  In  the  context  of  the  research  report,  the  

channel  used  to  present  an  orthopedic  implants  value  proposition  to  the  defined  customer  segments  is  

crucial.  Due  to  the  strict  regulations  regarding  the  approval  of  new  biomedical  materials  and  

technologies,  governments  and  insurance  companies  play  a  key  role  in  the  adoption  of  new  implant  

materials  and  process  technologies,  such  as  3D  printing.  Although  patients  are  the  end  users  of  the  

implant,  it  is  important  to  understand  who  is  responsible  for  choosing  the  implant’s  material  and  method  

of  manufacturing.  By  understanding  all  players  in  the  value  chain,  starting  from  material  creation  to  the  

surgical  procedure,  the  report  will  properly  address  what  customer  segment  hold  the  most  power  and  

how  they  prefer  to  be  reached.  

Page 15: Chemelot Ventures Master Thesis

14

2.3.7     Customer  Segments:

The  customer  segment  building  block  addresses  the  questions:  “For  whom  is  the  startup  creating  

value?’’  and  ‘’who  are  the  most  important  customers  of  the  company?’’  Alexander  Osterwalder  and  Yves  

Pigneur  define  customer  segments  in  the  book  ‘’Business  Model  Generation,  2010’’  as  different    groups  

of  people  or  organizations,  which  the  company  wants  reach  and  to  serve.    To  better  satisfy  customers,  a  

company  may  group  them  into  distinct  segments  with  similar  needs,  similar  behaviors,  or  other  

attributes.    Alexander  Osterwalder  and  Yves  Pigneur  segment  customers  into  5  segments,  mass  market,  

niche  market,  segmented  diversified  and  multi-­‐sided  platforms  (or  multi-­‐sided  markets).  The  aim  of  this  

research  report  is  to  find  startups  that  are  potential  investment  opportunity  for  Chemelot  Ventures,  in  

the  field  of  polymer-­‐based  orthopedic  implants  in  combination  with  3D  printing  technology.  Due  to  the  

customized  nature  of  orthopedic  implants,  the  customer  segments  that  the  startup  serves  is  assumed  to  

be  a  niche  market.  People  who  need  to  have  a  replacement  implant  or  implants  due  to  bone  fractures  

are  seen  as  potential  clients.  Thus,  the  age  of  the  people  can  vary  between  5  to  80  years.  Startups  who  

are  targeting  these  client  segments  are  seen  as  potential  investment  opportunities.  

2.3.8     Cost  Structure

The  cost  structure  building  block  describes  the  most  important  costs  that  a  company  incurs  to  operate  its  

business  model.  Alexander  Osterwalder  and  Yves  Pigneur  address  the  question:  ‘‘what  are  the  most  

important  costs  inherent  in  our  business  model?’’  According  to  the  book,  business  models  can  operate  

under  cost  structures:  cost-­‐  driven  and  value-­‐driven  business  models.  Cost-­‐driven  business  models  try  to  

minimize  costs  wherever  possible  by  using  low-­‐price  value  propositions,  maximum  automation  and  

outsourcing.  Companies  who  are  less  concerned  with  the  implications  of  costs  have  a  more  value-­‐driven  

focus,  such  as  highly  personalized  services.  The  different  cost  structures  can  have  the  following  

characteristics:  Fixed  costs,  Variable  costs,  economies  of  scale,  and  economies  of  scope.  The  theory  of  

this  building  block  will  be  used  for  making  criteria  to  assess  startups  that  present  potential  investment  

opportunities.  Because  orthopedic  implants  are  customized  to  each  patient,  criteria  such  as  the  

allocation  of  fixed  and  variable  costs  can  be  used  to  understand  the  cost  structures  of  potential  startups.        

   

Page 16: Chemelot Ventures Master Thesis

15

2.3.9     Revenue  Streams

The  revenue  building  block  represents  the  cash  a  company  generates  from  its  customer  segments  to  

create  earnings.  The  question  which  Alexander  Osterwalder  and  Yves  Pigneur  address  is:  ‘’For  what  value  

are  our  customers  really  willing  to  pay?’’  According  to  the  book  there  are  several  ways  for  a  company  to  

generate  revenue  streams:  Asset  sale,  usage  fee,  subscription  fees,  lending,  renting,  leasing,  licensing,  

brokerage  fees  and  advertising.  The  different  revenue  streams  can  have  different  pricing  mechanisms  

such  as  fixed  and  dynamic  pricing.  Fixed  prices  are  predefined  prices  and  are  based  on  static  variables.  

Dynamic  prices  are  based  on  changing  market  conditions.  The  pricing  strategies  of  startups  are  key  for  

Chemelot  Ventures  when  analysing  startups’  investment  potential.    Other  important  figures,  which  are  

used  by  Chemelot  Ventures,  have  been  studied  in  the  book  ‘’Finance  for  Executives:  Managing  for  Value  

Creation,  4th  Edition  by  Gabriel  Hawani  and  Claude  Viallet,  2015.’’  Profitability  figures  such  as  Earning  

Before  Interest,  Taxes,  Depreciation  and  Amortization  (EBITDA),  which  indicates  the  operational  income  

of  a  company,  and  Earning  After  Taxes  (EAT)  which  indicates  the  net  profitability  of  a  company  are  used  

by  Chemelot  Ventures.  Key  indicators  such  as  ROE  that  measures  the  amount  of  return  on  an  investment  

relative  to  the  investment  costs.  For  calculating  the  ROIC  Chemelot  Ventures  uses  committed  capital  

versus  company  gain  when  exiting  the  startup.  The  different  figures  will  be  used  when  creating  criterias  

for  analysing  startups  who  are  potential  investment  opportunities.  

2.4     Value  Chain  Analysis  Framework  

The  Philip  Kotler  ‘’Principles  of  Marketing’’  is  used  to  understand  the  value  chain  framework.  It  states  

that  a  value  chain  is  ‘‘a  network  made  up  of  the  company,  suppliers,  distributors,  and  ultimately  

customers  who  partner  with  each  other  to  improve  the  performance  of  the  entire  system.’’  In  this  report  

the  value  chain  analysis  will  be  conducted  to  understand  where  the  most  value  is  created  in  the  

orthopedic  implant  industry.  The  value  chain  analysis  will  be  applied  in  combination  with  Alexander  

Osterwalder  and  Yves  Pigneurs  ‘’Business  Model  Canvas,’’  for  understanding  the  business  models  of  

startups  positioned  throughout  the  value  chain.  

   

Page 17: Chemelot Ventures Master Thesis

16

Chapter  3  -­‐  Research  Methodology  

In  this  chapter  the  qualitative  and  quantitative  research  methodology  is  discussed  together  with  the  

selection  of  the  sample  for  data  collection,  the  formation  of  the  questionnaire  and  the  interview  

technique.  As  result  of  the  qualitative  and  quantitative  methods  outlined  in  the  chapter,  a  list  of  objective  

criteria  to  assess  startups  will  be  formulated.

3.1     Data  Collection  Methodology  

3.1.1     Qualitative  Data  Sample

The  objective  of  the  qualitative  research  is  to  gain  a  scientific  understanding  of  biocompatible  implant  

materials,  developments  in  processing  technologies  and  the  trends  in  market  dynamics.  The  

interviewees  consist  of  market  specialists,  material  scientists,  business  development  managers,  3D  

printing  companies,  investment  managers  and  surgeons.  The  goal  is  to  use  12  specialists  from  

organizations  throughout  the  value  chain,  as  seen  in  Figure  2  below.  

Interview  scope Market  dynamics Material   Technology

Companies McKinsey  &  Co Materialise   Materialise

Brightland  Innovation  Factory

Brightland  Innovation  Factory  

Oxford  Performance  Materials

Biomet  Canada Xilloc   Regemat  3D

Chemelot  Ventures DSM Breca  Healthcare

LIOF  Inv.  Banking Meotec Meotec

Figure  2:  Interview  scope  

3.1.2     Quantitative  Data  Sample  

The  lead  generation  calculation  method  developed  by  Chemelot  Ventures  will  be  used  as  the  starting  

point  for  the  quantitative  research  in  the  different  databases  (Pitchbook  &  LuxResearch).  According  to  

Chemelot  Ventures  only  2-­‐5%  of  leads  present  potential  investment  opportunities.    Given  our  goal  of  

providing  approximately  10  warm  startup  leads  and  Chemelot’s  estimated  percentage  of  potential  

investment  opportunity,  the  desired  sample  size  will  range  from  175-­‐225  startups.

 

Page 18: Chemelot Ventures Master Thesis

17

3.1.3     Strategy  

The  strategy  supporting  the  report’s  research  methodology  is  based  on  the  combination  of  qualitative  

and  quantitative-­‐based  sources  to  create  a  holistic  understanding  of  the  orthopedic  implant  market.  To  

establish  a  well-­‐rounded  view  of  the  market,  this  strategy  incorporates  the  qualitative  viewpoints  of  

industry  professionals  with  the  quantitative  data  provided  within  the  industry-­‐related  databases.  This  

combination  will  provide  perspectives  on  the  market  that  would  not  be  as  easily  attained  without  

personal  interaction  with  experienced  industry  professionals  and  opinion  leaders.  The  research  will  

address  the  concerns  and  developments  throughout  the  value  chain  and  will  analyze  how  the  

development  of  biocompatible  materials  and  3D  capabilities  are  revolutionizing  orthopedic  implants.

3.1.4     Data  Sources

During  the  data  collection  procedure,  the  sources  of  the  research  conducted  are  of  ultimate  importance.  

The  interviews  must  provide  subjective  opinions  of  opinion  leaders  in  each  relevant  sector  of  the  

orthopedic  implant  market.  To  create  this  list  of  startups,  the  report  combines  database  information  as  

well  as  industry  professionals’  opinions.  The  primary  sources  and  their  value  added  are  as  follows:

● Industry  Professionals:  Industry  professionals  recognize  opportunities,  threats  and  developing  

megatrends  that  may  impact  the  ability  for  new  materials  and  technologies  to  emerge.  

● LuxResearch:  Lux  Research  is  an  independent  research  firm  that  provides  strategic  information  

on  startups.  Lux  Research  conducts  primary  research  in  which  the  company  interviews  

managers,  partners,  customers  and  outside  experts.  The  database  is  widely  used  by  venture  

capital  firms  to  understand  market  trends  and  to  select  startups  that  fulfill  the  criteria.  

● Pitchbook:  The  Pitchbook  database  is  a  business  intelligence  database,  widely  used  by  venture  

capitalists,  private  equity,  investment  banks  and  corporate  developers.  Potential  investors  can  

find  information  regarding  valuations,  growth,  market  traction  and  financing  history  of  startups.  

Pitchbook  will  emphasize  financial  information  related  to  a  startup’s’  investment  potential.  

3.1.5     Quality  Control:  Validity  of  Sources

Due  to  the  fact  that  much  of  the  research  collected  contain  subjective  viewpoints  of  industry  

professionals,  the  credibility  of  the  source  and  validity  of  the  information  is  crucial.    To  guarantee  the  

quality  of  data  collected,  the  industry  professionals  referenced  must  be  a  professional  within  the  

project’s  scope.  Although  the  content  of  each  interview  may  vary  in  structure,  topic  and  length,  the  

interviews  validity  will  be  guaranteed  through  the  use  of  taped  recordings.  The  interview’s  line  of  

Page 19: Chemelot Ventures Master Thesis

18

questioning  and  responses  will  be  provided  within  the  report’s  appendix.  In  addition,  the  research  

collected  through  the  databases  must  also  be  valid.  Therefore,  our  report  will  rely  on  reputable  

databases  such  as  PitchBook  and  Lux  Research.

3.2     Data  Analysis  Methodology  

   

Objective  Criteria Definition Score  of  1 Score  of  3 Score  of  5

Technology  Value How  strong  is  the  startup’s  technical  solution  related  to  the  necessary  material?

Solution  does  not  offer  better  value  in  terms  of  performance

Solution  offer  incremental  improvements  on  material  or  performance

Solution  offers  discontinuous  improvements  on  materials  and  performance.

Addressable  Market  Size

If  the  startup  had  100%  market  share  in  all  operational  segments,  what  would  its  annual  revenue  be  in  U.S  dollars?

<  $  10  million  to  $  100  million

$  100  million  to  $1  billion

$1  billion  to  $10  billion.

Market  Growth  Rate

Is  the  startup  making  rapid  progress,  stagnant,  or  backsliding?

Startup  is  backsliding  and  doesn’t  have  competitive  growth  rate

Startup  is  stagnant  or  achieves  same  market  growth  rates  as  competition

Startups  sign  frequent  deals,  releases  products,  attract  funding  and  achieves  above  average  market  growth  rates.

Competitiveness Are  many  other  startups  doing  the  same  thing?

Many  competitors  with  similar  solutions

Number  of  competitors  but  startup  offers  additional  benefits

Startup  offers  a  unique  

solution  with  little  or  no  

competition.

 

Regulatory  Factors Will  the  regulatory  factors  facilitate  operations  or  impede  the  startup’s  development?

The  startup  is  unlikely  to  be  able  to  proceed  

Regulatory  issues  slow  down  the  startup

Favorable  regulatory  

factors  drive  progress

 

IP  Position How  likely  is  it  that  the  startups  patent  or  trade  secret  will  be  valuable?

Weak  IP  position  or  the  startup  doesn’t  yet  focus  on  IP  as  a  property

Defensible  IP  position  which  can  be  challenged  by  competition

Defensible  IP  position  

which  is  already  highly  

protected  by  the  startup

 

Management  Team

How  strong  is  the  organization's  management  team?

Inexperienced  management  team

Competent  management  team  with  some  gaps

Experienced  and  well-­‐

connected  management  

team  with  no  apparent  

gaps    

 

Partnerships How  strong  are  the  startup’s  partnerships  

No  partnerships 1+  significant  partnerships  that  are  likely  to  drive  growth

Exceptional  partnerships  which  are  vital  for  growth

Figure  3:  Selected  Criteria    

Page 20: Chemelot Ventures Master Thesis

19

3.2.1     Qualitative  Data  Analysis  

The  qualitative  data  is  gathered  by  conducting  personal  interviews  with  a  flexible  questionnaire  that  can  

be  adjusted  to  address  all  industry  professionals  within  the  orthopedic  implant  industry.  The  interview  

material  consists  of  a  The  results  will  provide  the  foundation  for  the  quantitative  research  to  be  

conducted  later  in  the  report.  The  aim  of  the  qualitative  research  is  to  enhance  the  understanding  of  the  

orthopedic  implant  market  from  a  market  dynamic,  material  and  process  technology  point  of  view.  The  

formulated  questions  need  to  give  more  insight  into  the  megatrends  in  the  market,  competition,  value  

chain  composition,  key  success  factors  and  industry  attractiveness.  The  outcome  of  the  interviews  are  

then  analyzed  through  frameworks  such  as  the  business  model  canvas,  Porter’s  5  Forces  and  PESTEL.  

3.2.2     Quantitative  Data  Analysis  

In  total,  11  specialists  are  interviewed  to  understand  the  criteria  that  influence  startups  active  in  the  

orthopedic  implants  market.  The  results  of  the  interviews  are  compiled  with  the  databases,  as  well  as  

important  criteria  of  the  ‘’Alexander  Osterwalder  and  Yves  Pigneur’s  Business  Model  Canvas.’’  8  criteria  

are  identified  as  key  indicators  that  influence  the  startup’s  investment  potential.    Criteria  drawn  from  the  

databases  include:  Technology  Value,  Addressable  Market  Size,  Competitiveness  and  Regulatory  Factors.  

During  interview  sessions,  professionals  included  Growth  Rate,  IP  Position  and  Management  Team  as  the  

most  important  criteria  for  startup  companies.  The  final  criteria  ‘’Key  Partners’’  has  been  taken  from    

Alexander  Osterwalder  and  Yves  Pigneur’s    Business  Model  Canvas.  The  criteria  have  a  scale  from  1  to  5  

as  seen  in  figure  3.

 

 

 

 

 

 

 

 

 

 

 

Page 21: Chemelot Ventures Master Thesis

20

Chapter  4  -­‐  Results  

This  chapter  provides  the  results  of  qualitative  and  quantitative  observations  gathered  during  research.  

First,  the  findings  and  megatrends  discovered  throughout  the  interviews  will  be  displayed.    An  

explanation  of  each  criterion’s  relevance  and  scoring  will  then  be  discussed.  Next,  a  statistical  and  

graphical  representation  of  the  208-­‐startup  sample’s  data  will  be  provided.    Finally,  an  in-­‐depth  report  of  

the  results  for  startups  with  the  highest  potential  will  be  given.  

4.1     Qualitative  Results  

4.1.1     Key  Macro-­‐Environmental  Factors

Figure  4  discusses  the  main  environmental  factors,  which  are  a  result  of  the  industry  professionals’  

responses.  The  main  factors  and  key  factors  are  discussed  in  the  figure  below.  

Factors     Drivers   Impact  

Regulatory   Directive  93/42/EEC  

concerning  medical  devices  

Orthopedic  surgeries  such  as  Hip,  

Knee,  Shoulder  joint  

placements/replacements  

Prevents  entry  of  non-­‐certified  

implants.  Manufacturer  must  show  

clinical  data  to  support  claimed  

performance  of  the  implants  to  get  

an  approval.  

FDA  Good  Guidance  

Practice      

Orthopedic  surgeries  for  

placing/replacing  implants  and  

production  of  orthopedic  devices.  

"For  evaluating  the  substantial  

equivalence  and/or  safety  and  

effectiveness  of  modified  

orthopedic  implant  surfaces  that  

are  in  contact  with  tissue  or  bone  

cement.’’  (FDA.gov,  1994)    

    Warranties   Responsibility  for  3D  implant  

production  and  successful  surgical  

procedure  

“Terms  and  conditions  are  created  

to  place  end  responsibility  on  the  

surgeon.  The  surgeon  is  liable  as  

long  as  all  regulatory  stipulations  

have  been  met.”  (Simon  

Vanooteghem)  

Technology   3D  manufacturing   Patient  specific  or  mass-­‐

customization  of  medical  implants  

Decreases  cost  of  original  and  

revision  surgeries  and  increases  

efficiency  due  to  implant’s  patient  

specificity    

    Active  and  Regenerative  

Implants  

R&D  in  breakthrough  

biocompatible    materials  that  

foster  cell-­‐tissue  regeneration  

“We  will  use  regenerative  stem  

cells  for  injury  and  temporary  

metallic  implant  to  support  the  

loads  and  provide  adaptive  

implants  that  provide  signals  to  the  

regenerative  part  to  improve  

recovery  processes.”  (Jose  Baena)  

Page 22: Chemelot Ventures Master Thesis

21

Political   Insurance  Coverage  and  

Reimbursement  

3D  manufactured  implants   “The  government’s  regulatory  

acceptance  is  a  deciding  factors  in  

the  adoption  of  3D  printing  

technologies  due  to  the  impact  

their  regulations  have  on  insurance  

coverage.“  (Simon  Vanooteghem)  

Figure  4:  Key  Macro-­‐Environmental  Factors

4.1.2     Results  on  Industry  Attractiveness  

The  Porter’s  5  Forces  framework  is  implemented  to  analyze  the  attractiveness  of  the  orthopedic  implant  

industry.  The  model  gauges  the  impact  of  five  distinct  industry  forces.  Using  the  qualitative  information  

gathered  through  the  interviews  with  industry  specialists  and  the  5-­‐Forces  framework,  figure  5  below  

outlines  the  intensity  of  the  industry  force  and  its  impact  on  the  industry's  competitive  landscape.    

Threat/Force Intensity Impact

Rivalry High Orthopedic  Market  Value:  $38  Billion;  Intense  competition  related  to  R&D  and  proof  of  concept

Substitutes Low No  alternative  for  the  need  of  orthopedic  implants

Buyers Medium Surgeons  primarily  responsible  for  demanding  new  implant  technology

Suppliers Medium Need  for  stable  partnership  with  material  and  process  technology  providers

New  Entrants Medium High  initial  capital  investment  for  Property  Plant  &  Equipment  and  establishment  of  value  chain  network  needed

Figure  5:  Porter’s  5  Forces  Framework  for  the  Orthopedic  Implant  Industry

 

 

 

 

 

 

 

 

Page 23: Chemelot Ventures Master Thesis

22

4.1.3     Results  on  Value  Chain  Analysis  

Figure  6  discusses  the  results  of  the  value  chain  analysis.  The  value  chain  is  restricted  to  the  most  

important  chains  which  influence  the  research  field  of  this  paper.  According  to  Ed  Rousseau,  Business  

Development  Manager  at  Brightlands,  the  most  important  positions  in  the  value  chain  are  the  materials  

supplier,  equipment  supplier,  implant  producers,  surgeon,  patients  and  insurance  companies.  

   

  Value  Chain  

  Material  Suppliers  à   Equipment  Suppliers    à  

Implant  Producers    à  

Surgeons    è  

Patients  &  Insurance  companies  

Activities     Polymers  (PEEK/PEKK/PLA)  

Titanium  Magnesium  Regenerative  Cells  

3D  manufacturers  CNC  machines  manufacturers    

Hip  Implants  Knee  implants  Spines  Screws  Cranial  implants  

Public  Hospitals  Private  Hospitals  Independent  Surgeons  

Young  People  Adults    Older  people  

Companies  

DSM  DuPont  BASF  Solvay  Victrex  Arkema  

3D  Systems  EOS  Arcam  CNC  Manufactures  

Oxford  Performance  Materials  Xilloc  Materialise  Meotec  

N.A.V   N.A.V  

Value  Creation  

 Probably  20%  of  the  value  is  created  in  this  chain    

 Probably  20%  of  the  value  is  created  in  this  chain  

 Probably  60%  of  the  value  is  created  in  this  chain    

   

Figure  6:  Value  Chain  Analysis    

4.1.4     Results  on  materials

The  most  applicable  materials  for  developing  orthopedic  implants  are,  according  to  the  conducted  desk  

research  and  interviews:  PEEK  polymers,  PEKK  polymers,  plant  based  polymers  (PLA),  Titanium,  

Magnesium  and  Regenerative  Cells.    

 

Page 24: Chemelot Ventures Master Thesis

23

Materials Characteristics Applications Trends Research  method

Polymer  PEEK

+  High  strength

+  Biocompatibility

-­‐  Weight  load

-­‐  high  selling  price  $  75-­‐150/kg

-­‐  high  production  costs

Orthopedic  implants,  

oil  &  gas  and  

aerospace

+  Sustainable  

manufacturing  

practices

+  3D  Printing  

applications

Desk  research

Emanuel  Orlando  and  

Vicari,  2015

Polymer  PEKK

+  High  strength  to  weight  property

+  Biocompatibility

-­‐  high  selling  price  $  75-­‐150/kg

-­‐  high  cost  of  production

Orthopedic  implants,  

oil  &  gas  and  

aerospace

+  lightweight  

materials

+  Sustainable  

manufacturing  

practices

+  3D  Printing  

applications

Interview  &  desk  

research

Emanuel  Orlando  and  

Vicari,  2015

Plant  based  

polymer  PLA

+  Biodegradable

+  Enhanced  processability

+  High  strength

+  3D  properties

Orthopedic  implants

+  multifunctional  

applications

+++3D  Printing  

applications

-­‐  alternative  fuel  

based  materials  

slow  down  growth

Interview  &

Desk  Research

Hackett,  Adam  Bland,  

2015

Titanium

+  Biocompatible

+  10  year  product  lifecycle

+  Corrosion  resistance

-­‐  absorption  of  temperature

-­‐  Implant  failure  due  to  loosening  of  

material

-­‐  Too  Strong

+  Current  status  quo  

for  implants

+multifunctional  

application

-­‐  revision  surgery  

needed  which  

increases  costs

Proven  track  record  

for  orthopedic  

implants

-­‐  alternatives  such  

as  polymers  are  

gaining  market  

share

Interview  &

Desk  research

Wilson  Wang  &  Chye  

Khoon,  2015

Magnesium

+  Highly  biocompatible

+  Active  communication  with  bone

+  Biodegradable

 -­‐  limited  material  track  record  

compared  to  other  materials

 

Orthopedic  implants,

Automotive  industry

+  Reduces  revision  

surgery  which  

decreases  

healthcare  costs

Interview

Dario  Porchetta  2016

Regenerative  

Cells

+  Biocompatible

+  Faster  Healing

+  Biodegradable

-­‐  limited  material  track  record  

compared  to  other  materials

Orthopedic  implants

 

-­‐  No  favorable  

regulatory  

environment

Interview

Dario  Porchetta  2016

Page 25: Chemelot Ventures Master Thesis

24

4.1.5   Results  on  process  technology

Figure  8  shows  the  most  applicable  technology  for  manufacturing  orthopedic  implants.  

According  to  the  interviews,  Computer  Numerical  Control  (CNC)  machines  and  3D  Printers  are  

the  most  used  manufacturing  methods.  An  important  remark  is  that  CNC  machines  are  currently  

the  status  quo,  with  3D  printing  acting  as  a  disruptive  technology.    

Technology Advantages Disadvantages

 

Computer  Numerical  Control  

Machines  (CNC):  Status  Quo

Many  CNC  manufacturers  available Specialist  knowledge  required  for  

software  updates  and  maintenance

Machines  capability  24/7  for  

implant  production  

Not  able  to  produce  patient  specific  

implants

Efficient  lean  manufacturing High  initial  outlay  costs

Proven  manufacturing  process,  

knowhow  of  machines  widely  

available

 

Feedstocks:  titanium,  polymers  and  

carbons  are  widely  available

 

3D  Manufacturing

 

Technology  can  be  used  for  

developing  patient  specific  implants

A  few  manufacturers  (3D  Systems,  

EOS,  Arcam  Stratasys)  specialize  in  

producing  the  hardware

Technology  is  capable  of  

developing  more  complex  implant  

structures

Feedstock:  titanium,  magnesium  

and  polymers  are  not  widely  

available  

Low  waste  due  to  additive  

manufacturing

Higher  feedstock  prices  vs.  CNC  

feedstock  prices

Figure  8:  Orthopedic  implant  manufacturing  technologies    

 

Page 26: Chemelot Ventures Master Thesis

25

4.2     Quantitative  Results    

4.2.1     Statistical  Results  of  Sample  Observations

As  noted  below,  the  sample  size  assessed  during  research  and  analysis  comes  to  a  total  of  208  startups.  

In  total,  about  96%  of  startups  analyzed  originate  from  the  databases,  while  the  additional  4%  of  

startups  came  from  the  personal  knowledge  and  experience  of  the  interviewees.  Given  the  possibility  of  

reaching  a  maximum  score  of  40,  the  average  score  that  a  startup  received  during  analysis  came  to  a  

value  of  27.  When  measuring  investment  potential,  this  mean  serves  as  a  basic  measure  of  how  a  startup  

measured  up  to  others  in  the  sample.  A  score  too  low  or  too  high  in  relation  to  the  mean  does  not  

exclude  the  startup  from  analysis  but  provided  an  indicator  that  additional  analysis  may  be  necessary.  

The  range  of  values  collected  during  the  analysis  of  the  208-­‐startup  sample  fell  between  the  scores  of  16  

and  36  out  of  a  possible  40  points.  This  wide  range  in  scores  indicates  the  varied  potential  of  startups  in  

the  orthopedic  implant  market.  A  range  of  20  points  indicates  the  severity  of  risk  and  uncertainty  in  

establishing  a  startups’  in  this  market.  Understanding  the  score  as  positioned  against  other  startups  in  

the  sample  provides  a  comparable  basis  for  gauging  investment  potential.  

General  Observations  of  Entire  Sample

Figure  9:  Normal  Distribution  of  Scores  for  Entire  208-­‐Startup  Sample    

 

 

 

 

 

 

 

 

 

Page 27: Chemelot Ventures Master Thesis

26

0  

0.02  

0.04  

0.06  

0.08  

0.1  

0.12  

0   5   10   15   20   25   30   35   40   45  

TOP  10  STARTUPS    

General  Observations  of  Top  Potential  Startups

Ultimately,  a  list  of  10  startups  with  the  highest  degree  of  alignment  and  investment  potential  were  

compiled  and  subject  to  further  investigation.  This  sample  of  10  startups  selected  for  additional  analysis  

constituted  5.3%  of  the  entire  pool  of  startups.  The  average  score  of  the  10  startups  identified  as  having  

portfolio  alignment  and  investment  potential  was  32  points.  In  comparison  to  the  mean  of  the  entire  

sample  (27),  a  score  of  32  indicates  an  average  result  that  is  one  standard  deviation  (5)  above  the  entire  

sample’s  mean.  It  is  believed  that  this  higher  mean  (32)  and  narrower  range  (10)  indicates  a  more  

promising  investment  potential  and  opportunity  for  successful  exits  for  Chemelot  Ventures.    

Figure  11:  Normal  Distribution  of  Scores  for  Top  Potential  Startups    

   

Page 28: Chemelot Ventures Master Thesis

27

Detailed  Observations  of  Top  Potential  Startups  vs.  Key  Criteria

This  section  provides  data  related  to  the  raw  observations  made  during  the  assessment  of  the  highest  

potential  startups.  To  understand  the  importance  of  each  objective  criteria,  the  average  values  of  each  

criteria  for  the  entire  sample  are  compared  to  the  average  values  for  the  10  selected  startups.  The  

startups  with  the  highest  investment  potential  distinguish  themselves  by  their  scores  on  each  criteria  as  

well  as  their  feasible  alignment  into  the  Chemelot  Ventures  portfolio  and  Brightland  Innovation  Factory.

Figure  12:  Recommended  Startups  for  Additional  Analysis

Figure  13  below  displays  the  average  score  per  criteria  of  both  the  208  and  10  startup  samples.  The  chart  

serves  as  a  visual  comparison  of  the  variation  in  quantitative  scores  to  assist  in  understanding  the  extent  

to  which  the  high  potential  startups  differ  from  the  results  of  the  entire  sample.  On  average  the  10  

selected  startups  scored  highest  on  addressable  market  (4.5)  followed  by  technological  value  (4.3),  

management  team  (4.3)  and  competitiveness  (4.1).  

Figure  13:  Average  Score  Per  Criteria  

Addressable  Market Competitiveness Growth  Rate IP  Position Regulation Management   Partnerships Total  Points Stage

Syseng 5 3 3 3 3 3 3 28 Lab

Layerwise 5 3 3 3 5 3 1 26 Scale

Organovo 3 3 3 3 3 5 5 30 Introduction

Epibone 5 5 5 3 3 5 5 36 scale

Nanovis 5 5 3 5 3 5 5 36 introduction

Osteonovus 5 5 3 3 3 5 5 34 scale

T&R  Biofab  CO 5 5 3 3 5 5 5 36 scale

Teknimed 5 5 3 3 3 5 5 34 scale

Meotec 5 3 3 5 3 5 5 32 Scale

Breca  Healthcare 3 5 5 3 5 3 3 32 Scale

Page 29: Chemelot Ventures Master Thesis

28

Chapter  5  –  Discussion  and  Conclusion  

The  discussion  and  conclusion  will  provide  the  explanation  of  the  results  through  the  discussion  of  the  

relevant  market  megatrends  and  patterns,  as  well  as  an  in-­‐depth  analysis  of  the  startups  with  the  highest  

recognized  investment  potential.  The  conclusion  will  serve  to  address  the  3  sub-­‐questions  related  to  

market  dynamics,  innovative  materials  and  process  technologies  in  the  orthopedic  implant  industry,  the  

thesis’  limitations,  as  well  as  answer  the  research  question,  ‘‘what  are  the  critical  criteria  for  selecting  

startups  in  the  orthopedic  implant  market?’’  Ultimately,  all  findings  will  be  converted  into  concrete,  

practical  recommendations  for  Chemelot  Ventures’  future  endeavors  in  the  orthopedic  implant  market.  

5.1   Discussion  

Figure  14:  Recommended  startups  for  additional  analysis

5.1.1   Trend  and  Pattern  Analysis:  Via  the  qualitative  and  quantitative  data  collected  through  

interviews  and  desk  research,  megatrends  and  underlying  patterns  that  impact  the  orthopedic  implant  

market  are  discussed  below  from  three  perspectives:  market  dynamics,  innovative  materials  and  process  

technologies.  In  combination  with  these  megatrends,  Meotec  and  BRECA  Healthcare  will  be  analyzed  to  

exemplify  the  various  strategies  startups  employ  to  capitalize  on  these  emerging  market  patterns.  

 

Sub-­‐question  1:  How  does  the  introduction  of  innovative  materials  and  process  technologies  impact  

the  market  dynamics  of  the  orthopedic  implant  industry?  

Upon  using  the  PESTLE  framework  to  assess  the  macro-­‐environmental  factors  at  play  in  the  orthopedic  

implant  market,  the  regulatory  environment  surrounding  implant  certification  is  the  greatest  

Addressable  Market Competitiveness Growth  Rate IP  Position Regulation Management   Partnerships Total  Points Stage

Syseng 5 3 3 3 3 3 3 28 Lab

Layerwise 5 3 3 3 5 3 1 26 Scale

Organovo 3 3 3 3 3 5 5 30 Introduction

Epibone 5 5 5 3 3 5 5 36 scale

Nanovis 5 5 3 5 3 5 5 36 introduction

Osteonovus 5 5 3 3 3 5 5 34 scale

T&R  Biofab  CO 5 5 3 3 5 5 5 36 scale

Teknimed 5 5 3 3 3 5 5 34 scale

Meotec 5 3 3 5 3 5 5 32 Scale

Breca  Healthcare 3 5 5 3 5 3 3 32 Scale

Page 30: Chemelot Ventures Master Thesis

29

determinant  of  the  future  trends  in  orthopedic  implant  manufacturing.  According  to  Meotec,  “The  

tendencies  dragging  the  potential  down  are  the  resistance  by  medical  teams  to  adopt  new  technologies.  

This  is  impacted  by  the  surrounding  regulatory  acceptance.  Certification  of  each  phase  of  the  process  

(Code  13428)  is  necessary  but  it  doesn’t  guarantee  doctor  support.”  Additionally,  Mr.  Baena  states  that,  

“In  BRECA,  high  costs  and  lack  of  historical  data  have  created  slow  progression  to  get  EU  regulation  

confirmation  in  the  field  of  biomaterial  printing.”  These  uncertainties  in  the  regulatory  acceptance  of  

new  orthopedic  implant  practices  serve  as  the  largest  threat  for  orthopedic  implant  manufacturers.  

Despite  the  circumstances,  startups  like  BRECA  Healthcare  and  Meotec  cannot  wait  for  full-­‐fledged  

government  support,  as  prior  R&D  is  necessary.  To  facilitate  the  regulatory  interactions  with  

government,  many  startups,  including  BRECA  are  cooperating  with  physiotherapists  and  government-­‐

supported  research  centers  to  foster  communication  in  hopes  of  pushing  the  regulatory  adoption  of  

emerging  implant  manufacturing  materials  and  process  technologies.

 

When  analyzing  the  forces  at  play  via  the  Porter’s  5  Forces  Model,  rivalry  among  competitors  and  the  

power  of  buyers  emerged  as  the  most  prominent  forces  affecting  the  orthopedic  implant  industry.  

Supported  by  the  growing  hype  of  3D  printing,  a  vast  number  of  startups  have  attempted  to  develop  

implant-­‐manufacturing  capabilities  via  additive  manufacturing  techniques.  Along  with  the  transition  to  

more  active  and  regenerative  implants,  BRECA  Healthcare  has  recognized  greater  than  30  emerging  

competitors  currently  in  the  research  phase  of  developing  bio-­‐printing  capabilities.  In  the  case  of  

Meotec,  they  have  reported  that  one  other  company  is  currently  producing  magnesium-­‐alloy  based  

implants  and  conducting  human  tests,  with  several  others  still  in  the  R&D  phase.  With  competition  stiff  

and  constantly  growing,  the  differentiating  factor  lies  in  the  startup’s  superior  resources,  partnerships,  

knowhow  and  value  proposition.  Meotec,  for  example,  is  attempting  to  differentiate  their  value  

proposition  from  the  existing  market  of  mostly  non-­‐personalized  titanium  implants  by  offering  a  

degradable  implant  with  heightened  biocompatibility,  ultimately  delivering  better  results.  According  to  

Meotec,  “Investments  in  analytical  machinery  and  the  knowhow  behind  it  are  crucial.  Competitors  must  

have  top-­‐notch  analytical  capabilities  as  well  as  the  right  scientist  for  the  right  machine.  Lastly,  an  

optimized  chain  of  communication  is  also  necessary.”  According  to  BRECA  Healthcare,  their  value  

proposition  lies  in  “their  level  of  clinical  knowhow  and  alignment  with  surgery  room  standards  and  

regulations.”

Page 31: Chemelot Ventures Master Thesis

30

In  addition  to  the  presence  of  stiff  competition,  the  power  of  buyers,  specifically  surgeons/doctors  is  a  

prominent  force  at  play  in  the  orthopedic  implant  market.  According  to  both  Meotec  and  BRECA  

Healthcare,  frequent  communication  with  surgeons  and  doctors  is  crucial  to  determining  what  new  

technologies  and  treatments  are  in  demand.  According  to  Mr.  Baena  of  BRECA  Healthcare,  “It  is  my  

belief  that  research  and  development  into  3D  printing  as  a  technology  will  be  temporary.  It  is  the  need  of  

surgeons  that  will  use  new  solutions  to  enhance  their  practice  in  the  orthopedic  surgery  market  that  

demand  these  new  technologies.  It  is  the  need  of  new  treatments  by  surgeons  that  want  to  try  new  

treatments  and  create  new  sources  of  revenue.”  For  this  reason,  startups  must  rely  on  key  partnerships  

with  surgeons  to  truly  understand  the  future  needs  of  the  orthopedic  implant  market.    It  is  important  

that  orthopedic  implant  manufacturers  engage  in  a  demand-­‐pull  strategy  to  ensure  that  the  R&D  being  

invested  in  will  ultimately  be  adopted  by  doctors/surgeons.

 

An  important  factor  impacting  the  market  dynamics  and  value  chain  is  the  availability  of  material  

feedstock  via  key  partnerships  with  suppliers  and  the  level  of  control  a  startup  has  over  aspects  in  the  

value  chain.  For  this  reason,  many  startups,  including  BRECA  Healthcare  and  Meotec,  are  attempting  to  

bring  more  manufacturing-­‐related  control  in  house.  According  to  Meotec,  “everything  manufacturing  

related  is  done  in  house.  We  are  trying  to  establish  the  whole  chain  from  design  to  manufacturing  in-­‐

house  in  smaller  batches.  The  printer  hardware  is  manufactured  elsewhere.”  With  a  unique  magnesium-­‐

alloy  material  as  the  basis  of  their  value  proposition,  Meotec  is  looking  to  use  their  partnerships  with  

magnesium  providers  “to  round  up  internal  knowhow  in-­‐house  so  that  we  are  able  to  produce  from  the  

melting  of  the  material  itself  to  the  production  of  the  implant.  By  ensuring  the  feedstock  of  the  

magnesium  alloy  upstream,  Meotec  assures  a  more  stable  future  for  their  patented,  plasma  electrolytic  

oxidation  (PEO)  process.

 

In  BRECA  Healthcare’s  case,  their  partnerships  with  material  providers  are  also  extremely  important  to  

their  stability  and  control  over  their  cost  structure.  According  to  Mr.  Baena,  “Our  printer  system  can  use  

several  materials  that  are  constantly  being  created  but  we  tend  to  work  with  partners  that  request  

material  that  are  already  authorized  and  regulated.  We  know  if  we  want  to  print  more  complex  

structures  and  applications  we  will  need  new  materials.”  There  is  a  growing  development  of  desire  to  

bring  more  and  more  knowhow  in-­‐house  through  these  key  partnerships.  Many  startups  like  Meotec  and  

BRECA  Healthcare  are  attempting  these  tactics  in  a  hope  that  more  control  of  over  key  activities  will  lead  

to  lower  and  more  stable  cost  structures.

Page 32: Chemelot Ventures Master Thesis

31

Sub-­‐question  2:  What  innovative  materials  are  used  in  the  creation  of  orthopedic  implants?  

The  current  market  megatrends  regarding  the  progression  of  implant  materials  are  centralized  around  

the  transition  from  biocompatible  implants  to  implants  with  more  active  and  regenerative  capabilities.  

Due  to  the  various  strength,  weight  load  and  processing  cost  characteristics  of  the  different  implant  

materials,  there  has  been  an  array  of  responses  regarding  the  optimal  implant  material.  Interviews  with  

industry  specialists  have  indicated  that  the  preferred  materials  are  implant  and  patient  specific,  thus  

many  startups  have  addressed  this  trend  my  utilizing  various  material  combinations  that  best  serve  their  

desired  customer  segment.  Representation  of  the  markets  various  perspectives  on  the  future  

developments  of  implant  materials  are  expressed  through  the  interviews  conducted  with  BRECA  

Healthcare  and  Meotec.    As  two  of  the  potential  startups  identified  during  analysis,  they  exemplify  the  

spectrum  of  opinions  on  the  future  of  implant  materials.

 

According  to  Jose  Manuel  Baena,  BRECA’s  current  key  activities  include  “printing  PEEK  through  CNC  

machines  and  titanium  through  3D  printing  systems,  creating  customizable  planning  of  shapes  of  

personal  implants.  Our  goal  is  to  continue  to  develop  more  customizable  and  complex  shapes,  with  the  

ability  to  be  used  for  more  complex,  developing  applications.”  During  the  interview,  Mr.  Baena  indicated  

that  BRECA  is  also  looking  to  advance  with  these  material  trends  to  provide  more  bio-­‐regenerative  

capabilities.    The  value  proposed  by  a  combination  of  stem  cells  and  biomaterials  is  the  ability  to  provide  

a  more  effective  and  cost-­‐efficient  implant  in  the  future,  to  the  longevity  of  the  implant  and  reduced  

need  for  revision  surgeries.  Since  2011,  Mr.  Baena  has  partnered  with  physiotherapists  and  a  

regenerative  medicine  research  center  to  develop  the  processes  for  the  use  of  stem  cells  and  

biomaterials.  BRECA  currently  use  PLA  and  titanium  to  provide  stability  and  to  support  the  weight  load  

specific  to  the  patient  and  implant,  discovered  in  the  model.  We  then  use  bio-­‐regenerative  materials.  We  

need  degradable  materials  that  unlike  PEEK  and  titanium  can  degrade  en  vivo.  This  takes  time  and  we  

think  we  still  need  implant  metals  until  regeneration  of  the  injury  takes  place.  In  future,  we  will  continue  

metallic  implants  that  are  customized  and  temporary  to  provide  structure  and  some  electro-­‐chemical  

signal  to  improve  the  regenerative  process  of  biomaterials/stem  cells.”

 

In  the  case  of  Meotec,  they  have  addressed  the  transition  from  biocompatible  to  active  and  regenerative  

implants  through  the  use  of  different  material  technologies,  while  providing  a  similar  value  proposition.  

Within  the  biomedical  realm  of  their  business,  Meotec  manufacturers  fixated  orthopedic  devices  

including  pins,  screws,  nails  and  plates  and  all  devices  that  allow  post-­‐operational  fixation.  This  occurs  

Page 33: Chemelot Ventures Master Thesis

32

through  the  creation  of  magnesium  alloy-­‐based  devices  that  degrade  after  implementation.  According  to  

Dario  Porchetta  of  Meotec,  “The  magnesium  material  creates  a  degradable  material  that  limits  cost  

related  to  additional  implant  removal  surgeries  needed  for  temporary  titanium  implants.  Any  

complication  due  to  post-­‐healing  migration  of  the  implant  is  nullified  because  the  implant  is  absorbed  in  

the  body.  It  has  become  more  popular  due  to  its  cost-­‐saving  nature.”  Similar  to  BRECA  Healthcare,  

Meotec  is  looking  to  target  similar  customer  segments  with  a  cost-­‐saving  and  efficiency-­‐improving  value  

proposition,  via  different  material  combinations.  Unlike  BRECA  Healthcare,  Meotec  doesn't  believe  in  the  

structural  capability  of  polymeric  implants.  Mr.  Porchetta  states,  “It's  not  about  purity,  it's  about  

structure.  It’s  inherently  very  different  from  a  metal.  It’s  not  in  its  nature  to  withhold  such  stresses.”

Sub-­‐question  3:  How  does  the  3D  printing  technology  impact  the  ability  of  startups  to  manufacture  

orthopedic  implants  in  comparison  to  conventional  methods?  

Advancements  in  the  process  technologies  to  manufacture  orthopedic  implants  have  surrounded  the  

capability  of  3D  printing.  There  has  been  intense  industry  attention  and  hype  invested  in  the  potential  

for  3D  printing  to  replace  CNC/lean  manufacturing  as  the  status  quo  for  implant  manufacturing.  Similar  

to  trends  in  materials,  the  belief  in  3D  printing  capabilities  as  the  future  status  quo  varies  from  startup  to  

startup  depending  on  what  key  activities  make  up  their  core  competencies.  As  a  result  of  the  research  

and  interviews  conducted,  it  is  apparent  that  the  increase  in  3D-­‐printing  capabilities  is  directly  correlated  

to  the  trending  development  of  more  complex,  patient-­‐specific,  customizable  implants.  As  this  trend  

gains  momentum  and  regulatory  support,  many  implant  manufacturing  startups  are  investing  in  R&D  to  

develop  these  key  resources  capabilities,  while  continuing  to  develop  standardized  implants  via  CNC  and  

lean  manufacturing  techniques,  such  as  injection  molding.  As  two  of  the  potential  startups  identified  

during  analysis,  BRECA  Healthcare  and  Meotec  exemplify  the  various  points  of  view  on  the  potential  of  

3D  printing,  found  throughout  the  implant  manufacturing  market.  As  3D  printing  capabilities  progress,  

Meotec,  BRECA  Healthcare  and  many  other  implant  manufacturers  have  CNC/lean  manufacturing  and  3D  

printing  capabilities.  Both  Meotec  and  BRECA  Healthcare  possess  the  means  to  manufacture  

standardized  implants  via  lean  manufacturing/CNC,  as  well  as  custom-­‐made  implants  via  additive  

manufacturing.  Found  through  interviews  with  industry  specialists,  many  specialists  believe  that  3D  

printing  will  never  fully  replace  traditional  manufacturing  methods  as  the  industry  standard.  This  is  due  

to  fact  that  3D  printing  doesn’t  present  the  same  cost  advantages  for  standardized  implants  as  

customized  implants.  The  higher  comparative  processing  and  tooling  costs  of  a  3D  printed  implant  are  

only  necessary  if  the  implant  must  be  patient-­‐specific,  as  additive  manufacturing  enables  the  production  

Page 34: Chemelot Ventures Master Thesis

33

of  more  complex,  personalized  structures.  For  these  reasons,  both  Meotec  and  BRECA  Healthcare  see  a  

future  that  optimizes  the  use  of  both  manufacturing  techniques,  dependent  on  the  patient  needs.  For  

off-­‐the-­‐shelf  products,  such  as  those  offered  by  Meotec,  the  benefits  of  economies  of  scale  and  lean  

manufacturing  techniques  outweigh  the  unnecessarily  high  processing  costs  needed  to  create  the  same  

implant  via  additive  manufacturing.  As  the  trend  of  patient-­‐specific  applications  continues  to  explode  

onto  the  medical  devices  market,  3D  printing  capabilities  will  continues  to  be  researched  and  developed  

for  new  orthopedic  implant  applications,  but  will  never  fully  replace  CNC/lean  manufacturing  methods.  

 

Sub-­‐question  4:  What  are  key  indicators  of  a  startup’s  investment  potential?  

1. Syseng;  http://syseng.de;  https://portal.luxresearchinc.com/research/profile/Syseng

Syseng,  with  a  score  of  29,  is  recognized  for  its  investment  potential  due  to  the  value  of  their  technology,  

market  potential  and  experienced  management  team.  The  Syseng  business  model  as  analyzed  by  using  

the  ‘’Business  Model  Canvas  of  Yves  Pigneur  and  Alexander  Osterwalder,  2010’’    is  to  sell  products  and  

provide  3D  printing  services.  They  sell  printers  co-­‐developed  by  a  contract  manufacturer,  with  

customized  systems  to  fit  specific  customer  application  and  materials.  Syseng  has  developed  the  

“Bioscaffolder”  which  can  print  tissue,  biomaterials,  thermoplastics  and  two-­‐component  systems,  with  a  

wide  array  of  materials.  Their  primary  customers  include  university  researchers  (80%),  government  

research  institutes  (15%)  and  corporate  research  development  (R&D)  groups  (5%),  particularly  in  the  

implant,  surgical  tool  and  tissue  engineering  markets.  Syseng  currently  has  several  patents  granted  and  

other  filed,  with  additional  IP  owned  in  EnvisonTEC’s  bioplotter  technology.  Customer-­‐printed  tissues  

and  parts  have  been  implanted  in  patients  in  trials.  The  addressable  market  size  for  polymer  and  

biomaterial  printers  is  in  the  hundreds  of  millions,  despite  competition  with  EnvisionTEC,  Stratsys,  

Organovo,  3D  Systems  and  others.  The  management  team’s  decade  plus,  3D  printer  experience  and  

long-­‐term  startup  involvement  is  promising.  With  additional  investment,  Syseng  can  continue  to  expand  

market  reach,  value  chain  partnerships  and  material  printing  capabilities.  

2. Nanovis  http://www.nanovisinc.com/

Nanovis  with  a  score  of  36,  is  recognized  for  investment  potential  due  to  the  value  of  their  technology,  

addressable  market,  partnerships,  competitiveness  and  management  team.  Founded  in  2006,  Nanovis  

key  activity  is  the  development  of  biomaterials,  nanotechnology  implant  surfaces,  cervical  plates  and  

growth  factors  for  developing  tissue  regenerating  implants.  The  company  is  specialized  in  the  

development  of  spines,  scaffolds  and  screws  from  materials  such  as  PEEK  polymers.  Three-­‐dimensional  

Page 35: Chemelot Ventures Master Thesis

34

process  technology  is  being  used  for  manufacturing  the  implants.  Nanovis  pursues,  in  terms  of  

manufacturing,  a  product-­‐focus  strategy  which  leads,  according  to  their  website,  to  ‘’scientifically  

innovative  products  and  value-­‐based  growth.‘’  The  company  distinguishes  itself  from  competitors  by  

having  the  best-­‐in-­‐class  technologies  such  as  an  advanced  R&D  platform  and  nanotechnology-­‐developed  

implants.  The  other  distinguishing  factors  are  company  support  such  as  their  biomaterials  and  scientific  

advisory  board  and  their  compensation  schemes  such  as  competitive  commissions  for  distributors.  

Nanovis  has  already  received  several  FDA  clearances  such  as  the  FDA  510(k)  for    cervical  and  lumbar  

interbody  fusion  devices  and  the    FDA  5010(K)  for  cervical  plating.  The  company  received  the  ‘’National  

Institute  For  Health  Awards  Grants’’  in  2015  for  conducting  more  research  into  their  FortiCoreTM  Spinal  

Implants  and  in  March  2016  for  conducting  more  research  into  Spinal  Implants  with  Nanotube-­‐Enhanced  

Surface  Material.  The  Venture  Capital  and  Private  Equity  firms  who  are  involved  in  Nanovis  are  Apex  One  

Equity,  Elevate  Ventures  and  Indiana  Economic.  Due  to  the  lack  of  primary  information,  more  research  is  

needed  to  gain  insight  into  Nanovis’  investment  potential.          

3. BRECA  Healthcare;  http://www.brecahealthcare.com/

BRECA  Healthcare,  with  a  score  of  32,  is  recognized  for  investment  potential  due  to  the  value  of  their  

technology,  market  position  and  their  potential  for  future  growth.  Founded  in  2011,  BRECA’s  key  activity  

is  the  manufacturing  and  sale  of  implants  in  cooperation  with  the  EU.  BRECA  develops  custom  made  

healthcare  products  manufactured  with  3D  printing  technologies.  According  to  BRECA  CEO  Jose  Manuel  

Baena,  “our  advantages  are  related  to  our  specialization  in  medical  aspects,  efficiency  and  cost  savings,  

such  as  no  geometry  restrictions  in  implant  fabrication,  ability  to  develop  implants  with  geometries  that  

promote  bone  growth  into  the  implant  for  better  fixation,  cost  reduction  in  the  global  process  and  

shorter  patient  recovery  and  reductions  of  revision  surgeries.”  Despite  uncertain  regulatory  

circumstances,  BRECA  is  currently  operating  for  within  a  research  capacity,  with  one  system  installed  in  a  

surgery  room  with  authorization  of  the  hospital.  BRECA  will  continue  to  develop  models  for  different  3D  

printing  applications  including  pharmaceuticals  and  bones.  CEO,  Jose  Manuel  Baena  believes  that  

regenerative  medicines  will  be  a  key  component  of  BRECA’s  future  business.  Found  in  the  scaling  stage  

of  startup  development,  BRECA  “recognizes  the  potential  for  the  regenerative  materials  and  application  

market  in  other  emerging  countries  including  Mexico,  Peru,  Costa  Rica  and  Argentina.”  As  a  contributor  

to  the  industry  specialist  interviews,  Jose  Manuel  Baena,  the  CEO  of  BRECA  Healthcare  is  looking  to  

attain  an  investment  from  Chemelot  Ventures  to  assist  in  developing  new  3D  printing  applications,  more  

Page 36: Chemelot Ventures Master Thesis

35

complex  implant  shapes  and  capabilities  in  the  field  of  regenerative  materials.  The  full  interview  with  

Jose  Manuel  Baena,  CEO  of  BRECA  Healthcare  can  be  found  in  the  Appendix.  

4. Meotec  http://www.meotec.eu/

Meotec,  with  a  score  of  32  is  recognized  for  investment  potential  due  to  their  IP  position,  value  of  

technology,  partnerships  and  management  team.  The  company  was  founded  in  2012  by  Alexander  Kopp  

and  Christoph  Ptockl.  As  described  by  during  the  interview  with  Dario  Porchetta,  Meotec’s  key  activity  is  

‘’to  develop  metallic  materials  for  biomedical  applications  and  for  the  automotive  sector.’’  The  company  

develops  biodegradable  implants  including  pins,  screws,  nails,  plates  and  all  devices  that  allow  post-­‐

operational  fixation.  The  implants  are  developed  through  the  creation  of  magnesium  alloys  and  are  

converted  to  implants  by  using  3D  manufacturing  and  by  using  lean  manufacturing  methods  such  as  

CNC.  The  main  distinguishing  factor  of  Meotec  is  its  magnesium-­‐alloy  composition,  which  creates  a  

degradable  material  that  limits  cost  related  to  additional  implant  removal  surgeries  that  are  normal  

when  using  temporary  titanium  implants.  According  to  Dario  Porchetta,  “any  complications  due  to  post-­‐

healing  migration  of  the  implant  nullified  because  the  implant  is  absorbed  in  the  body.”  Another  

distinguishing  factor  is  its  patented  technique  of  developing  the  magnesium  alloy  through  plasma  

electrolytic  oxidation  (PEO).  Meotec  has  the  ambition  to  establish  the  whole  chain  from  material  

characterization  and  material  development  to  manufacturing  of  the  implant  in-­‐house.  Meotec  is  looking  

to  increase  in-­‐house  material  development  from  60%  to  80%,  according  to  Dario  Porchetta.  The  

company  has  strong  partnerships  with  universities,  suppliers  and  other  institution  for  supplying  the  

magnesium  materials  that  will  be  further  processed  in-­‐house  by  using  the  PEO  technique.  In  terms  of  

downstream  demand,  Meotec  is  in  contact  with  surgeons,  doctors,  clinics  and  medical  related  institutes.  

Meotec’s  earning  model  is  characterized  by  performing  material  characterization  for  3rd  parties,  

investigation  of  materials  and  their  involvement  in  European  projects.  Meotec  is  privately  owned  and  

funded  by  the  owners,  European  Funds  and  by  the  the  Ministry  of  Innovation  in  Germany.  Meotec  future  

outlook  is  to  increase  and  improve  analytical  capabilities,  achieve  more  control  via  in-­‐house  operation  

and  to  move  to  a  larger  facility  The  investment  opportunities  for  Chemelot  Ventures  are  in  the  area  of  

growth  financing  in  location,  equipment  and  people.  

   

Page 37: Chemelot Ventures Master Thesis

36

5.1.3   New  Understandings

The  original  scope  of  research  was  in  the  field  of  high-­‐performance  thermoplastic  polymers  and  the  

growing  use  additive  manufacturing  (3D  Printing)  technologies  to  manufacture  orthopedic  implants.  

Upon  thorough  analysis,  findings  began  to  imply  that  the  orthopedic  implant  manufacturing  market  had  

several  material  and  process  technology  alternatives  to  polymers  and  3D  Printing,  with  their  own  distinct  

advantages  and  disadvantages.  Additionally,  the  development  of  active  and  regenerative  implants  

enlarged  the  scope  of  analysis  into  other  materials  such  as  titanium,  magnesium  and  biomaterials/stem  

cells.  As  analysis  continued,  specialist  interviews  facilitated  the  understanding  of  process  technologies  

beyond  the  scope  of  3D  printing,  including  CNC  and  injection  molding.  Ultimately,  it  was  established  that  

the  implant  material  composition  and  manufacturing  process  is  subjectively  dependent  on  the  individual  

patient’s  need  in  each  case.  

5.2   Conclusion    

To  provide  a  general  conclusion  to  this  research  paper,  the  implications  of  the  results  are  related  to  the  problem  definition.  Due  to  the  currently  high  costs  associated  with  the  manufacturing  and  use  of  orthopedic  implants  

worldwide,  the  megatrends  impacting  the  orthopedic  implant  market  surround  the  importance  of  

developing  more  affordable,  patient-­‐specific  orthopedic  implants.  Through  the  creation  of  innovative  

materials  and  processing  technologies,  startups  are  looking  to  provide  implant  alternatives  with  more  

active  and  regenerative  capabilities,  ultimately  improving  the  effectiveness  and  universal  affordability  of  

orthopedic  implants. The  central  research  question  of  this  thesis  is:  ‘‘what  are  the  critical  criteria  for  

selecting  startups  in  the  orthopedic  implant  market?’’  To  answer  this  research  question,  the  Business  

Model  Canvas  framework  of  Alexander  Osterwalder  and  Yves  Pigneur,  2010  has  been  applied.  A  

qualitative  research  has  been  conducted  by  interviewing  various  industry  specialists  in  order  to  

understand  the  market  dynamics,  materials  and  the  most  important  process  technology  criteria  for  

startups.  The  criteria,  which  have  been  found  in  the  conducted  interviews,  have  been  combined  together  

with  the  criteria  of  the  Business  Model  Canvas  framework  of  Alexander  Osterwalder  and  Yves  Pigneur,  

2010  and  with  the  most  applicable  criteria  of  the  LuxResearch  and  Pitchbook  databases.  The  

technological  value,  addressable  market  size,  market  growth  rate,  competitiveness,  regulatory  factors,  IP  

positions,  management  team  and  key  partnerships  have  been  identified  as  being  the  most  important  

criteria  for  potential  startups  to  compete  in  the  orthopedic  industry.    The  identified  criteria  have  been  

used  consequently  for  analyzing  208  startups  in  the  LuxResearch  and  Pitchbook  databases,  as  well  as  

additional  sources.  Each  startup  company  could  score  1-­‐5  points  on  each  criteria  with  an  average  score  

Page 38: Chemelot Ventures Master Thesis

37

of  approximately  27.  From  the  208  startup  companies  11  have  been  chosen  for  more  analysis  due  to  

their  above  average  scores  and  alignment  with  the  Chemelot  campus.  Out  of  the  11  startups,  4  have  

been  identified  as  having  the  highest  investment  potential  for  Chemelot  Ventures.  These  4  startups,  

BRECA  Healthcare,  Nanovis,  Meotec  and  Syseng  are  thus  recommended  for  further  analysis  and  contact  

by  the  Chemelot  Ventures  Investment  Team.  These  startup  companies  fulfill  the  critical  criteria  for  

selecting  startups  in  the  orthopedic  implant  market,  as  well  as  align  with  the  Chemelot  Ventures  

investment  profile.    

5.3   Practical  Recommendations    

As  a  result  of  the  research  conducted  throughout  the  thesis,  10  startups  have  been  recognized  for  

investment  potential  with  4  ultimately  being  recommended.  Given  the  analysis  provided,  Chemelot  

Ventures  is  advised  to  conduct  further  analysis  and  establish  contact  with  these  10  startups.  The  findings  

have  implied  that  the  startups  responsible  for  creating  the  most  value  in  the  orthopedic  implant  value  

chain  are  the  implant  manufacturers.  It  is  thus  recommended  that  Chemelot  Ventures  continue  analysis  

on  startups  that  engage  in  implant  manufacturing,  with  both  3D  printing  and  lean  manufacturing  

capabilities,  as  well  as  R&D  in  the  field  of  active  and  regenerative  implants.  

Number Startup  Companies Description   1 Syseng 3D  bio-­‐printing  for  medical  applications 2 Layerwise 3D,  metal-­‐based  implant  developer 3 Organovo 3D  bio-­‐printing 4 Epibone Developer  of  a  bone  reconstruction  technology 5 Nanovis Developer  of  tissue  regenerative  implants 6 Osteonovus Developer  of  synthetic  bone  generation  biomaterial 7 T&R  Biofab  CO Manufacturer  of  bio-­‐absorbable  implants  with  3D  Technology 8 Teknimed Manufacturer  of  orthopedic  implants  and  biomaterial 9 Meotec magnesium  based  implant  manufacturer 10 Breca  Healthcare 3D  implant  manufacturer Figure  15:  Recommended  Startup  companies  

Page 39: Chemelot Ventures Master Thesis

38

5.4   Shortcoming  and  Limitations  

The  majority  of  the  project’s  limitations  stemmed  from  the  time  restraints  placed  on  the  completion  of  

the  thesis.  Given  the  limited  foundation  of  prior  knowledge  related  to  the  orthopedic  implant  market,  

materials  and  process  technologies,  a  substantial  amount  of  preliminary  research  was  necessary  to  

become  familiar  with  the  overall  climate  of  the  market.  This  in  turn  limited  the  available  time  to  visit  key  

opinion  leaders  and  companies’  headquarters,  some  of  which  may  have  had  key  insights  for  research  on  

value  chain  characteristics.  Given  the  scientific  nature  of  the  thesis,  the  time  restraints  restricted  the  

thoroughness  with  which  the  process  technologies  and  materials  used  could  be  analyzed.  This  in  turn  

caused  the  scope  of  research  to  be  based  more  on  the  general  orthopedic  implant  market,  not  

specifically  targeting  a  specific  implant  that  has  preferred  material,  process  technology  and  value  chain  

characteristics  that  differ  among  implants.  Interviews  with  industry  specialists  revealed  that  the  value  

chain  varies  slightly  for  each  type  of  implant.  The  last  limitation  caused  by  the  time  constraint  was  the  

depth  with  which  startups  could  be  analyzed.  The  time  limitations  resulted  in  the  ability  to  contact  only  

50%  of  the  final  11  startups  for  further  analysis.  More  time  would  have  enabled  the  collection  of  more  

primary  data  regarding  the  startups’  investment  potential.  An  additional  limitation  came  from  the  

confidentiality  and  lack  of  information  made  available.  During  interviews  with  certain  industry  

specialists,  there  were  several  instances  where  topics  couldn’t  be  discussed  due  to  confidentiality  

clauses.  Although  understandable,  this  serves  as  a  small  impediment  to  the  thoroughness  of  analysis.  

Additionally,  the  availability  of  data  on  the  Pitchbook  and  LuxResearch  databases  varied  for  each  startup,  

making  it  difficult  to  provide  a  uniform  analysis  of  each  startup’s  investment  potential.

     

Page 40: Chemelot Ventures Master Thesis

39

Chapter  6  –  Appendices  

Works  Cited  

"$2.8  Billion  Global  3D  Printing  Medical/Healthcare  Market  2016-­‐2022  Featuring  3D  Systems,  

Arcam,  Eos,  Envisiontec,  Materialise,,  Nano  3D  Biosciences,  Organovo,  Optomec,  Renishaw  &  Stratasys."  

Http://www.prnewswire.com/.  PRNewsire,  30  Mar.  2016.  Web.  June  2016.

"Aromatic  Ketone  Polymers."  -­‐  Chemical  Economics  Handbook  (CEH).  IHS  Inc.,  Oct.  2015.  Web.  

June  2016.

Barbella,  Michael.  "A  Bright  Future  for  3-­‐D  Printing  in  Orthopedics."  Odtmag.com.  N.p.,  11  Sept.  

2015.  Web.  31  May  2016.

Cai,  Hong.  "Application  of  3D  Printing  in  Orthopedics:  Status  Quo  and  Opportunities  in  China."  

PubMed  Central  (2015):  n.  pag.  Http://www.ncbi.nlm.nih.gov/pmc/articles.  PubMed  Central,  23  Jan.  

2015.  Web.  June  2016.

Frederickx,  Ilse,  and  Katrien  Bollen.  "Producing  Biodegradable  Plastic  Just  Got  Cheaper  and  

Greener."  KU  Leuven.  KU  Leuven,  July  2015.  Web.  June  2016.

Grunewald,  Scott.  "Bodycad  Introduces  Bodycad  OnCall  for  Custom  3D  Printed  Orthopedic  

Implants  and  Restorations."  3DPrint.com.  3DPrint.com,  Apr.  2016.  Web.  June  2016.

"High-­‐Performance  Thermoplastics."  -­‐  Specialty  Chemicals  Update  Program  (SCUP).  IHS  Inc.,  Dec.  

2015.  Web.  June  2016.

"Is  the  Plastic  Used  in  Knee  and  Hip  Implants  Safe?"  BoneSmart.org.  Bonesmart,  June  2015.  Web.  

31  May  2016.

"Lactic  Acid,  Its  Salts  and  Esters."  -­‐  Chemical  Economics  Handbook  (CEH).  IHS  Inc.,  Nov.  2015.  

Web.  June  2016.

Leandri,  Alban.  "A  Look  at  Metal  3D  Printing  and  the  Medical  Implants  Industry."  3DPrint.com.  

3DPrint.com,  19  Mar.  2015.  Web.  31  May  2016.

Page 41: Chemelot Ventures Master Thesis

40

Manner,  Paul.  "Knee  Replacement  Implants-­‐OrthoInfo  -­‐  AAOS."  Http://orthoinfo.aaos.org/.  

OrthoInfo,  Apr.  2016.  Web.  June  2016.

Morrison,  Crystal.  "Metal  Implant  Liability  Invigorates  Advances  in  Polymer  Alternatives  -­‐  RJ  Lee  

Group,  Inc.  (RJLG)."  Http://www.rjlg.com/.  RJ  Lee  Group,  15  Oct.  2012.  Web.  June  2016.

"Orthopedic  Industry  Overview."  Harriswilliams.com.  Harris  Williams  and  Co.,  May  2014.  Web.  

June  2016.

Osterwalder,  Alexander,  Yves  Pigneur,  Tim  Clark,  and  Alan  Smith.  Business  Model  Generation:  A  

Handbook  for  Visionaries,  Game  Changers,  and  Challengers.  Chichester,  United  Kingdom:  John  Wiley  &  

Sons,  2010.  Print.

PRNewswire.com/news-­‐releases.  Rep.  no.  3633297.  N-­‐tech  Research,  Mar.  2016.  Web.  June  

2016.

"Qualitative  Research  Methods:  A  Data  Collector’s  Field  Guide."  CCS  NEU  (2010):  n.  pag.  June  

2010.  Web.  June  2016.

Reisch,  Marc.  "Resurgence  For  Medical  Polymers."  Http://cen.acs.org/.  C&en  Chemical  and  

Engineering  News,  Sept.  2012.  Web.  June  2016.

Schiavo,  Anthony.  3D  Printing  Update  2016  Edition.  Rep.  no.  21550.  N.p.:  n.p.,  2016.  

LuxResearch.  Web.  June  2016.

Sieniawski,  Jan  Ziaja,  and  Waldemar  Ziaja.  Titanium  Alloys  -­‐  Advances  in  Properties  Control.  N.p.:  

InTech,  2013.  Print.

Van  Eck,  Caroline,  AF  Chen,  J.  D'Antonio,  and  F.  Fu.  Http://www.ncbi.nlm.nih.gov/.  Rep.  no.  

20939778.  PubMed.gov,  2009.  Web.  June  2016.

Vicari,  Anthony,  and  Ross  Kozarsky.  Building  the  Future:  Assessing  3D  Printing’s  Opportunities  

and  Challenges.  Rep.  no.  13277.  N.p.:  n.p.,  2013.  LuxResearch.  Web.  June  2016.

Page 42: Chemelot Ventures Master Thesis

41

Vicari,  Anthony.  How  3D  Printing  Adds  Up:  Emerging  Materials,  Processes,  Applications,  and  

Business  Models.  Rep.  no.  16609.  N.p.:  n.p.,  2014.  LuxResearch.  Web.  June  2016.

Vicari,  Anthony.  Innovating  High  Performance  Thermoplastics:  Scouting  Process  and  Material  

Technologies  for  Existing  and  Emerging  Markets.  Rep.  no.  15819.  N.p.:  n.p.,  2013.  LuxResearch.  Web.  

June  2015.

Relevant  Regulatory  Documents

"CFR  -­‐  Code  of  Federal  Regulations  Title  21."  TITLE  21-­‐-­‐FOOD  AND  DRUGS  CHAPTER  I-­‐-­‐FOOD  AND  

DRUG  ADMINISTRATION  DEPARTMENT  OF  HEALTH  AND  HUMAN  SERVICES  SUBCHAPTER  H-­‐-­‐MEDICAL  

DEVICE  21.8  (2015):  n.  pag.  Www.accessdata.fda.gov.  U.S.  Food  and  Drug  Administration,  1  Apr.  2015.  

Web.  June  2016.

"Commission  Directive  2005/50/EC."  Reclassification  of  Hip,  Knee  and  Shoulder  Replacements  in  

the  Framework  of  Council  Directive  93/42/EEC  concerning  Medical  Device  (n.d.):  n.  pag.  11  Aug.  2005.  

Web.  June  2016.

"COUNCIL  DIRECTIVE  93/42/EEC  of  14  June  1993  concerning  Medical  Devices."  Http://eur-­‐

lex.europa.eu/.  Eur-­‐lex,  14  June  1993.  Web.  June  2016.

"Directive  90/385/EEC:  Active  Implantable  Medical  Devices."  Http://ec.europa.eu/.  European  

Commission,  20  July  1990.  Web.  June  2016

"Guidance  Document  for  Testing  Orthopedic  Implants  with  Modified  Metallic  Surfaces  Apposing  

Bone  or  Bone  Cement."  Fda.gov.  U.S.  Food  and  Drug  Administration:  Orthopedic  Devices  Branch,  28  Apr.  

1994.  Web.  June  2016.

 

   

Page 43: Chemelot Ventures Master Thesis

42

Interview  Questionnaire  

 Questions  related  to  Market  Dynamics

1. In  terms  of  orthopedic  implants,  can  you  elaborate  on  how  the  value  chain  appears  and  where  in  the  chain  is  value  added  most?  

2. Which  environmental  factors  (PESTEL)  have  the  most  impact?  3. How  do  main  players  in  the  implant  manufacturing  market  compete?  4. Who  is  the  decision-­‐making  unit  on  materials  used  in  the  implant  and  why?  5. Is  it  accurate  that  the  patients  are  the  users,  the  doctors  are  the  subscribers  and  the  insurance  

agencies  are  the  payers  and  what  is  the  impact  of  this  structure  on  the  price-­‐setting  procedure?                  

 Questions  related  to  Material 1. What  materials  were  used  I  the  past  and  why?  2. What/who  determines  the  material  used  within  orthopedic  implants?  How  does  material  affect  

implant  performance?  3. What  are  the  advantages  and  disadvantages  of  titanium  implants?  4. In  regards  to  manufacturing  implants  via  3d  printing,  what  advantages  do  polymers  such  as  

PEEK,  PEKK  and  PLA  have  in  comparison  to  titanium?  5. In  your  opinion,  what  are  the  necessary  catalysts  to  encourage  the  orthopedic  implant  market  to  

make  the  switch  from  the  titanium  standard  to  other  materials?     Questions  related  to  Process  Technologies

1. Can  you  walk  us  through  the  process  of  producing  an  implant,  from  the  raw  material  to  the  finished  good?  

2. How  has  3D  printing  affected  the  value  chain  process  for  implants?    3. Explain  the  regulatory  environment  surrounding  implant  production,  where’s  it  heading  in  

coming  years?  4. Which  technologies  prior  to  3D  printing  have  been  used  for  manufacturing  orthopedic  implants?  5. What  aspects  do  you  consider  when  choosing  a  manufacturing  partner?  

  Other  questions  related  to  Attributes

1. What  would  be  the  minimum  criteria  for  startups  to  survive  competition  in  this  orthopedic  implant  market?  

2. Are  there  other  criteria  to  consider  when  analyzing  startups  in  this  market?  3. Can  you  think  of  reasons  why  you  would/wouldn't  use  them  as  a  supplier?  4. Can  you  refer  any  contacts  that  can  help  with  further  questions?  

       

Page 44: Chemelot Ventures Master Thesis

43

Research  Population  

Network   Amanda  Tobin   Contact:  [email protected] Position:  Knowledge  Expert  @  McKinsey Background:  Market  access,  pharma  industry,  biotech,  competitive  intelligence

Aylvin  Diaz Contact:  [email protected] Position:  Principal  Scientist  @  DSM Background:  Polymers,  biomaterials  and  coatings Casper  De  Bruen Contact:  [email protected] Position:  Director  @  Chemelot  Ventures  &  Sr  Investment  Manager  DSM  Venturing Background:  Business  strategy,  investments,  M&A,  venture  capital,  consulting Dario  Porchetta Contact:  [email protected] Position:  Intern  in  Biomaterials  and  Degradation  Testing  at  Meotec  GmbH  &  Co.  KG Background:  Chemical  analysis  and  biomaterials  synthesis  and  characterization Ed  Rousseau Contact:  [email protected] Position:  Brightlands  Innovation  Factory  Business  Development  Manager   Background:  Materials:  polymers,  coatings,  six  sigma  and  3D  printing Jac  Koenen Contact:  [email protected]   Position:  DSM  Biomedical  Materials  Scientists Background:  Polymer  Materials Jeffrey  Lutje  Spelberg Contact:  [email protected] Position:  Investment  Manager  LBDF  at  NV  Industriebank  LIOF Background:  Life  Sciences,  Medtech,  Chemistry  and  Agro/food

Jeffrey  Williams Contact:  [email protected] Position:  Chemelot  Ventures  Investment  Analyst   Background:  Entrepreneurship,  operations  mgmt,  portfolio  and  market  analytics Jens  Thies   Contact:  [email protected] Position:  Director  Science  &  Innovation  @  DSM  Biomedical  B.V. Background:  Materials  and  formulations  for  drug  release/implants   Jose  Manuel  Baena Contact:  [email protected] Position:  CEO  at  BRECA  Health  Care  and  Regemat  3D Background:  Medical  devices,  biotech,  bioprinting,  product  development Kurt  Gielen:   Contact:  [email protected] Position:  Brightlands  Innovation  Factory  Business  Development Background:  Biomedical  materials:  Product  marketing,  strategy,  life  sciences,  biotech Marcel  Kloosterman Contact:  [email protected] Position:  Director  @  Chemelot  &  Sr  Investment  Manager  @  Limburg  Ventures Background:  Startups,  Venture  Capital,  Biotech,  Strategy/Investments Nico  Stam Contact:  [email protected] Position:  Brightlands  Chief  Development  Officer  @  Maastricht  Health  Campus Background:  Biotech,  lifesciences,  pharma  industry,  commercialization,  R&D Patrick  van  der  Meer Contact:  [email protected] Position:  BIF  Director  of  Deal  Flow  Management

Page 45: Chemelot Ventures Master Thesis

44

Background:  Business  Development,  startup  consulting,  materials  sciences Simon  Vanooteghem Contact:  [email protected] Position:  Medical  Account  Manager  @  Materialise   Background:  3D  Printing,  materials  and  business  strategy Tony  van  Tienen Contact:  [email protected] Position:  Orthopedic  Surgeon  @  CSO  Trammpolin;  Nijmegen   Background:  Knee,  healthcare,  clinical  research Events   Tuesday  May  10th  -­‐  Wednesday  May  11th  ICT  Spring  Europe;  Morpheus  Cup Luxembourg  City,  Luxembourg http://www.morpheuscup.com Tuesday  24th  May 3D  DESIGN  AND  ENGINEERING  CONFERENCE Eindhoven,  Netherlands http://3ddeconference.com/attend/ Monday  May  30th  -­‐  Tuesday  May  31st Biomedica  2016:  The  European  Life  Sciences  Summit Aachen,  Germany http://www.biomedicasummit.com/ Organizations   Meotec Contact:  http://www.meotec.eu/home/ Activity:  Plasma  electrolytic  oxidation(PEO)  manufacturing  of  metals/Mg  for  implants  

Origin:  Aachen,  Germany Xilloc   Contact:  http://www.xilloc.com/   Activity:  Custom-­‐made  Implants     Origin:  Geleen,  Netherlands Oxford  Performance  Materials Contact:  http://www.oxfordpm.com/   Activity:  3D  Printing  &  Implant  manufacturer Origin:  Connecticut,  United  States   Materialise   Contact:  http://www.materialise.com/ Activity:  3D  Printer  manufacturer Industry:  3D  Printing  industry Origin:  Leuven,  Belgium Biomet  Inc Contact:  http://www.biomet.com/   Activity:  Orthopedic  Implants  manufacturer   Origin:  Indiana,  US Mimedis Contact:  http://www.mimedis.com/ Activity:  Bone  Implant  Manufacturer Origin:  Basel,  Switzerland   Epibone Contact:  http://epibone.com/about Activity:  Bone  Implant  manufacturer Origin:  New  York  City,  USA  http://epibone.com/about   Stratasys Contact:  http://www.stratasys.com/ Activity:  3D  printer  manufacturer Origin:  Minnesota,  USA

 

 

 

 

 

Page 46: Chemelot Ventures Master Thesis

45

Interviews  

1. Interview  Script:  Ed  Rousseau:  Business  Development  Manager  @  Brightlands    

What  are  the  previous  materials,  current  materials  and  future  materials  to  be  used  in  the  

manufacturing  of  orthopedic  implants?

“Very  specifically  for  patients  skull  and  hip  implants,  one  of  the  current  technologies  in  Amsterdam  is  the  

use  of  bone  cement  by  surgeons  to  create  a  implant  through  an  exothermic  reaction  up  to  80  degrees  

celsius.  This  existing  technology  has  disadvantages  of  heat  generation  that  can  lead  to  damaged  brain  

cells,  it  is  manually  produced,  limiting  its  ability  to  be  suitable  for  3d  printing.”

What  are  the  advantages  and  disadvantages  of  titanium  as  an  implant  material?

“Titanium  advantage  is  that  it  is  easily  3d  printable,  can  produce  precisely  accurate  and  strong  parts.  A  

disadvantage  is  the  high  heat  conductivity  of  metal  makes  the  implant  subject  to  environmental  factors,  

for  example  a  titanium  skull  implant  has  the  potential  to  attract  heat  from  the  sun,  increasing  the  

temperature  load  on  the  brain.”  In  the  summer  you  get  to  hot,  in  the  winter  to  cold  and  this  can  cause  

headaches  for  the  patient.”  

In  terms  of  pricing,  where  is  titanium  positioned?  How  are  they  paid?

“Very  Expensive.  In  Europe  and  Holland  specifically,  health  insurance  companies  have  the  power  in  the  

value  chain.  They  decide  if  the  patient  is  allowed  to  get  such  an  expensive  implant.  They  decide  to  pay  

the  producer  of  the  part.”  

What  kind  of  patient  target  group  are  the  users  of  this  titanium  implants?  

“You  can't  say  that.  It's  much  more  driven  by  the  strategy  and  decision  of  the  insurance  companies.  That  

is  different  from  country  to  country.  For  instance  in  Germany,  the  producer  of  such  an  implant  is  paid  a  

certain  amount  by  the  insurance  companies  that  differs  from  country  to  country,  despite  being  the  exact  

same  implant.  Pricing  is  absolutely  driven  by  the  insurance  companies.”

We  see  the  insurance  companies  as  the  payers,  the  patients  as  users  and  the  doctors  as  

subscribers/advisors  as  to  new  implants  in  the  market.  Is  this  accurate?

“It  is  correct  what  you  say.”

Page 47: Chemelot Ventures Master Thesis

46

Can  you  explain  the  value  chain  components  of  the  orthopedic  implant  market?

“You  have  the  materials  supplier,  you  have  the  production  equipment  supplier,  you  have  the  company  

who  buys  the  production  equipment  and  material  and  then  produces  the  implant,  Xilloc  for  example.  

Xilloc  is  advised  by  surgeon  or  doctor,  the  patient  get  the  implant  as  the  end  user,  and  the  insurance  

company  is  the  payer.“

If  we  take  this  3D  printing  process  technology  into  account,  how  would  the  value  chain  change  in  

relation  to  orthopedic  implants?

“No,  that  same  producer  of  implants  also  has  machining  equipment.  Although  they  need  to  produce  the  

plastic  implants,  the  process  isn’t  yet  certified  to  be  done  via  3D  printing.  Therefore  that  same  company,  

Xilloc,  also  has  the  computer  numerically  controlled  (CNC)    manufacturing    equipment  to  produce  the  

same  kind  of  implants  under  approved  industry  regulations.”

You  have  said  the  development  of  plastics  is  restricted  as  of  now  due  to  regulations.  What  is  your  

opinion  in  terms  of  polymer  materials,  which  ones  will  be  used  predominantly  in  this  process?

“It  is  accurate  what  you  say  about  PEEK  and  PEKK  and  PLA.  In  my  opinion,  PEEK  and  PEKK    are  over  

designed  according  to  specifications.  You  will  probably  see  in  the  future,  the  downgrading  of  polymers  to  

be  used  in  those  implants.  Once  there  is  a  regulation  and  more  qualified  polymers  to  produce  via  3D  

printing,  i  think  PEEK  and  PEKK  will  lose  a  lot  of  the  marketplace,  as  compared  to  cheaper  and  easier  to  

produce  polymers.“

And  what  are  those  easier  to  produce  and  cheaper  polymers,  according  to  you?

“PLA  is  one  of  them.  PMMA  and  probably  also  polyethylene,  more  specifically  known  as    ultra  high  

molecular  weight  polyethylene.  (UHMWE)”

According  to  you,  the  high  performance  thermoplastics  will  lose  position  in  the  market  due  to  their  

high  cost  per  kilogram.  How  many  kilogram  is  needed  to  make  an  average  implant.  How  can  it  be  

compared  to  titanium  in  relation  to  cost?

“For  example,  I  said  PEEK  is  overdesigned,  as  it  can  be  used  at  temperatures  up  to  200  degrees  celsius,  

making  it  a  very  high  heat  thermoplastic.    In  the  human  body,  you  need  temperatures  up  to  37-­‐40  

degrees  Celsius  and  that's  it.  You  don't  need  that  high  of  heat  resistance,  that's  why  PEEK  is  too  

overdesigned  and  expensive”  

Page 48: Chemelot Ventures Master Thesis

47

If  you  take  PLA  for  example,  how  can  we  see  it  is  more  cost  effective  than  titanium?

“When  you  produce  a  PEEK  implant  via  3D  printing,  depending  on  the  volume  of  the  implant,  you  

probably  need  5  kg  of  PEEK  to  make  a  part  that  weighs  around  only  100-­‐200  grams.  The  rest  of  that  

material  is  considered  to  be  waste  and  must  be  thrown  away.  The  material  price  of  the  part  itself  is  

limited  but  because  of  the  high  costs  of  waste,  it  makes  the  use  of  these  high  heat  polymers  

unattractive.”  

In  terms  of  3D  printing  technology,  is  the  technology  process  an  important  cost  factor  in  the  allocation  

of  what  a  patient/insurance  company  pays.  

“No,  when  you  look  at  the  price  of  the  part,  what  is  paid  by  the  insurance  companies  is  completely  

independent  of  the  cost  price  of  the  part.  The  pricing  policy  is  not  cost  price  plus  but  is  a  completely  

market  driven  price.  What  you  pay  and  what  the  cost  to  produce  the  implant  are  not  correlated.  

How  can  you  make  a  comparison  between  what  is  cheap  and  expensive  in  terms  of  PLA  vs.  titanium  in  

order  to  switch  to  this  new  material  technology  in  the  future?

“I  think  that  policy  of  insurance  companies  will  change  in  the  future.  As  these  implants  become  more  

commoditized,  making  insurance  companies  more  wary  of  the  implant’s  cost  price.  Then  it's  important  

that  they  transition  to  lower-­‐cost  materials.  So  let's  say  in  the  lifetime  of  the  product,  in  the  first  period  

of  your  lifetime,  the  product  has  considered  to  be  speciality,  sold  in  the  market  at  a  market  price.  As  it  

gets  more  mature,  more  competition  and  suppliers  of  the  same  material,  the  cost  game  begins  and  

producers  must  look  to  optimize  the  cost  efficiency  of  the  manufacturing  process.  Cost  structure  is  highly  

dependent  on  lifetime  of  the  product.

2. Interview  Script:  Amanda  Tobin:  Market  Access  Expert  @  Mckinsey    

We  would  like  to  know  more  information  about  the  current  trends  in  the  pharma  industry  related  to  

the  value  chain.  We  have  found  a  trend  that  equipment  development  has  been  outsourced  to  third  

parties,  such  as  startups  that  specialize  in  the  development  of  these  technologies.  Is  this  industry  trend  

accurate?  

“The  reality  is  that  there  is  a  lot  of  physical  technologies  that  have  the  chance  to  be  very  disruptive  to  the  

healthcare  business  in  the  next  10-­‐20  years.  The  really  far  out  stuff  isn't  delivering  yet,  (like  3d  printing)  

but  its  getting  closer  and  closer.  The  industry  is  excited  and  concerned  because  it  brings  threats  and  

Page 49: Chemelot Ventures Master Thesis

48

opportunities.  The  medical  devices  industry  is  stand  to  change  most  drastically.  With  3D  printing  for  

example,  they  can  already  print  orthopedic  implants,  because  they  are  physical/mechanical  components  

in  the  body,  but  they  are  also  working  on  the  ability  to  3D  print  biological  organs  with  the  use  of  stem  

cells.  This  is  absolutely  being  worked  on  by  small  companies  and  stand  to  drastically  change  the  industry.  

Nowadays,  when  it  comes  to  orthopedic  implants,  medical  device  companies  produce  these  implants  

from  metal  and  are  incredibly  expensive.  If  you  can  produce  them  through  3D  printing,  costs  would  be  

reduced  and  customizability  would  be  maximized.  Clearly,  either  a  medical  device  company  will  go  out  of  

business  or  get  involved  and  become  a  player.”  

What  determines  the  material  used  within  orthopedic  implants?

“It  depends  on  variables  such  as  cost,  the  state  of  the  patient,  degree  of  customization  needed,  

private/public  treatments.  Different  materials  exist  and  all  are  fairly  expensive.”  

What  determines  the  implant  manufacturing  process  used  and  how  does  it  compare  to  the  past  

production  processes  in  the  industry?

“The  manufacturing  technology  for  orthopedic  implants  has  already  peaked  for  the  most  part.  Only  

changes  left  are  to  incorporate  materials  that  are  nice  and  more  durable  materials.  The  improvements  in  

the  current  technology  are  incremental  in  nature,  with  more  emphasis  on  facilitating  usability  for  

surgeons,  implant  longevity  and  implant  smoothness.  While  3D  printing  would  take  the  cost  out  of  the  

implant  procedure.  The  hospitals  could  literally  print  their  own  implants.  Drastic  cost  differences  will  

provide  more  discontinuous  innovation.”  

Therefore,  the  value  captured  will  shift  to  the  cheaper  implants  offered  and  also  the  surgery  process  

conducted?  Is  this  correct?

“In  my  opinion,  the  way  to  make  it  cheaper…  For  example,  there  are  implant  manufacturers  in  asia  that  

aren't  very  successful  in  the  European  market  for  example,  due  to  dominance  by  a  few  major  players  

that  have  solidified  relationships  with  hospitals  that  aren't  willing  to  sacrifice  potential  quality  of  these  

Asian  implants  for  a  cost  advantage.  When  implants  are  produced  in  Asia  they  are  often  used  in  the  

Asian  market.  There  isn't  much  of  a  global  market  in  cheaper  implants  because  it's  very  complex  

precision  is  needed.  I  think  3D  printed  implants  are  closer  to  replacing  the  existing  implants  than  cheaper  

implants  are.  You'll  start  seeing  actual  implants  in  the  next  5  years.”

Page 50: Chemelot Ventures Master Thesis

49

In  this  case,  how  does  the  “government  as  a  payer”  affect  the  price  setting  procedure  and  

implementation  of  the  implant  process?

“Well  of  course  it  will  be  highly  regulated  because  you  can't  just  produce  an  implant  and  stick  it  in  

someone  from  a  home  3D  printer.  Therefore  there  will  have  to  be  certain  regulatory  standards.  The  

government  as  a  payer  will  also  care  if  you  can  reduce  the  cost  of  the  healthcare  bill  with  these  

technologies.  They  will  embrace  this  opportunity  if  the  technology  can  be  cheaper.  Now  doctors  always  

like  using  new  technologies,  new  techniques,  new  innovations,  etc.  Finally  the  patients  won’t  care  as  

much  about  the  cost  as  long  as  the  surgery  fixes  the  problem.  Rest  of  the  decision  making  will  be  in  the  

hands  of  the  surgeons/doctors.”

Did  you  encounter  startups  busy  with  this  technology,  that  may  be  in  an  early  stage,  have  the  

technology  and  are  investing  in  developing  scaling  up  the  technology?

“There  are  definitely  companies  looking  at  this  that  aren't  making  any  money.  One  company  i  know  of  is  

called  Organova.  What  they  are  doing  is  developing  the  3D  printing  technology  in  relation  to  organs,  

which  is  much  further  off  in  the  development  process.  There  are  also  several  venture  capital  firms  that  

specifically  invest  in  startups  within  these  far-­‐out  fields  of  process  technologies.  Hospitals  are  also  doing  

their  own  research,  with  spin-­‐off  research  funding  from  large  organizations.”

3. Interview  Script:  Jose  Manuel  Baena:  CEO  Regemat  3D  and  Breca  Healthcare    

What  is  the  company  background?

“Founded  Breca  in  2011,  our  core  business  is  the  manufacturing  and  sale  of  implants  in  cooperation  with  

the  EU.  BRECA  develops  custom  made  healthcare  products  manufactured  with  3D  printing  technologies.  

Our  advantages  are  related  to  our  specialization  in  medical  aspects,  efficiency  and  cost  savings,  such  as  

no  geometry  restrictions  in  implant  fabrication,  ability  to  develop  implants  with  geometries  that  

promote  bone  growth  into  the  implant  for  better  fixation,  cost  reduction  in  the  global  process  and  

shorter  patient  recovery  and  reductions  of  revisions  surgeries.    

Our  process:  We  first  receive  medical  imaging  data  and  have  our  engineers  analyze  using  software  to  

create  a  3D  model  based  on  the  image,  giving  precise  anatomy  of  patient  to  provide  means  of  providing  

the  perfectly  customized  device.  The  first  proposal  is  then  sent  to  the  healthcare  professional  for  

confirmation  and  screw  placement  if  needed.  The  implant  is  then  validated  via  simulation  software.  

Once  studied,  the  healthcare  professional  gives  final  feedback  and  confirmation,  approving  the  devices  

fabrication,  shipment  and  sterilization  prior  to  the  surgical  procedure.  We  currently  are  printing  PEEK  

Page 51: Chemelot Ventures Master Thesis

50

through  machines  and  titanium  through  3D  printing  systems,  creating  customizable  planning  of  shapes  

of  personal  implants.  Our  goal  is  to  continue  to  develop  more  customizable  and  complex  shapes,  with  

the  ability  to  be  used  for  more  complex,  developing  applications.

REGEMAT  3D  is  a  biotech  company  focused  on  regenerative  medicine  and  being  a  leading  pioneer  in  a  

new  and  promising  field  of  bioprinting,  that  uses  3D  printing  technologies  for  regenerative  therapies.  We  

provide  bioprinting  solutions  for  the  community.  We  will  support  you  to  generate  IP  by  promoting  the  

creation  of  an  open  community  to  boost  the  clinical  applications  of  bioprinting.  The  three  Research  Areas  

are  surround  but  are  not  limited  to  cartilage  regeneration,  tumoral  models  and  ultrasound  monitoring.”

 

What  is  your  overall  impression  on  the  future  developments  in  the  orthopedics  implant  market  and  

the  current  industry  standards  relating  to  3d  printing  and  the  materials  used?

“We  think  that  the  future  developments  will  continue  in  metals  like  titanium  as  a  commonly  used  

material  but  we  also  see  a  shift  to  regenerative  implants  using  biomaterials  such  as  stem  cells.  As  of  2011  

I  have  partnered  with  a  group  of  physiotherapists  that  are  developing  all  the  processes  for  the  use  of  

stem  cells  and  biomaterials.  I  have  also  been  in  cooperation  with  a  regenerative  medicine  research  

center  to  create  a  3D  printing  system  that  is  able  to  combine  stem  cells  with  other  materials  to  create  a  

more  effective  implant.“

 

Are  printers  made  at  Regemat  used  at  production  at  Breca?

“No,  Regemat  is  in  charge  of  selling  the  3D  printing  systems/machines.  Our  business  primarily  revolves  

around  sales  and  developing  this  technology  for  applications  in  the  medical/chemical  fields.  I  have  

recently  been  invited  by  the  EU  to  discuss  their  interest  in  launching  new  regulations  for  bioprinting  and  

have  requested  my  attention.”

 

Is  regulation  and  government  holding  back  the  stem  cell  progression  development?

“In  Breca,  high  costs  and  lack  of  historical  data  have  created  slow  progression  to  get  EU  regulation  

confirmation  in  the  field  of  biomaterial  printing.  Given  these  circumstances,  we  still  do  not  wait  for  

government  support.  EU  regulators  and  governments  are  starting  to  consider  but  prior  research  in  the  

field  of  biomaterials  and  regenerative  implants  is  necessary.  Progression  with  stem  cells  is  different  in  

different  countries,  in  EU  we  are  selling  our  system  for  research  but  implementation  must  be  

accompanied  by  authorization  by  EU.    We  don't  have  to  wait  for  all  authorization  to  sell  the  product  we  

can  now  make  money  in  some  applications  such  as  bioprinting  in  tissues.  This  year  15  have  been  sold,  

Page 52: Chemelot Ventures Master Thesis

51

with  an  estimated  45-­‐50  sold  for  research  purposes  by  years  end.  Our  system  has  been  installed  in  one  

surgery  room  with  authorization  of  the  hospital.  You  can  print  and  make  money  from  bioprinting  right  

now  but  the  real  future  is  20-­‐30  years  out.”

 

How  is  the  current  state  of  competition  in  the  market?

“There  are  several  emerging  competitors  currently  in  the  field  of  bioprinting.  We  have  acknowledged  

estimated  30  that  are  in  the  research  phase.  It  may  be  more  but  real  players  are  about  30,  most  are  from  

academia  and  research.  We  differ  due  to  our  clinical  knowhow  and  familiarity  with  surgery  room  

standards  that  align  with  authorization  and  regulations.  We  know  regulation  takes  time  but  our  

knowhow  and  clinical  experience  and  passion  with  Breca,  we  believe  is  a  successful  business  model.”

 

What  certain  groups,  (doctors/insurance/governments)  are  demanding  the  development  of  new  types  

of  implants/materials?

“It  is  my  belief  that  research  and  development  into  3D  printing  as  a  technology  will  be  temporary.  It  is  

the  need  of  surgeons  that  will  use  new  solutions  to  enhance  their  practice  in  the  orthopedic  surgery  

market  that  demand  these  new  technologies.  It  is  the  need  of  new  treatments  by  surgeons  that  want  to  

try  new  treatments  and  create  new  sources  of  revenue.  In  the  knee  prosthesis  market  for  example,  

surgeons  wants  to  sell  something  better,  get  better  results  and  ultimately  a  better  reputation  in  the  field.  

There  is  definitely  a  clinical  need.  We  are  making  money  now  from  research  market  but  I  believe  the  

future  is  less  about  a  research  devices  company  but  more  emphasis  on  pharmaceuticals  and  

regenerative  medicines,  selling  treatments  that  go  into  clinical  application.”

 

How  do  u  see  Breca  and  Regemat  developing  in  the  next  5-­‐10  years  due  to  adjustments  and  

developments  in  the  market?

“Right  now  we  are  continuing  to  develop  our  model  of  selling  3D  system  to  hospitals.  In  addition,  we  

recognize  the  potential  for  the  regenerative  materials  and  application  market  in  other  emerging  

countries  including  Mexico,  Peru,  Costa  Rica  and  Argentina.  In  the  next  2-­‐3  years,  we  recognize  

customized  knees  and  joints  as  the  largest  potential  markets.

We  will  also  continue  to  develop  models  for  different  3d  printing  applications  including  pharmaceuticals  

and  bones.  In  the  future  we  think  regenerative  medicines  will  be  a  key  component  of  BRECA’s  business.  

We  will  use  regenerative  stem  cells  for  injury  but  also  temporary  metallic  implant  to  support  the  loads,  

and  provide  adaptive  implants  that  provide  signals  to  the  regenerative  part  to  improve  recovery  

Page 53: Chemelot Ventures Master Thesis

52

processes.  Ultimately  our  development  plan  is  to  create  competencies  that  complement  both  Regemat  

and  Breca,  in  a  hope  to  align  both  companies.  In  our  model  we  hope  that  we  can  soon  development  a  

model  that  is  for  drug  testing,  muscle  and  bones  that  differ  from  our  current  clinical  applications.  We  

believe  the  potential  for  developing  new  applications  are  endless.  This  year's  investments  will  allow  us  to  

continue  our  research  into  new  potential  applications.“

 

Can  the  printers  you  develop  use  several  materials?

“Our  printer  system  can  use  several  materials  that  are  constantly  being  created  but  we  tend  to  work  

with  partners  that  request  material  that  are  already  authorized  and  regulated.  We  know  if  we  want  to  

print  more  complex  structures  and  applications  we  will  need  new  materials.”

 

Are  you  currently  partnered  with  different  researchers  to  find  materials?

“We  are  but  they  are  customers.  If  they  work  with  us  they  are  going  to  buy  the  bio  printer.  We  sell  at  

better  price  than  the  market  to  provide  benefits  but  with  the  agreement  that  all  developments  will  be  

providing  acknowledgement  to  our  technology.”

 

What  is  the  progression  of  materials  to  be  used  for  orthopedic  implants  in  the  future?

“We  currently  have  PLA  and  titanium  to  provide  stability  and  to  support  the  weight  load  specific  the  

patient  and  implant,  discovered  in  the  model.  We  then  use  bio-­‐regenerative  materials.  We  need  

degradable  materials  that  unlike  PEEK  and  titanium  can  degrade  en  vivo.  This  takes  time  and  we  think  we  

still  need  implant  metals  until  regeneration  of  the  injury  takes  place.  In  future,  we  will  continue  metallic  

implants  that  are  customized  and  temporary  to  provide  structure  and  some  electro-­‐chemical  signal  to  

improve  the  regenerative  process  of  biomaterials/stem  cells.”

 

4. Interview  Script:  Kurt  Gielen:  Business  Development  Manager  @  Brightlands    

In  terms  of  polymers,  what  materials  were  used  for  making  implants  in  the  past  and  why?  What  are  

used  now?  Why  are  they  better?

ADD  LINK  OF  REPORT  HE  FORWARDED  (DUTCH)

 -­‐Within  the  history  of  biomaterials,  three  generations  of  biomaterials  have  been  acknowledged  from  the  

1960’s  to  the  present:  They  are  Inert,  active,  absorbable  and  lastly  regenerative  implant  materials  that  

drive  the  body  to  respond  in  a  certain  way.

 

Page 54: Chemelot Ventures Master Thesis

53

What  are  the  benefits  of  the  absorbable  implants?

“The  polymer  absorbs  and  disintegrates  and  the  implant  would  be  replaced  by  bone  again,  creating  room  

for  the  body  to  create  new  tissue.  The  next  step  of  material  is  active,  where  the  material  sends  signals  to  

the  body  to  stimulate  bone  growth.”

 

Do  active  materials  currently  exist?

“Yes  and  no.  yes  exist  but  still  in  early  research  phases  of  development.”

 

What  is  the  main  advantage  of  these  polymers  over  titanium?

“If  you  relate  it  to  the  generational  progression,  it  is  the  future  because  with  titanium  it’s  hard  to  change  

the  specs  of  the  material.  You  can  increase  purity  but  the  question  remains  if  the  impact  will  be  big.  

Polymers  can  do  many  notifications  to  drive  the  body  to  respond  in  a  desired  way.  That's  where  the  

market  is  expanding.”

 

Without  3D,  how  are  implants  typically  made?

“Standard  manufacturing  practices  use  injection  molding  techniques  and  other  manufacturing  

techniques  that  operate  on  standard  automated  production  systems,  similar  to  other  products.”

 

Why  should  industry  step  into  3D  printing  if  the  current  models  are  efficient?

“There  is  always  a  patient  specific  necessity  in  the  implant  market  that  is  more  achievable  via  3D  

printing.  The  ability  to  personalize  complex  structures  to  the  patient  creates  immense  benefit.  If  you  

were  to  use  standard  injection  molding  techniques,  you  would  have  to  make  a  new  mold  every  time  and  

that  would  be  ridiculously  expensive.”

What  are  relevant  startups  and  how  do  they  differentiate?

“Xilloc  and  Oxford  Performance  Materials  are  the  two  most  common  startups  I  know  of  in  this  field.  In  

the  polymer  space,  Materialise  in  Belgium  is  a  reputable  startup.”

 

What  is  the  future  in  the  development  of  active  polymers?

“Like  I  said  in  the  first  generation  they  were  looking  for  inert  materials.  For  example,  a  titanium  implant  

creates  stability  but  does  not  provide  any  source  of  signals  to  the  rest  of  the  body.  This  is  good  but  it  

won’t  do  any  good  for  people  that  have  nerve  damage.  If  you  can  make  an  implant  that  is  just  as  strong  

Page 55: Chemelot Ventures Master Thesis

54

but  also  has  a  specification  that  triggers  the  body  to  repair  nerves,  then  you  can  fix  that  problem  as  well.  

Two  things  must  happen  including  understanding  the  biology  of  the  body  to  figure  out  what  it  takes  to  

repair  that  spine.  That  knowhow  has  rapidly  grown  in  last  20  years.  It  didn't  exist  when  titanium  implants  

first  came  out.  Second  is  you  must  develop  materials  that  actually  enhance  those  effects  in  the  body.  

That  knowledge  is  currently  being  built  up.  For  example  coatings  are  being  used  in  combination  with  

titanium  to  induce  and  stimulate  the  growth  of  bone.  Coating  is  one  option,  second  is  playing  with  the  

surface  of  the  material,  done  by  Materiomics  in  Maastricht,  is  changing  the  topography  of  materials  on  a  

micro-­‐scale.  If  a  stem  cell  attaches  to  that  surface,  it  has  a  particular  stimulation  depending  on  the  

shapes  on  the  surface.  You  can  also  play  with  material  specifications  and  make  new  polymers  that  have  

similar  yet  slightly  varied  outcomes.”

 

How  long  until  titanium  will  be  obsolete  and  replaced  by  polymer  implants?

“I  don't  know  because  I  don't  ever  know  if  it  will  be  obsolete.  For  example  in  3D  printing  its  very  

reproducible  and  well  known.  It  is  possible  that  with  the  development  of  coatings  that  apply  to  titanium,  

these  developments  could  provide  easier  access  to  the  market.  But  assuming  it  will  be  replaced,  it  would  

have  to  be  20-­‐30  years  out.  Due  to  the  regulatory  environment  of  surgical  implants,  that  will  add  a  

decade  to  the  process.  For  that  it  would  be  good  to  look  at  the  funnel  of  developments  already  taken  

place  around  the  world.”

 

Are  the  approvals  of  OPM’s  new  3D  printing  of  implants  by  the  US  government  an  example  of  the  

regulatory  progress  needed  to  further  the  polymer  implant  production  development  and  company  

value?

“Absolutely,  one  of  the  issues  is  the  lack  of  approval  due  to  the  customer-­‐specific  aspect  that  is  hard  to  

standardize  and  guarantee.  Normally  when  you  get  approval  for  a  medical  product,  specs  are  very  

detailed  and  are  the  same  from  product  to  product.  When  you  make  it  patient  specific,  it  will  have  

personalized  customizations  that  change  specs  and  makes  it  hard  for  regulatory  body  that  views  it  as  a  

new  process  for  every  implant.  That's  what  I  am  not  sure  of  with  OPM,  did  they  get  approved  of  patient  

specific  approval  or  just  approval  of  creating  3D  implants  that  are  standardized  and  don't  provide  

customization  capabilities.”

 

Although  OPM  has  FDA  approval  to  3D  print  implants,  as  long  as  the  material  stays  that  expensive,  

won’t  it  take  a  long  time  before  these  polymers  become  the  new  standard  to  replace  titanium?

Page 56: Chemelot Ventures Master Thesis

55

“I  would  assume  those  prices  can  and  drop  significantly.  That's  something  you  see  with  every  material  

and  manufacturing  of  polymers  is  every  time  they  scale  up  with  production  in  factors  of  10-­‐100,  prices  

tend  to  drop  significantly.”

 

Do  you  have  any  more  advice  for  us?

“I  see  china  and  Asia  are  having  an  enormous  impact  on  the  development  of  the  polymer  market  and  

they  place  from  very  different  rules  than  anyone  else  due  to  their  size  and  economic  status  that  supports  

the  development  of  this  market.  I  would  definitely  make  a  note  of  the  impact  that  the  Asian  market  is  

having  on  the  development  of  these  materials.  For  example,  OPM  needed  years  for  FDA  approval  of  their  

materials.  People  in  China  can  copy  those  materials  at  a  fraction  of  the  time  and  cost  and  introduce  it  to  

the  market,  giving  them  a  head  start  in  compared  to  everyone  else.  The  only  question  is  if  these  Asian  

companies  have  the  ability  to  penetrate  the  European  markets,  it  is  yet  to  be  seen.”  

5. Interview  Script:  Marcel  Kloosterman:  Director  at  Chemelot  Ventures  and  Senior  Investment  

Manager  at  Limburg  Ventures  

What  are  the  most  effective  for  generating  startup  leads?

“It's  a  mixture.  Its  essential  to  be  outgoing,  going  to  startup  meetings  and  analyzing  fit  (Europe  Limited),  

internet  research,  connections/conferences  with  other  VCs  that  may  share  interest  in  startups  within  

other  portfolios,  pitchbook  and  other  databases,  literature  and  magazines.”

 

What  are  the  most  important  risk  criteria  within  early  stage?

“A  major  problem  is  the  period  in  which  you  don't  have  any  financing,  often  during  early  stages  when  

there  is  seed  present  but  there  is  an  intermediary  gap  of  no  financing.  In  general  risk  we  are  willing  to  

invest  in  a  team  of  1-­‐2  that  are  capable  but  they  should  be  open  to  expand  with  the  right  people  that  

provide  a  balance  of  competencies  and  risk  tolerance.”

 

How  do  the  startups  survive  this  financing  gap?

“Usually  by  using  smart  ways  of  financing.  There  are  some  companies  which  focus  on  equity  financing  

but  that's  kind  of  stupid  but  easy.  You  get  money  if  you  have  something  to  deliver.  Its  more  practical  to  

get  non-­‐dilutive  financing  such  as  subsidies  and  grants,  some  even  supplied  by  the  Dutch  state.  If  you  

would  3  million  for  next  2  years,  you  could  ask  3  million  in  equity  but  the  control  of  shares  may  dilute.  

Dividing  up  into  equity  and  loans  provides  the  opportunity  for  more  control  of  shares.”

Page 57: Chemelot Ventures Master Thesis

56

 

Is  it  an  emotional  decision  by  startups  to  choose  equity  or  non-­‐dilutive  financing?

“No,  it  is  just  a  lot  of  paperwork  but  VCs  can  explain  that  this  process  can  be  outsourced  and  gives  

opportunity  for  VC  to  hold  on  to  more  shares.”

 

What  are  most  important  factors  to  survive  early  stage  competition?

“Usually  IP  generation  is  the  first  step,  without  anyone  can  do  your  trick.  We  have  one  company  that  still  

has  no  sales  after  3  years  and  they  are  only  generating  IP,  but  this  is  what  we  want  because  it  can  be  a  

company  that  has  3-­‐4  business  models  that  we  want  to  protect  and  are  willing  to  have  a  high  burn  rate  

with  no  sales  but  it  isn’t  something  you  do  on  a  regular  basis  because  you  want  some  security  of  cash  

flow  and  market  attractiveness.  If  you  give  away  your  product  to  early,  you’re  stuck  in  a  certain  business  

model  and  cannot  earn  maximum  returns.”

 

How  do  you  compare  the  weights  of  cash  flows  vs.  the  burn  rate?  

“It  should  be  part  of  that  budget  within  the  business  plan.  When  you  reach  a  certain  milestone  

(financial/regulatory)  then  we  continue  to  finance.  All  investments  have  tranches  that  are  paid  upon  

reaching  milestones.  It  helps  to  have  the  company  focus  because  if  you  pay  full  amount,  startups  will  act  

as  they  prefer  without  regard  for  the  investor’s  opinions.”

 

What  are  the  basic  assumptions  for  valuing  a  startup?

“Can  be  anything,  including  gut  feeling,  discounted  cash  flow  methods,  peer  evaluations  and  license  fees.  

It  is  important  to  take  final  exit  into  account  during  valuation.  Usually  I  like  to  have  a  company  that  has  a  

strategic  trade  sale  that  has  synergies  that  are  aligned  with  the  startup’s  core  competencies.”

 

Which  financial  instruments  are  used  for  financing  a  startup?  You  mentioned  subsidies  and  equity?  

Which  are  commonly  used  at  Chemelot?

“Of  course  the  subsidies,  grants,  loans  that  can  be  obtained  from  the  Dutch  state  but  they  have  limited  

understanding  of  startups  that  Chemelot  possesses.  They  think  that  if  we  put  in  the  money,  it’s  worth  

the  risk.  It’s  an  interest-­‐bearing  loan  and  if  the  startup  goes  bankrupt  then  it  is  covered  by  the  Dutch  

state.  If  it’s  going  well  then  in  due  time  the  loan  must  be  repaid  with  interest.  It  is  much  cheaper  than  VC  

money.  Often  startups  use  consultants  to  advise  them  on  how  to  submit  and  use  subsidies  and  grants.  

Companies  in  this  field  are  PNO  consultants  and  Ttopstart.”

Page 58: Chemelot Ventures Master Thesis

57

 

Is  there  a  certain  stage  where  you  can  use  the  most  accurate  financial  instruments?

“It  depends  on  the  time  horizon.  If  we  are  lead  investor  then  we  determine  conditions,  but  when  co-­‐

investing  it  isn’t  just  us  deciding.  We  never  put  all  of  the  investment  capital  at  closing.  Usually  what  we  

would  do  is  supply  the  money  for  a  certain  period  with  milestones  that  determine  if  additional  financing  

will  be  necessary  and  profitable.”  

After  IP,  what  would  be  the  next  criteria  to  assess  the  potential  of  a  startup?

First  before  IP  is  management.  Management  is  more  important  than  IP  or  patentable  technologies.  The  

next  part  would  be  the  kind  of  commercial/financial  timetable  for  competitive  positioning  and  

marketability.  Just  because  they  will  test  it  doesn't  mean  the  customer  will  order  it.  It  must  be  scalable,  

margins  must  be  realizable,  regulatory  issues  must  be  clear  and  reimbursement,  which  is  often  

overlooked.  If  you  have  all  regulatory  and  specification  thresholds,  an  insurance  company's’  hesitance  to  

adopt  is  often  due  to  the  unwillingness  for  insurance  companies  to  reimburse.  The  relationship  with  the  

final  buyer  is  crucial.

What  role  does  a  Brightlands  incubator  play  in  your  startup  assessment  process?  

It's  not  yet  a  major  part  but  they  contact  startups  worldwide,  partially  through  out  assistance.  We  have  

communication  with  their  business  development  team  as  a  collaborative  effort  to  bring  startups  to  the  

campus.  Depending  on  specialization  areas,  opportunities  are  shared  among  the  Brightlands  business  

development    team  and  the  Chemelot  investment  team.

What  distinguishes  you  from  other  investment  companies?

We  are  a  regional  investor.  Most  other  VCs  are  financial  investors,  corporate  investors,  etc.  Financial  

investors  don’t  require  proximity  as  long  as  it  makes  financial  sense  or  presents  a  strategic  trade  sale  in  

due  time.  For  Chemelot  Ventures  its  more  difficult  because  we  require  proximity  through  expansion  or  

complete  transplant  of  operations  to  the  Limburg  region.  

Do  you  assist  these  companies  in  logistics  related  to  moving  locations?

Discussions  on  this  topic  must  start  early  or  it  presents  a  sure-­‐stop  later  on.  It  must  be  discussed  straight  

away  to  gauge  sincerity  of  commitment  to  relocation.  It’s  difficult  if  you're  a  regional  investor  because  

we  must  convince  startups  to  move  locations  to  Geleen.  

Page 59: Chemelot Ventures Master Thesis

58

6. Interview  Script:  Jeffrey  Lutje  Spelberg:  Investment  Manager  @  LBDF    

From  a  startup  perspective,  what  are  the  common  deal  structures  in  early  stages?

“We  use  one  common  structure  and  the  problem  is  valuation.  We  invest  in  early  phase,  they  present  

business  plans  for  future  growth.  We  don’t  know  if  their  valuation  is  accurate  and  we  are  unsure  of  the  

true  potential.  First  thing  we  try  to  do  is  cut  the  potential  investment  money  into  parts.  We  try  to  make  

smaller  steps,  including  the  required  investment  for  creating  a  prototype  that  can  provide  proof  of  

concept  and  can  convince  other  investors.  We  invest  in  very  early  phase,  and  the  goal  is  to  reach  another  

phase  where  other  investors  step  in.  Sometimes  we  co-­‐invest  with  Chemelot  Ventures  and  depending  on  

the  level  risk,  we  share  the  investment.  If  we  look  at  the  first  deal,  we  require  the  entrepreneur  to  share  

in  the  investment.  We  don't  like  to  do  this  with  shared  capital,  so  we  most  of  the  time  do  it  in  tranches,  

creating  a  series  of  investments  that  are  dependent  on  the  startups’  ability  to  reach  set  milestones.  If  

milestones  are  reached,  investments  continue  through  the  form  of  convertible  loans.  Depending  on  

results  and  type  of  company,  the  investments  stay  as  a  loan.  If  the  valuation  is  poor  then  the  loan  is  

converted  to  shares.  That  is  the  most  common  structure  we  use.  This  mediates  the  risk  of  a  startups  

potential  failure  to  reach  set  milestones.  In  these  tranches  we  put  mild  milestones  according  to  the  

business  plan  and  milestones  set  by  the  startup.  It’s  very  difficult  for  startups  to  oppose  because  they  are  

responsible  for  setting  their  own  expectations  and  believing  in  their  cause.”

 

How  do  you  prevent  share  dilution?

“That  is  the  problem  because  we  have  funds  that  can  only  go  up  to  $500,000.  Once  we  reach  our  

$500,000  we  cannot  invest  failure  and  our  shares  become  diluted.  What  we  don't  do  is  an  anti-­‐dilution  

clause  because  it  never  works.  That  is  in  the  contract  that  if  another  investor  comes  in  with  a  lower  

valuation  than  our  valuation,  then  I  am  correct  and  receive  shares  back  from  the  entrepreneur.  In  our  

experience,  investors  that  come  in  later  are  interested  in  the  entrepreneur  not  the  seed  investor  so  anti-­‐

dilution  doesn't  support  the  efforts.  If  we  take  same  shares  (type  a)  as  the  entrepreneur  the  advantage  is  

that  if  an  investor  comes  in  later  who  wants  to  be  special  and  give  entrepreneur  an  advantage,  he  cannot  

do  anything  with  the  type  a  shares  because  we  have  the  same  type  of  shares.  It  is  dangerous  also  

because  if  you  give  up  preferred  shares,  the  entrepreneur  becomes  very  demotivated.”

 

Is  the  exit  taken  into  account  when  valuing  and  what  is  is  your  investment  horizon?

“In  general,  our  investment  horizon  is  between  5-­‐7  years.  Typically  what  we  do  is  not  focus  on  dividend  

payouts,  we  only  focus  on  total  exit  at  end  of  horizon.  What  we  like  most  is  an  exit  to  an  external  party  

Page 60: Chemelot Ventures Master Thesis

59

who  pays  a  lot  but  our  experience  is  that  is  only  10-­‐20%  of  the  cases.  The  other  cases  are  when  shares  

are  sold  back  to  the  entrepreneur.  External  parties  offer  up  to  10x  your  investment  in  return  while  the  

entrepreneur  presents  a  2x  to  3x  return  on  the  investment.”

 

How  do  you  keep  this  rate  of  return  stable  if  the  scope  of  investments  is  so  diverse?

“The  conditions  we  choose  companies  by  have  the  potential  to  have  worldwide  marketability  and  IP  

protection  that  provide  a  potential  return  of  10x  the  investment.  It’s  difficult  to  reach  that  with  software  

and  smart  services.  We  have  subsidies,  loans  and  seed  capital  to  invest  depending  on  the  startup.  For  

seed  capital,  my  idea  is  we  invest  in  10  companies  and  9  go  caput.  We  also  have  subsidies  and  loans.  For  

smart  services  companies  we  provide  loans  and  subsidies  because  they  are  a  little  further  and  the  

business  model  is  more  appropriate  for  subsidies  and  grants  that  support  marketing  functions  that  aren’t  

part  of  the  core  function  of  the  investment  fund.  The  type  of  funding  is  dependent  on  the  startup  model  

and  scope.  Seed  funds  are  for  larger  returns  and  the  smaller  returns  use  convertible  loans  and  subsidies  

to  fund  the  desired  investment.”

 

How  is  risk  mitigated,  are  you  board  members?

“No,  I  don't  like  that.  When  startups  are  small  teams,  a  board  is  unnecessary  due  to  the  amount  of  red-­‐

tape/rules  hinder  the  process.  I  personally  think  board  members  should  be  independent  and  shouldn't  

be  a  shareholder  but  it's  a  good  way  to  have  a  lot  of  influence  and  power.”

 

What  is  the  difference  between  a  great  and  average  entrepreneur?

“First  is  experience.  Often  academia  comes  with  mistakes  and  misplaced  passion.  We  prefer  industry  

experience  within  the  management  team  that  is  familiar  with  how  functions  operate  in  the  real  world.  

An  entrepreneur  that  is  willing  to  invest  is  a  key  component.  Trust  is  of  most  importance.  You  have  to  sit  

with  them  every  month  for  years,  so  the  initial  phase  must  uncover  the  ability  for  the  entrepreneur  to  

tolerate  negativity  and  tough  situations.  It  is  more  important  to  understand  the  people  because  the  

product  adapts  to  the  market  but  the  people  stay  the  same.  The  flexibility  of  an  entrepreneur  is  key.”

 

In  terms  of  business  development,  how  do  you  get  your  leads?

“The  nice  thing  about  LIOF  is  we  have  a  regional  investment  company  that  talks  to  entrepreneurs,  

incubators,  business  developers  and  a  whole  network  in  Limburg  that  connects  us  with  all  the  startups.  

Page 61: Chemelot Ventures Master Thesis

60

We  look  to  keep  in  constant  contact,  investing  about  7  times  a  year  and  interacting  with  around  20  total  

companies.”

 

Do  you  operate  with  same  proximity  clause  as  Chemelot?  

“Yes,  we  believe  in  investing  in  startups  that  are  located  or  move  their  operations  to  the  Limburg  region.  

About  half  are  from  Limburg  themselves,  while  the  other  half  move  to  the  region  from  geographical  

locations  across  the  globe.  If  I  see  an  interesting  company,  I  will  ask  somebody  from  business  

development  to  contact  the  startup  and  brief  them  on  the  benefits  that  Brightlands  presents.”

 

What  is  your  added  value  as  an  investor?

“What  we  try  to  sell  is  our  network.  We  provide  capital,  services,  business  developers,  connections  and  

subsidies.  We  take  them  in  and  share  our  network.  

What  is  the  benefit  of  an  incubator  program,  such  as  Brightlands?

“Advantages  exist  in  the  ecosystem  that  is  available  for  these  startups  with  assistance  in  business  

development  and  idea  sharing.”

 

Do  you  operate  with  similar  databases  such  as  Pitchbook  and  LuxResearch?

“We  have  our  own  databases  that  compile  all  startups  in  Limburg.  We  also  go  to  pitch  events  and  look  

around  the  region  for  who  is  looking  for  capital.”

 

Is  your  relationship  with  Chemelot  more  of  a  partnership  or  competition?

“We  have  formal  meetings  every  two  months  but  we  speak  weekly.  We  have  done  12  cases  together  and  

we  are  also  in  the  process  of  two  co-­‐investments.  It  is  better  to  co-­‐invest  due  to  the  investment  limits  we  

have.  We  are  more  flexible  and  less  risk  of  our  shares  diluting.  The  difference  between  VCs  are  the  

stages  invested  in.

Is  VC  partnership  dependent  on  familiarity  and  trust  with  the  management  team  or  synergies  in  the  

investment  portfolio?

“Both,  we  co-­‐invest  regularly  with  trusted  VCs,  but  cash  is  king.  We  always  approach  those  we  know  well  

first.  We  don't  want  to  partner  with  investors  that  go  to  a  valuation  of  zero  causing  us  to  dilute.  

Page 62: Chemelot Ventures Master Thesis

61

Corporate  investors  do  that  because  it  makes  sense  for  their  business  but  it  doesn't  align  with  our  

strategy.”

 

What  objective  criteria  due  you  use  for  financial  indicators?

“Of  course  we  take  IRR  into  account  but  we  invest  in  very  early  stage  startups  and  they  paint  us  a  nice  

picture  without  assurance  of  an  accurate  value.  We  look  at  the  uniqueness  of  the  product  and  potential  

for  high  margins.  We  ask  if  there  is  a  market  for  it  and  is  the  market  demanding  the  product.  The  need  

for  a  CE  authorization  in  the  market  is  crucial.  You  can  develop  a  lot  but  if  the  regulatory  environment  

isn’t  supported  for  certain  applications  then  the  potential  is  minimal.”

 

When  assessing  a  startup  do  you  prefer  startups  that  exist  in  multiple  value  chain  activities  or  

specialize  in  one  specific  value  chain  function?

“The  thing  is  that  if  you  have  the  total  value  chain,  you  have  the  potential  for  the  highest  margin.  If  one  

part  is  two  bring  the  product  into  humans  it  is  impossible.  If  you  can  have  the  whole  chain,  you  have  the  

highest  value.  In  time,  a  startup  with  specialization  in  one  chain  link,  the  less  sustainable  the  growth  of  

the  startup  will  be.  The  market  is  more  accessible  for  others  when  you  specialize  because  you  are  more  

dependent  on  partners  and  other  players  in  the  value  chain  that  can  look  for  alternatives  to  your  

services.  Investing  a  lot  of  money  in  the  whole  chain  creates  higher  margins  and  more  control  in  

exchange  for  a  larger  investment.  We  first  look  to  see  if  there  are  follow  up  investors  because  our  

$500,000  limit  often  won't  cover  the  required  investment  for  a  startup  looking  to  cover  more  aspects  of  

the  value  chain.”    

 

What  are  the  characteristics  of  each  fund?

“Seed  funds  are  the  first  investment  done  by  a  professional  investor.  What  we  see  a  lot  is  that  investors  

invest  themselves  or  with  a  strategic  partner.  The  average  capital  invested  in  seed  funds  lies  between  

€200,000-­‐€700,000.  I  would  rather  invest  in  good  entrepreneurs  than  an  academic  with  a  business  plan.  

The  most  common  source  of  failure  is  our  failure  to  invest  enough  early  on  as  well  as  the  seasonal  

demand  for  a  product.  The  degree  of  operating  leverage  is  often  too  high  for  the  seed  fund.  The  

Nedermaas  portfolio  consists  of  subsidies,  convertible  loans  and  seed  funds.  We  do  an  average  of  50  

investments  a  year  that  vary  in  function.  When  it  is  too  early  for  the  risk  of  a  seed  fund,  we  would  

provide  a  subsidy/loan  that  provides  investment  capital  at  a  lower  risk  until  proof  of  concept  is  provided.

Page 63: Chemelot Ventures Master Thesis

62

7. Interview  Script:  Dario  Porchetta:  Intern  in  Biomaterials  @  Meotec    

What  is  your  background?

“I  am  a  biomedical  engineer  with  extensive  background  in  material  sciences  and  characterization.  I  did  

my  master  thesis  at  Meotec  in  relation  to  magnesium  degradation  for  medical  use.  I  am  responsible  for  

the  characterization  of  the  biomaterials  and  the  characterization  of  the  plasma  electrolytic  oxidation  

(PEO)  materials.”

 

 What  are  the  core  activities  at  Meotec?

“We  have  two  overlapping  fields.  It  revolves  around  the  PEO  process  for  developing  of  metallic  materials  

for  biomedical  and  automotive  uses.”

 

Which  area  of  biomedical?

“We  are  talking  about  fixated  orthopedic  devices  including  pins,  screws,  nails  and  plates  and  all  devices  

that  allow  post-­‐operational  fixation.  We  are  talking  about  implants  that  degrade  after  implementation.  

This  occurs  through  the  creation  of  magnesium  alloys.”

 

How  do  you  manufacture  these  magnesium  components?

“The  development  originates  with  the  alloy  composition.  There  is  a  very  fine  balance  between  the  

mechanical  properties  and  the  biocompatibility  properties.  It  all  starts  with  a  literature  research  and  we  

look  at  the  biocompatibility  of  the  different  elements.  You  have  to  draw  a  very  fine  line  between  these  

two  important  aspects  because  if  u  have  an  implant  that  is  able  to  withstand  your  mechanical  stress  but  

is  poisonous  to  the  body  it  isn’t  wanted  and  vice  versa.”

 

Do  you  make  custom-­‐made  implants  or  is  it  a  lean  manufacturing  process?

“Yes  and  no.  We  are  very  closely  moving  to  a  new  facility  where  we  will  possess  both  possibilities.  Lean  

manufacturing  for  standardized  implants  and  personalized  implants  via  additive  manufacturing  (SLM).”

 

In  terms  of  3D  printing,  what  collaborative  partnership  do  you  have?

“Everything  manufacturing  related  is  done  in  house.  We  are  trying  to  establish  the  whole  chain  from  

design  to  manufacturing  in-­‐house  in  smaller  batches.  The  printer  hardware  is  manufactured  elsewhere.  

The  magnesium  material  creates  a  degradable  material  that  limits  cost  related  to  additional  implant  

removal  surgeries  needed  for  temporary  titanium  implants.  Any  complication  due  to  post-­‐healing  

Page 64: Chemelot Ventures Master Thesis

63

migration  of  the  implant  is  nullified  because  the  implant  is  absorbed  in  the  body.  It  has  become  more  

popular  due  to  its  cost-­‐saving  nature.”

 

How  are  you  achieving  this  while  other  companies  are  not?

“There  is  currently  one  company  that  is  producing  and  has  human  tests.  It  is  because  we  really  invested  

into  the  research.  The  other  company  doesn't  have  as  much  knowhow  in  the  whole  value  chain.”

 

Where  do  you  get  your  raw  materials?

“At  the  moment,  we  get  different  magnesium  profiles  done  by  other  companies  and  institutions  that  we  

have  partnered  with.  We  rounded  up  everything  to  produce  internal  knowhow  and  we  are  bringing  

everything  to  the  new  facility  so  that  we  are  able  to  produce  from  the  melting  of  the  material  itself  to  

the  production  of  the  implant.  Then  we  also  rely  on  external  characterization.  We  currently  do  about  

60%  in-­‐house  and  we  hope  this  percentage  of  in-­‐house  characterization  will  expand  to  nearly  80%  in  the  

future.”

 

Are  the  materials  delivered  and  ready  for  processing  or  is  it  done  in-­‐house?

“We  still  have  to  do  some  processes  including  the  PEO  process  that  augments  the  biocompatibility  and  

greatly  reduces  the  degradation  time  to  cater  to  needs  of  the  patient.  This  is  a  process  that  cannot  be  

done  by  anyone  else,  as  it  is  one  of  our  points  of  excellence.”

 

Are  your  partners  the  material  providers  doing  any  processing?

“We  hardly  ever  receive  the  raw  material  without  some  extent  of  prior  processing.  

Do  you  have  the  same  partners  or  are  you  constantly  looking  for  new  partners?

“We  look  for  new  partners  wherever  opportunities  arise  but  in  the  near  future  we  will  be  producing  our  

own  metals.”

 

How  will  you  be  acquiring  that  core  competency?

“We  will  first  need  a  metallurgical  engineer  that  will  be  joining  the  team,  as  well  as  the  relative  

machinery.  The  time  horizon  for  this  investment  is  within  the  next  year.”

 

 

Page 65: Chemelot Ventures Master Thesis

64

Who  is  responsible  for  demanding  the  product?

“We  will  develop  a  product  that  we  will  subcontract  to  other  companies.  We  will  develop  technologies,  

and  then  the  marketing  and  packaging  of  the  implant  will  be  done  by  our  commercial  partner.”

 

Will  the  partner  be  responsible  for  relationships  with  surgeons/doctors?

“Small  part  is  done  in-­‐house  but  probably  the  partner  will  do  it  as  well.”

 

What  potential  threats  to  market  success?

“The  tendencies  dragging  the  potential  down  are  the  resistance  by  medical  teams  to  adopt  new  

technologies.  This  is  impacted  by  the  surrounding  regulatory  acceptance.  Certification  of  each  phase  of  

the  process  (Code  13428)  is  necessary  but  it  doesn’t  guarantee  doctor  support.”

 

Are  standardized  implants  more  easily  regulated  than  the  customized  implants?

“Yes  but  the  process  itself  will  be  standardized  so  although  the  customized  implant  may  differ  in  

structure,  the  steps  will  be  done  according  to  regulation.”

 

What  is  the  main  difference  between  your  product  and  the  competition?

“The  product  that  exists  today  in  the  market  is  mostly  non-­‐personalized  titanium  implants.  We  are  

offering  not  only  a  degradable  implant  but  also  one  with  more  biocompatibility.  We  can  offer  this  

product  that  offers  two  properties  through  a  process  that  delivers  better  results.”

 

What  is  the  difference  between  an  implant  with  magnesium  vs.  stem  cells?

“Polymeric  implants  are  wonderful  for  combining  with  stem  cells  for  degradation.  They  just  aren’t  tough  

enough.  On  one  side  titanium  implants  are  too  strong  and  present  a  stress-­‐shielding  event,  caused  by  

titanium’s  high  mechanical  characteristics  in  compared  to  the  bone.  The  magnesium  serves  to  relieve  

this  stress  and  creates  a  more  degradable  implant.”

 

Why  aren’t  polymers  more  promising?

“It's  not  about  purity,  it's  about  structure.  It’s  inherently  very  different  from  a  metal.  It’s  not  in  its  nature  

to  withhold  such  stresses.  It  doesn't  mean  that  revolutionary  polymer  materials  aren’t  capable  of  being  

discovered.  But  if  we  look  at  the  feed  of  research,  I  don't  see  encouraging  results  on  the  matter.  For  

Page 66: Chemelot Ventures Master Thesis

65

some  applications,  polymers  can  work.  Their  advantage  lies  in  the  ability  to  provide  lightweight  

orthopedics  for  injuries  with  lower  load  factors  on  the  implant.”

 

Do  you  invest  in  lowering  costs  related  to  the  processing  of  the  titanium  material?

“We  don't  deal  with  titanium  as  much  as  magnesium.  We  have  specialized  in  advancing  the  magnesium  

capability  and  haven’t  really  tried  to  develop  the  cost-­‐effectiveness  of  the  titanium  material.  We  are  very  

heavy  on  R&D  in  relation  to  the  development  of  magnesium.”

 

How  do  you  make  money?

“We  perform  material  characterizations  for  3rd  parties;  we  provide  investigation  on  materials  that  are  

sent  to  us.  We  are  also  involved  in  European  projects,  so  we  receive  European  funds.  We  finally  receive  

funds  from  the  Ministry  of  Innovation  in  Germany.  They  are  not  really  our  shareholders,  as  we  are  

privately  held.    We  can  also  insource  research  from  other  organizations  and  make  money  via  providing  

analysis  of  technologies  that  align  with  our  core  competencies.”

 

How  are  you  funded?

“We  currently  do  not  have  external  investors.  We  are  privately  funded.”

 

What  characteristics  would  a  competitor  need  to  rival  you  in  the  market?

“Investments  in  analytical  machinery  and  the  knowhow  behind  it  are  crucial.  They  must  have  top-­‐notch  

analytical  capabilities  as  well  as  the  right  scientist  for  the  right  machine.  Lastly,  an  optimized  chain  of  

communication  is  also  necessary.”

 

How  important  are  your  IP  rights?

“We  have  a  mixed  behavior.  Part  of  our  IP  is  patented,  including  the  PEO  processes.”

 

How  is  your  management  team  constructed?

“Management  is  run  by  two  minutes,  both  with  5  years’  experience.  The  founder’s  experience  comes  

from  their  studies  in  the  field  during  their  master  thesis  research.”

   

 

Page 67: Chemelot Ventures Master Thesis

66

What  synergies  exist  between  the  medical  and  automotive  fields?

“The  alloys  that  have  biocompatible  properties  are  also  stable,  cheap  and  easy  to  produce.  All  of  the  

processes  are  useable  in  the  automotive  industry  because  they  need  lightweight  materials  with  a  special  

combination  of  lightness  and  corrosion  resistance.”

 

When  looking  at  the  next  5-­‐10  years,  what  is  the  purpose  of  the  investments?

“Collect  all  knowhow  with  the  partnerships  and  bring  it  in  house  to  establish  this  chain  of  production  

internally,  increase  and  improve  analytical  capability  to  achieve  the  80%  characterization  and  movement  

to  larger  facility:  Location,  equipment,  people”

 

How  big  is  the  market  in  your  estimation?

“The  first  step  after  our  big  investment  we  will  probably  talk  about  approximately  4,000  pieces  the  first  

year.  We  have  the  option  in  our  next  facility  to  get  a  large  modular  warehouse  that  can  be  adapted  to  

our  production  needs.  What  the  will  production  will  be,  we  really  don’t  know.”

 

What’s  the  biggest  threat  to  your  long-­‐term,  sustainable  growth  at  Meotec?

“The  biggest  threat  to  us  is  the  processing  of  the  certifications  within  the  regulatory  environment.  It  has  

the  most  uncertainty.”

 

What  is  the  geographic  reach  of  your  market  penetration?

“At  first  just  Europe  is  our  market.  It’s  not  strictly  Germany.  The  certifications  are  EU  applicable  making  

all  of  Europe  a  viable  market  upon  certifications  in  the  regulatory  market.  The  market  will  be  broad  as  

possible  depending  on  the  regulations  that  pass  through  on  a  world-­‐scale.”

 

8. Interview  Script:  Patrick  van  der  Meer:  BIF  Director  of  Deal  Flow  Management  

What  is  the  rate  of  warm/cold  leads  eventually  resulting  in  a  successful  deal?

“That  depends.  It  could  be  10%  if  the  quality  is  at  a  decent  level.  I  have  450  cold  leads  in  the  databases.  If  

we  get  into  contact  with  15,  I  would  say  that's  a  lot,  the  rest  won't  react  at  all.  Of  those  15,  eventually  1  

from  that  list  of  cold  leads  should  come  out.  With  warm  leads,  if  I  speak  with  LIOF  for  example,  and  they  

tell  me  of  startups  that  are  currently  looking  for  financing,  have  some  issues  but  may  fit  into  our  scope  

and  acceleration  program;  then  those  are  warm  leads.  The  chance  that  they  come  out  is  closer  to  40%.  

The  challenge  is  to  get  the  right  funding  at  the  right  moment  in  time.  Chemelot  may  only  pop  in  at  a  later  

Page 68: Chemelot Ventures Master Thesis

67

stage.  We  offer  the  ability  for  startups  that  align  with  our  field,  regardless  of  phase,  access  to  a  subsidy  

grant  of  up  to  €50,000  and  a  6-­‐month  lease  at  the  Brightlands  Campus.  You  need  good  quality  deals  or  

you  get  rubbish  results.  We’ve  seen  projects  explode  due  to  lack  of  cooperation  or  poor  technical  due  

diligence,  so  the  desired  results  weren’t  capable  of  being  met.  We  need  to  select  much  better  especially  

for  the  accelerator  phase.  Thus,  they  usually  have  a  minimum  viable  product,  prototype  or  sample.  We  

look  to  check  the  quality  of  your  claim  and  it’s  authenticity.  There  can  be  some  unknown  but  a  certain  

standard  must  be  met.  For  the  incubator  that  is  less  the  case  because  of  these  technical  due  diligence  

costs  and  time.  We  don't  want  to  devote  too  much  money  to  an  incubator  candidate  because  we  say,  to  

supply  5  scale  ups,  we  need  to  start  with  100  incubators.  95  will  not  make  it  so  anything  I  invest  in  them  I  

lose.  A  certain  investment  is  needed  but  it’s  always  a  question  of  how  much.”

 

Who  are  the  parties  making  funds  available  for  the  startups?

“That  depends  on  the  phase  of  the  startups.  For  very  early  stages  for  example,  you  have  a  large  part  of  

funding  from  the  three  F’s:  Family,  Friends  and  Fools.  Or  you  have  some  subsidies,  grants  or  loans  that  

can  be  used.  The  money  can  be  monitored  but  it’s  only  a  few  €100,000  so  it’s  quickly  gone.  You  have  to  

be  careful  that  you’re  not  personally  liable  for  that  money  or  you’ll  fail  as  a  startup.  Subsidies  and  the  

solid  deals  with  the  three  F’s  that  remove  risk  of  failure  are  keys  to  succeeding  at  working  on  your  dream  

while  earning  a  low  salary.

The  shift  comes  when  you  need  to  make  a  product/sample.  You  may  need  a  bigger  loan  by  the  likes  of  a  

regional  investment  bank  that  requires  a  business  plan  and  visual  representation  of  the  product  before  

financing  it.  If  you  have  your  product  and  your  market  validation,  you  must  then  validate  that  it  does  the  

job  and  has  some  advantage  in  comparison  to  the  current  standard.  The  long  length  of  time  needed  for  

proof  of  concept  often  provides  an  issue  of  funding.  Due  to  the  uncertainty  of  the  future  and  the  

product’s  potential,  many  VCs  such  as  Chemelot  aren’t  willing  to  invest  in  projects  with  lengthy  time  

horizons.  The  question  is  then,  where  do  they  get  their  millions  in  funding?  Some  early  VCs  may  come  in  

but  it's  a  challenge.  Often  angels  exist  but  they  are  expensive  investors.  They  often  put  your  back  against  

the  wall  but  if  they  have  extensive  industry  knowledge  and  can  help  in  the  process  then  it’s  advisable.  

Smart  money  is  the  best.  You  must  have  investors  that  align  with  your  goals  as  a  startup.”

 

Where  then  does  Brightlands  Innovation  Factory  come  into  play?

Page 69: Chemelot Ventures Master Thesis

68

“As  BIF,  we  support  the  startups  with  programs,  services,  facilities  and  expertise.  So  We  have  the  

Chemelot  campus,  Maastricht  health  campus,  hospital  and  University  and  in  Heerlen,  the  Smart  Services  

campus  that  focuses  on  IT  and  big  data  related  solutions.  We  have  experts  in  the  network  that  we  

mobilize  to  support  the  startups  in  their  respective  fields.  They  do  that  free  of  charge  during  the  

programs.  For  example,  IP  is  a  huge  thing  in  material  science.  In  our  program,  we  plan  time  to  determine  

the  startups  IP  and  product  strategy.  If  additional  services  regarding  attaining  patents  are  needed  then  a  

cost  is  incurred.  By  bringing  the  right  expert  at  the  right  moment,  they  can  go  quicker  through  

development.  Due  to  vast  networks  and  business  developers  across  key  industry  players,  doors  are  

opened  that  expedite  the  startups’  development.  We  also  have  programs  the  4  stages  of  startup  

development:  Incubate,  Accelerate,  Validate  and  Scale.

 

In  the  first,  incubator  phase,  we  offer  a  4  week  boot  camp.  3  weeks  of  master  classes,  workshops,  

speakers  and  the  fourth  week  to  work  on  the  plan  to  approach  a  proof  of  concept  from  your  ideas.  We  at  

Brightlands  support  the  startup  during  that  period  which  can  reach  a  maximum  of  2  years.  During  those  

2  years  the  startup  gets  a  manager  that  has  weekly  communication.  Further  expertise  and  business  

development  support  is  provided  to  accelerate  the  development  of  the  startup.  Through  advisor  

assistance,  you  get  the  right  funding  at  the  right  time,  making  it  more  cost  and  time-­‐effective.  We  

alleviate  the  startups’  need  to  focus  on  funding,  directing  all  their  attention  on  the  development  of  the  

product.

 

In  the  accelerator,  the  process  is  shortened  to  about  6  months.  3  months  is  a  program  boot  camp  with  

intensive  support  on  several  topics  including  strategy,  marketing,  sales,  IP,  operations,  team  dynamics  

and  others.  Critical  analysis  is  conducted  through  multiple  business  model  canvas  drafts  and  continually  

adjusted  assumptions.  At  the  end  of  the  program,  you  know  your  key  customers,  market  dynamics,  

problem-­‐solution,  branding,  industrial  partners,  marketing  tactics,  etc.  Then  the  business  plan  can  be  

prepared  and  the  validation  phase  can  be  addressed.

 

In  validating  and  scale  up  phases  we  don't  offer  programs  because  each  case  has  specific,  customized  

needs.  We  offer  our  services  and  facilities  that  come  at  a  cost.  The  first  two  stages  we  work  with  equity.  

We  offer  a  convertible  loan  of  4%  of  the  equity  for  an  incubator  and  8%  for  accelerator.  You  also  get  

€700,000  worth  of  funding  and  temporary  housing  in  close  proximity  to  the  campus.  We  believe  the  

ecosystem  where  the  startup  develops  highly  impacts  the  chance  of  success.”

Page 70: Chemelot Ventures Master Thesis

69

 What  is  your  portfolio’s  scope?

“It  is  materials  and  chemicals  in  the  broadest  sense.  We  have  a  now  split  in  bio-­‐based  materials,  with  

some  focus  on  polymers  and  composites  due  to  the  campuses’  history.  We  don't  reject  startups  focusing  

on  pure  metals  and  ceramics,  but  the  Chemelot  campus  is  often  too  expensive  for  an  imperfect  fit.”    

9. Interview  Script:  Jens  Thies:  Director  Science  &  Innovation  @  DSM  Biomedical    

What  is  the  unmet  need  in  the  market?

 “When  looking  at  diseases  of  the  knee  and  other  joints:  If  left  untreated  will  uncertainly  cause  

osteoarthritis  and  if  that  is  left  untreated,  a  full  replacement  is  necessary.  Current  knee  replacements  

have  a  lifetime  of  about  15  years,  with  additional  revision  surgeries  increasing  in  cost  and  complexity  due  

to  less  healthy  bone  to  work  with.  This  can  lead  to  a  higher  chance  of  infection.  For  this  reason  there  has  

been  an  effort  within  orthopedics  to  extend  the  first  knee  replacement  procedure  as  long  as  possible  to  

delay  future  operations.  From  a  healthcare  economic  point  of  view,  the  more  you  delay  revisions,  the  

more  people  die  before  they  need  an  additional  operation,  ultimately  lowering  costs.  There’s  huge  

economic  benefit  by  delaying  the  need  for  revisions  by  even  a  few  years.  That  is  in  fact  the  unmet  need  

in  the  market.  The  tricky  thing  is  economics  and  cost.  Microfracture  procedures  don't  cost  much.  It  takes  

only  about  15-­‐20  additional  minutes  to  clean  up,  eliminate  rough  edges  and  drill  the  hole  in  the  bone.  

The  patient  would  then  need  a  few  months  of  physiotherapy  and  rehabilitation.  The  more  advanced  

therapies  require  an  additional  procedure  and  the  culturing  of  cells  in  a  stabilized  and  sterile  

environment  that  is  comparatively  complex  and  costly.  There  are  low-­‐end  procedures,  being  

microfracture  surgery,  high-­‐end  via  cell  therapies  and  procedures  in  the  middle  of  the  complexity/cost  

scale  that  also  exist.  Studies  like  this  take  a  very  long  time  so  many  of  these  procedures  don't  have  

enough  historical  data  to  compete  directly  with  microfracture  procedures.”

 

Who  demands  the  use  of  these  different  procedures?

“You've  got  to  segment  the  patient  by  age,  lesion  size,  position  and  ability  to  pain.  If  you’re  a  sports  med  

doctor  with  a  38-­‐year-­‐old  person  with  good  health  insurance,  then  more  expensive  procedures  are  

recommended.  Someone  that  is  older  with  more  standard  insurance  would  be  recommended  to  use  the  

microfracture  procedure  that  is  less  costly,  complex  and  durable.  It  comes  down  to  the  type  of  patient  

and  clinician’s  preferences.  As  a  non-­‐expert  in  surgeries,  it  seems  to  me  that  in  comparison  to  more  

proven  technologies  such  as  stents  in  the  heart,  knee  cartilage  operations  are  less  assured  of  results.  It  

has  been  documented  that  these  procedures  help  but  aren’t  proven  to  really  work.  There’s  no  home  run  

Page 71: Chemelot Ventures Master Thesis

70

technology.  That's  great  from  an  entrepreneurial  point  of  view  because  there  is  an  impression  that  the  

market  need  still  hasn't  been  met.”

 

What  is  holding  the  market’s  adoption  of  new  implant  materials  back?

“If  you’re  looking  at  this  from  a  materials  development  point  of  view,  its  even  more  difficult  because  

introducing  a  new  material  into  a  medical  device  is  a  long,  hard  and  expensive  road.  In  order  to  show  

that  a  new  procedure  is  better  than  the  standard,  a  lengthy  clinical  trial  is  necessary.  You  would  have  to  

have  hundreds  of  patients,  at  least  5  years  per  patient  and  patients  that  are  suitable  for  research.  To  

assure  a  sufficient  sample,  finding  patients  with  isolated  defects  but  no  additional  issues  is  highly  

difficult.  The  clinical  trials  often  look  at  pain  as  an  outcome,  with  patients  grading  pain  from  1-­‐10.  This  

makes  it  hard  to  standardize  and  isolate  the  specific  defect  pain  source.  Imagine  you  want  to  make  a  

new  knee  that  lasts  not  15  years  but  20  years.  Your  clinical  trials  must  then  be  greater  than  20  years,  

often  too  long  of  a  horizon  for  investors  and  industry  professionals  to  risk.”

 

What  is  the  risk  of  adopting  new  materials  as  the  standard?

“The  time  horizon  and  the  investment  are  crucial.  When  talking  about  knees,  the  devices  are  good  you  

just  get  old.  These  implants  are  primarily  made  of  titanium  and  UHMWPE  (ultra-­‐high  molecular  weight  

polyethylene.)  That  works  well  so  I  don't  think  there  will  be  a  huge  amount  of  innovation  in  the  implant  

composition.”

 

Is  the  adoption  of  new  process  technologies  more  feasible?

“It’s  possible  that  there  are  benefits  in  making  piece-­‐specific  implants.  Companies  like  Episurf  use  

machining  to  construct  their  implants.  I’ve  heard  a  lot  about  how  3D  printing  has  the  opportunity  to  

revolutionize  healthcare  but  I  don't  see  the  need.  Its  cool  technology  and  I  know  people  will  use  it  but  I  

only  see  two  reasons  for  using  it:  customizable,  patient  specific,  on-­‐demand  capabilities,  as  well  as  the  

ability  to  construct  complex  designs  that  are  able  to  be  made  in  another  way.  The  additive  

manufacturing  technologies  present  limited  benefits  in  comparison  to  traditional  machining  methods  for  

manufacturing  standardized  implants.”

   

 

 

Page 72: Chemelot Ventures Master Thesis

71

Is  there  any  chance  of  price  impact  through  changing  the  supply  chain?

“Maybe,  but  I  don't  think  the  benefits  are  huge.  I  wouldn't  be  surprised  either  way.  I  think  supply  chain  

management,  warehouse  inventories  are  important  but  is  it  worth  investing  the  amount  of  initial  capital  

outlay  needed  to  establish  localized,  quality-­‐assured  plants?  The  costs  of  altering  the  supply  chain  at  this  

point  are  an  enormous  investment.  I  see  the  fantasy  there  but  I  see  the  reality  being  pretty  tricky.

 

I  approach  it  in  this  way:  can  you  find  an  unmet  need  that  would  be  possible  to  address  with  better  

technologies  and  materials.  Really  understand  the  unmet  need  and  why  the  current  offerings  don't  

satisfy  the  clinicians.  Only  then  can  you  understand  what  technologies  and  processes  are  needed  to  

make  that  device.  If  the  process  requires  new  materials  and  potentially  3D  printing  capabilities,  then  that  

is  the  only  time  I  would  agree  to  adopt  the  new  process  technologies.”

 

Do  companies  in  emerging  nations  have  the  potential  to  impact  the  European  market  due  to  more  lax  

regulatory  environments?

“No,  although  the  regulatory  environment  may  be  more  lenient  in  those  countries,  Europe  and  the  US  is  

where  the  value  is  located.  If  you  want  to  exist  in  our  markets,  they  must  go  through  our  regulatory  

system.  They  may  have  an  advantage  to  get  a  head  start  in  their  market  but  we  all  have  to  go  down  the  

same  regulatory  paths  to  achieve  a  global  scale.”

 

What  are  key  success  factors  for  startups  in  this  market?

“They  need  four  things  from  a  business  point  of  view:  clear  and  well-­‐formulated  understanding  of  the  

unmet  need,  technology  that  works,  operational  and  profit  feasibility  and  the  character  of  the  team.  It’s  

important  to  see  the  passion,  drive  and  awareness  of  what  it  takes  to  truly  succeed.”

 

What  factor(s)  are  the  biggest  determinants  of  the  technological  progression  in  this  market?

“The  regulatory  environment  is  crucial  throughout  the  product  development  process.  You  can  get  a  first  

thought  on  potential  via  animal  models.  To  reach  human  clinical  trials,  proof  of  efficacy  in  animals  isn’t  

needed,  only  safety  and  biocompatibility.”

 

 

 

Page 73: Chemelot Ventures Master Thesis

72

Who  is  the  decision-­‐making  unit  in  this  value  chain,  responsible  for  the  shift  in  materials/process  

technologies?

“It’s  in  flux.  It  used  to  be  the  doctors.  If  a  surgeon  requests  a  device/product,  generally  they  get  it.  If  it's  a  

standard,  mass-­‐produced  product  such  as  a  stint,  there  is  currently  more  control  vested  in  the  

purchasing  departments  of  hospitals/groups  of  hospitals.  Hospitals  often  team  up  to  put  pressure  on  

medical  device  companies  to  get  a  good  discount  on  standardized  products.  Other  things  that  are  less  

standardized  are  still  under  more  control  of  the  surgeons.  A  market  trend  is  the  shift  in  purchasing  

power  from  the  clinicians  to  the  purchasing  departments  in  hospitals.”

 

What  is  the  insurance  company's  position  in  the  value  chain?

“Everything  is  reimbursed.  Depending  on  your  health  care  coverage,  there  are  certain  cost  and  

treatment  levels  covered  by  the  insurance  company.  As  long  as  the  hospital  fits  with  the  coverage  then  

costs  are  reimbursed  to  the  patient  without  issue.  Insurance  companies  never  show  preference  in  the  

specific  product  used,  as  long  as  they  are  in  the  same  price  range.”

 

Where  is  the  most  value  created  in  the  value  chain?

“We  call  the  implant  manufacturer  the  channel  captain  in  the  value  chain.  Another  huge  player  on  the  

other  side  of  the  customer  in  the  value  chain  is  the  insurance  company  that  reimburses  the  patient.  The  

most  important  link  is  the  medical  device  companies.  Any  small  startup  exit  strategy  is  to  be  acquired  by  

the  medical  device  company.  It  would  be  insane  for  the  small  startups  to  directly  supply  hospitals  due  to  

the  need  for  hundreds  of  salespeople.    20-­‐30  salespeople  would  be  more  appropriate  to  provide  a  proof  

of  concept  on  a  regional  scale  until  adopted  by  a  global  medical  device  company.”  

10. Interview  Script:  Simon  Vanooteghem:  Account  Manager  @  Materialise  

How  do  3D  printing  and  implant  manufacturing  align?

“The  goal  is  to  provide  patient  specific  solutions.  We  are  aiming  where  conventional  technological  

treatments  aren’t  sufficient.  3D  printing  won't  be  the  standard  for  conventional  implants  but  more  

necessary  for  complex    patient-­‐specific  solutions.  We  have  created  “guides”  that  predetermines  holes  for  

the  implant  via  a  simulating  software  package.  We  3D  print  the  guide,  align  it  on  the  location  of  the  

surgery  and  can  more  efficiently  and  quickly  perform  the  screwing  necessary  during  an  implant  surgery.  

This  increases  surgical  accuracy  and  minimizes  the  manual  invasiveness  of  the  surgery.  Because  guides  

pre-­‐define  the  drill  holes,  the  surgical  procedure  time  is  also  drastically  reduced  by  about  50%.  Recovery  

Page 74: Chemelot Ventures Master Thesis

73

time  is  also  reduced.  The  advantage  is  that  its  patient  specific,  guaranteeing  fit  in  the  patient  the  first  

time  and  assurance  of  a  long-­‐term  recovery.  Patient  specific  implants  are  currently  very  expensive,  so  

only  complex  cases  are  applicable.  To  make  these  solutions  cost  effective,  we  have  been  gathering  data  

to  make  hybrid  implants  that  use  a  population  analysis  to  fit  the  largest  part  of  population.”

 

How  is  the  patient-­‐specific  data  collected?

“You  got  to  a  hospital.  You  have  scanners  (MRI,  CT,  Ultrasound,  etc.)  that  provide  layered  images.  The  

Materialise  software  bundles  that  stack  of  images  to  enable  the  creation  of  the  3D  implant  model.  

Engineers  do  the  designing  because  surgeons  don't  have  time.  Surgeons  are  collaborating  with  

engineers.  Surgeons  prepare  surgery,  engineers  provide  approval  and  the  surgery  is  performed.  We  

provide  a  platform  that  facilitates  communication  between  surgeons  and  engineers.  The  software  

package  is  closed  to  provide  revenues.  It  is  important  that  our  software  has  FDA  approval  that  gives  

certification  to  the  tool  that  makes  it  hospital-­‐certified  as  well  as  research  certified.  These  procedures  

are  often  highly  monotonous  and  time  consuming.”

 

What  is  the  ratio  of  engineers  to  surgeons?

“It  can  be  one  on  one.  The  engineers  often  work  at  Materialise,  not  on  a  specific-­‐hospital  basis.  Surgeons  

send  the  data  to  Materialise’s  engineers.  The  engineer  then  creates  the  implant  via  the  software/data  

and  then  sells  it  back  to  the  surgeon.  There  are  also  engineers  that  work  at  a  specific  hospital  when  the  

hospitals  are  maintaining  their  own  3D  printing  departments.”

 

Can  you  walk  us  through  the  selection  of  implant  material?

“It’s  dependent  on  the  type  of  application.  For  implants,  its  usually  titanium  because  its  positive  ratio  

between  strength  and  weight.  It  is  also  important  that  the  titanium  implant  has  a  porous  structure,  

which  means  it  has  small  holes.  This  allows  the  implant  to  basically  merge  with  the  bone,  which  is  a  

stronger  interaction  than  a  smooth  implant  would  provide.  Porous  titanium  has  less  heat-­‐absorption  

characteristics,  making  it  less  sensitive  to  environmental  temperatures.”  

 

Do  you  buy  the  materials  pre-­‐processed  or  in  their  raw  form?

“We  usually  buy  materials  that  are  already  prepared.  We  don't  process  raw  materials;  we  focus  more  on  

the  development  of  the  associated  3D  printing  software.”

 

Page 75: Chemelot Ventures Master Thesis

74

Where  is  the  market  going  in  relation  to  trends  in  orthopedic  implants?

“There  are  more  and  more  patient  specific  solutions.  3D  printing  solutions  are  a  bit  more  expensive  but  

do  provide  a  more  assured  long-­‐term  recovery.”

 

What  is  the  main  driver  of  patient-­‐specific  solutions?

“Standard  implants  don't  work  anymore.  They  require  more  frequent  revisions  and  also  have  the  

potential  to  create  additional  injuries  due  to  improper  fit  with  the  bone.  A  patient-­‐specific  solution  can  

take  the  anatomy  into  account.  3D  printing  will  never  be  the  standard  technology  because  the  implant  

must  be  complex  enough  to  justify  the  cost.  For  now  there  is  also  no  reimbursement.  This  is  important  

because  if  a  surgeon  wants  to  adopt  3D  printing,  they  must  ensure  that  the  patient  is  capable  of  paying  

for  it.  There  is  also  not  enough  historical  data  to  prove  the  long-­‐term  success  and  effectiveness  of  3D  

printing,  creating  uncertainty  in  the  market.”

 

Who  is  responsible  for  reimbursement  of  costs?

“The  surgeon  still  pays  in  most  countries.  In  others,  such  as  Belgium,  the  patient  must  pay  for  it.  The  

government  and  regulatory  environment  are  deciding  factors  in  the  adoption  of  3D  printing  technologies  

due  to  the  impact  these  regulations  have  on  insurance  coverage.“

 

How  do  you  view  implant  progression  from  biocompatible,  active  to  regenerative?

“It’s  heading  nowhere  for  now  because  its  still  in  the  research  phase.  Universities  have  started  projects  

in  that  field.  We  are  collaborating  with  companies  to  investigate  regenerative  implants  but  it’s  definitely  

futuristic  at  the  moment.  The  regenerative,  stem  cell  and  bio-­‐scaffolding  technologies  are  now  being  

researched.”

 

In  terms  of  warranties,  who  is  responsible  for  mishaps  in  the  implant  process?

“Terms  in  conditions  are  created  to  place  end  responsibility  on  the  surgeon.  The  surgeon  is  responsible  

as  long  as  all  regulatory  stipulations  have  been  met.”

 

What  environmental  factors  are  most  influential  in  supporting  or  hindering  the  advancements  in  3D  

printing  technologies?

“3D  manufacturing  technologies  will  never  fully  replace  traditional  manufacturing  methods  for  more  

standardized  products.  The  amount  of  materials  and  costs  of  manufacturing  are  expected  to  improve.  It  

Page 76: Chemelot Ventures Master Thesis

75

is  highly  dependent  on  the  regulatory  acceptance  of  governments.  Without  the  proper  CE  Markings  and  

FDA  approval,  the  advancements  in  3D  printing  will  never  reach  it’s  potential.  Our  focus  is  on  the  

software  application.  We  have  the  largest  European  printing  facility  here  in  Leuven  but  more  and  more  

commercial  companies  have  their  own  3D  printing  parts.  What  is  really  important  is  the  constant  need  of  

software.  Our  software  capabilities  increase  efficiency,  speed  and  value  of  the  3D  printing  process

 11.  Interview  Script:  Tony  van  Tienen:  Orthopedic  Surgeon  

What  are  shortcomings  of  polymers  at  implant  materials?

I  started  with  the  concept  of  a  resolvable,  porous  polymer  but  it  didn't  seem  strong  enough.  I  realized  its  

impossible  to  create  a  complete  polymer,  knee  replacement  implant  because  the  weight  load  placed  on  

the  knee  is  just  too  strong.  You  can  make  stiffer  polymers  but  in  the  knee,  you  need  to  protect  cartilage.  

It  needs  to  be  flexible  and  strong.  Up  to  now,  I  have  found  no  polymer  that  can  resist  that  force  without  

reinforcement  with  other  polymers/materials.  The  polymers  are  in  development  but  to  say  that  

everything  can  be  done  with  one  single  polymer  isn’t  possible.

 

What  is  the  main  advantage  of  polymers  at  implant  materials?

It  would  be  very  easy  to  make  implant  out  of  one  single  polymer.  3D  printing  doesn't  create  a  strong  

enough  implant  while  injection  molding  is  proven  to  do  so.  If  you  can  deliver  one-­‐polymer  implants  that  

are  strong  and  flexible  enough  then  it  is  very  easy  to  injection  mold.  Currently,  layering  must  be  done  to  

create  a  combination  of  stiff,  strong  material  and  flexible  material.  Polymers  within  the  same  family  

attach  easily  to  each  other.

 

Does  the  surgeon  demand  these  technology  progressions  or  is  it  pushed  down  from  the  

technology/material  developers?

We  both  are.  I’ve  always  had  to  work  with  polymer  chemists  or  biomechanical  engineers.    They  all  ask  

questions  and  I  deliver  requirements.  I  request  implants  with  certain  characteristics  and  the  engineers  

look  up  feasibility  and  attempt  to  cater  to  demands.  If  it  isn’t  possible,  a  collaboration  to  meet  

requirements  occurs.

 

Who  is  the  payer  of  the  implant?

It  depends  on  the  country.  Insurance  companies  have  codes  for  different  types  of  implants.  If  an  

abnormal  procedure  is  needed  then  it  is  probable  that  the  insurance  company  will  not  cover  it.

Page 77: Chemelot Ventures Master Thesis

76

Does  the  process  technology  affect  reimbursement?

No,  insurance  companies  don't  care  about  implant  origination  or  manufacturing  procedures.  As  long  as  

long-­‐term  historical  evidence  is  given  and  proof  of  a  reduction  in  costs  to  the  insurance  companies  are  

likely,  then  insurance  companies  are  more  willing  to  cover  the  implant  procedure.  They  aren’t  looking  for  

something  new,  just  something  more  cost-­‐effective.  They  are  short-­‐term  oriented.  Within  1-­‐2  years,  cost  

reductions  must  be  notable.

 

In  terms  of  liability,  who  is  ultimately  liable  for  implant  defects/failures?

As  long  as  it's  a  surgical  procedure  failure,  then  the  surgeon  is  liable.  If  a  problem  occurs,  the  surgeon  

does  his  homework  and  analyzes  data  related  to  the  clinical  feasibility  of  the  implant.  From  there  the  

surgeon  can  understand  where  the  mistake  was  made,  either  by  him  or  the  implant  manufacturer.  If  

there  is  an  improper  CE  marking  or  a  technical  problem,  then  liability  is  placed  on  the  manufacturer.

 

What  level  of  skepticism  do  surgeons  have  when  anticipating  the  possibility  of  a  new  

material/technologies  eventual  certification?

A  very  high  level  of  skepticism  exists.  When  looking  at  the  potential  for  new  polymer  materials  to  use,  I  

start  with  materials  that  have  met  all  the  necessary  regulatory  requirements.  This  improves  the  chance  

of  getting  that  implantable  material  into  human  trials  and  to  the  market  as  soon  as  possible.  If  you  

attempt  to  use  materials  that  have  no  prior  human  trials  or  proof  of  concept  then  the  time  horizon  to  

getting  that  material  into  a  human  body  can  take  upwards  of  a  decade.    

 

What  is  your  stance  on  3D-­‐printed  implants?

 I  think  there  is  a  lot  of  marketing  involved  in  3D  printing.  If  you  are  really  critical  about  how  many  

implants  are  used  that  are  made  via  3D  printing,  then  you  see  that  is  a  very  few  amount.  It  is  mostly  

metal-­‐based  materials  not  polymers.  There  is  hype  but  I  really  doubt  that  it  is  legitimate.  You  need  the  

medical  device  companies  to  get  interested  in  the  new  developments  because  you  need  global  support.

 

What  must  occur  for  3D  printing  of  implants  to  become  an  industry  norm?

I  think  Materialise  is  a  company  that  is  assisting  in  this,  through  their  development  of  guides  that  

facilitate  the  implant  procedure.  The  other  advantage  of  3D  printing  is  that  you  don't  need  the  molds,  

making  it  much  cheaper.  First,  it  must  be  proved  that  the  strength  of  the  implant  made  via  3D  printing  

has  the  same  or  stronger  strength  properties  as  an  implant  made  via  injection  molding.

Page 78: Chemelot Ventures Master Thesis

77

What  about  the  3D  printing  process  is  cheaper  than  injection  molding?

The  mold  itself  is  extremely  expensive.  A  personalized  mold  can  cost  around  $1000.  3D  printing  is  

essential  for  personalized  medicine  because  it  uses  computer  model  instead  of  molds  for  every  patient,  

which  is  a  very  costly  exercise.

 

Where  is  the  market  heading  from  a  process  technology  viewpoint?

I  think  the  market  moves  slowly.  I  don't  see  the  introduction  of  3D  printing  making  a  huge  difference.  I  

see  the  introduction  of  new  polymers  with  better  characteristics  will  make  a  larger  difference.  3D  

printing  may  assist  in  reducing  costs  of  injection  molding  techniques  but  I  am  unsure  if  the  3D  

manufacturing  technique  can  guarantee  the  reproduction  of  identically  sound  implants.  In  conclusion,  I  

think  we  need  better  polymers  instead  of  better  ways  to  produce  them.

 

How  do  large  medical  device  companies  impact  startups?

Startups  are  always  looking  for  an  eventual  exit  and  large  medical  device  companies  represent  an  

opportunity  to  sell  their  innovations  to  an  organization  that  can  implement  them  on  a  worldwide  scale.

 

What  is  your  opinion  on  the  development  of  regenerative  cells?

I  have  no  confidence  in  that  development.  It's  more  a  scientific  exercise  than  it  is  a  real  solution.  The  

limitations  of  my  beliefs  are  the  introduction  of  active  but  not  full-­‐fledged  regenerative  implants.  

 

 

 

 

 

 

 

 

 

 

 

 

Page 79: Chemelot Ventures Master Thesis

78

Desk  Research  Data  

This  section  briefly  introduces  the  reader  to  the  current  publications  on  the  biocompatible  materials,  

process  technologies  and  market  dynamics  within  the  orthopedic  implant  market.

What  innovative  materials  are  used  by  startups  in  the  creation  of  orthopedic  implants?  

Innovations  High  Performance  Thermoplastics:  Scouting  Process  and  Material  Technologies  for  Existing  

and  Emerging  Markets,  December  2013.  (Anthony  Vicari)

According  to  lead  analyst,  Anthony  Vicari,  “high-­‐performance  thermoplastics  operate  at  the  frontier  of  

current  polymer  performance  capabilities  and  offer  the  possibility  to  replace  advanced  metal,  ceramic,  

and  thermoset  parts  with  lighter  weight,  multifunctional  thermoplastics  that  are  often  faster  to  

manufacture.”  High  performance  thermoplastics  are  a  subset  of  polymers  that  soften  or  melt  when  

heated,  “offering  a  combination  of  high  strength,  high  melting  point  (defined  here  as  having  Tm  above  

150  degrees  Celsius)  and  chemical  robustness  or  inertness  (resistance  to  acids,  bases  and/or  organic  

solvents).”  HPTPs  currently  have  the  opportunity  to  gain  traction  due  to  growing  megatrends  supporting  

more  sustainable  manufacturing  practices,  creating  lightweight  alternatives  for  incumbent  materials  that  

have  been  developed  to  their  limits.    Anthony  Vicari’s  analysis  provides  a  detailed  account  of  the  

potential  for  HPTPs  to  create  viable  material  alternatives  in  the  medical  implants  arena.  The  analysis  

gives  insights  into  the  benefits,  challenges  and  implications  of  developing  HPTPs  to  be  used  in  orthopedic  

implants.  In  general,  HPTPs  offer  the  possibility  of  having  materials  that  are  lighter,  multifunctional  and  

faster  to  manufacture  than  the  metal  and  ceramic  materials  used  previously.  Despite  this  potential,  

market  penetration  of  these  materials  remains  highly  limited  due  to  the  severity  of  costs.  Given  the  

increased  amount  of  purity  and  stability  needed,  these  HPTPs  require  higher  levels  of  energy  during  

manufacturing,  ultimately  increasing  tooling  costs  and  limiting  the  ability  for  small  industry  players  to  

adopt  the  materials  as  the  industry  standard.  The  report  will  incorporate  several  aspects  of  this  analysis,  

using  Vicari’s  findings  on  high-­‐performance  thermoplastics  to  gauge  the  potential  for  HPTPs  to  

revolutionize  how  orthopedic  implants  are  created  and  used.  

High  Performance  Thermoplastics:  Specialty  Chemicals  Update  Program,  December  2015  (Emanuel  

Ormonde,  Masahiro  Yoneyama,  Uwe  Loechner,  Xu  Xu)

This  report  focuses  on  “high-­‐performance  thermoplastics,  which  are  highly  specialized  polymers  used  in  

very  demanding  applications.”  The  report  delves  into  the  HPTP  industry,  the  profiles  of  HPTP  producers  

and  market  megatrends  that  are  revolutionizing  the  opportunities  made  available  for  HPTP  producers  

Page 80: Chemelot Ventures Master Thesis

79

and  end  users  of  the  material.  This  report  will  provide  concrete  data  on  the  world  consumption  of  HPTPs,  

the  major  drivers  of  growth  in  the  market  and  the  relative  advantages  and  disadvantages  that  HPTP  

manufacturing  has  over  materials  such  as  metal  and  ceramics,  that  were  the  prior  industry  standard  for  

orthopedic  implants.  By  understanding  the  recent  market  developments,  key  drivers  of  change  and  

notable  producers  of  HPTPs,  a  holistic  view  of  the  industry  can  be  seen.  This  will  provide  the  basis  of  the  

objective  criteria  that  is  to  be  used  for  the  analysis  of  emerging  producers  and  users  of  these  high-­‐

performance  thermoplastics.  This  report  will  account  for  a  large  portion  of  the  foundation  of  our  

research  pertaining  to  the  development  of  innovative  HPTP  materials  that  can  compound  polymers  by  

combining  HPTPs  and  other  materials.  Ultimately,  these  findings  will  provide  a  source  to  define  the  limits  

of  the  materials  scope  applied  in  this  research  report.  In  order  to  ensure  that  the  findings  provided  are  

conclusive,  the  materials  scope  will  be  limited  to  “semi-­‐crystalline  high-­‐performance  thermoplastics.”  

The  basis  of  our  analysis  will  be  to  understand  the  relevant  advantages  and  disadvantages  that  these  

specific  polymers  offer,  in  comparison  to  prior,  standard,  metal  and  ceramic  orthopedic  implants.

Aromatic  Ketone  Polymers,  Chemical  Economics  Handbook,  October  2015:  (Emanuel  Ormonde,  

Masahiro  Yoneyama,  Xu  Xu)  Polyetheretherketone  (PEEK)

Within  the  Polyaryletherketone  (PAEK)  family  of  semi-­‐crystalline,  high-­‐performance  thermoplastics  is  a  

specific  colourless,  organic  thermoplastic  polymer  known  as  Polyetheretherketone  (PEEK).  As  discussed  

by  Emanuel  Orlando  and  Vicari  in  the  Chemical  Economic  publication  of  October  2015,  

Polyetheretherketone  or  PEEK  is  globally  recognized  as  the  most  commonly  used  member  of  the  PAEK  

family,  accounting  for  85-­‐90%  of  the  world  production.  Classified  as  a  member  of  the  PAEK  family  (AKA  

aromatic  ketone  polymers  or  AKP),  the  crystalline,  thermoplastic  material  combines  high  strength,  high  

biocompatibility  and  chemical  robustness  together  with  exceptional  high  temperature  performance.  The  

average  melting  point  or  Tm  is  between  340  °C  and  390  °C    and  the  glassy  transition  to  a  more  liquid  

state  or  Tg  is  between  140  °C  and  160  °C.    According  to  Mr.  Orlando,  PEEK  has  been  used  since  Victrex  

(world  leader  in  the  manufacturing  of  polyketone  or  polymers)  launched  medical-­‐grade  PEEK  products  in  

1998.  The  material  has  been  used  in  implantable  medical  devices,  such  as  orthopedics,  due  to  its  

inherent  purity  and  resistance  to  virtually  all  organic  chemicals.  Other  industries  in  which  PEEK  is  used  

are  aerospace,  oil  and  gas.  The  disadvantages  of  PEEK  are  its  high  price  and  the  processing  complexity.  

Raw  PEEK  sells  for  $75/kg  to  $150/kg.  Due  to  its  high  melting  point,  molding  PEEK  parts  requires  

processing  under  high  temperatures.  This    process  results  in  increasing  tooling  and  energy  costs  and  

consequently  it  prices  the  material  out  of  the  market  for  most  demanding  applications.  Emerging  

Page 81: Chemelot Ventures Master Thesis

80

methods  such  as  3D  printing  may  provide  a  solution  for  lowering  the  process  costs,  however  this  

technology  still  needs  to  be  validated.  

Aromatic  Ketone  Polymers,  Chemical  Economics  Handbook,  October  2015  (Emanuel  Ormonde,  

Masahiro  Yoneyama,  Xu  Xu)  Polyetherketoneketone  (PEKK)  

Found  in  the  same  PAEK  family  as  discussed  above,  PEKK  is  also  a  semi-­‐crystalline  thermoplastic,  sharing  

similar  traits  including,  “high  heat  resistance,  chemical  resistance  and  the  ability  to  withstand  high  

mechanical  loads.”  Manuel  Orlando  further  states  in  the  same  article  that  Polyetherketoneketone  

(PEKK),  comparable  to  other  polymers  found  in  the  PAEK  family,  can  also  be  used  for  the  development  of  

orthopedic  implants.  The  average  melting  point  or  Tm  is  up  to  204  °C    while  that  of  PEEK  390  °C.  The  

glassy  transition  to  a  more  liquid  state  or  Tg  is  between  159  °C  and  250  °C  while  that  of  PEEK  is  between  

140  °C  and  160  °C  .  PEKK    has  an  advantage  over  PEEK  when  it  comes  to  the  development  for  more  

lightly  materials.  It  is  used  to  replace  aluminium  in  structural  components  and,  medical  components  and  

in  aerospace  application  where  high  strength  to  weight  properties  are  needed.  PEKK  has  an  outstanding  

resistance  against  flame,  smoke  and  toxicity.  The  material  has  also  a  high  toughness  and  damage  

tolerance.  Raw  PEKK  sells  at  the  same  price  point  as  PEEK,  a  approximately  $75/kg  to  $150/kg.  

Disadvantages  of  PEKK  are  similar  to  PEEK  in  that  the  high  tooling  and  energy  costs  to  manufacture  these  

polymers  create  barriers  against  the  industry’s  complete  adoption  of  the  technology.  Due  to  “high  

monomer  costs,  the  difficult  processing  conditions  required  and  the  small  plant  sizes”  all  share  in  the  

responsibility  for  the  high  cost  of  production  for  these  polymers,  ultimately  limiting  the  amount  of  

players  in  the  industry  that  can  afford  to  use  and  sustainably  develop  this  technology  further  into  the  

industry.  

Lactic  Acid,  Its  Salts,  and  Esters,  Chemical  Economics  Handbook,  November  2015  (Marifaith  Hackett,  

Adam  Bland,  Lei  Zeing,  Rita  Wu,  Takeshi  Masuda

Plant-­‐based  lactic  acid  is  the  starting  material  for  polylactic  acid  (PLA).  It  belongs  to  the  family  of    semi-­‐

crystalline  thermoplastic  polymers  that  are  composed  of  compostable  (biodegradable)  bioplastic.  The  

main  advantages  of  PLA  are  due  to  the  material’s  heat  resistance  and  additive  properties  that  enhance  

the  material’s  processability,  toughness,  and  stability.  It  has  the  potential  to  be  used  for  the  

development  of  biomedical  devices  and  orthopedic  implants.  Other  applications  are  for  instance  food  

packaging,  compostable  drinking  straws  and  compostable  trash  bags  .  Due  to  the  material’s  structural  

adaptability,  the  processability  of  PLA  aligns  perfectly  with  the  application  of  the  three-­‐dimensional  (3D)  

Page 82: Chemelot Ventures Master Thesis

81

printing  filament.  However,  due  to  low  crude  oil  and  natural  gas  liquid  prices,  prices  for  competitive,  

fossil  fuel-­‐based  polymers  could  lead  to  a  slower  growth  in  demand  for  PLA.

Titanium  Alloys-­‐Advances  in  Properties  Control,  May  15  2013.  (Wilson  Wang  &  Chye  Khoon  Poh)  

According  to  Professor  Wilson  Wang  and  Chye  Koon  Poh,  titanium  implants  are  the  current  status  quo  

for  developing  orthopedic  implants,  due  to  their  biocompatibility,  low  modulus  of  elasticity,  and  good  

corrosion  resistance.  Other  favorable  factors  that  are  discussed  are  high  strength,  rigidity,  fracture  

toughness  and  their  reliable  mechanical  performance  as  replacement  for  hard  tissues  such  as  bones.  The  

product  life  cycle  of  titanium  based  orthopedic  implants  is  approximately  10  years,  however,  lack  of  

integration  into  the  bone  occurs  often  and  leads  to  the  failure  of  the  implant,  according  to  professors.  

The  resulting  problems  due  to  implant  failures  are  revision  surgeries  that  increase  costs  to  the  patient.  

The  article  further  discusses  the  reason  for  implant  failure,  known  as  ‘’aseptic  loosening’’  or  the  failure  of  

the  bond  between  the  implant  and  the  bone.  The  implant  failure,  together  with  absorption  of  

temperatures  can  lead  to  complications,  causing  alternatives  such  as  polymer  implants  to  become  more  

relevant.  Both  professors  argue  that  titanium  will  stay  the  status  quo  for  orthopedic  implants  until  

polymers  provide  concrete  proof  that  the  material  complies  with  the  demanded  regulations.  

How  does  the  3D  printing  technology  impact  the  ability  of  startups  to  manufacture  orthopedic  

implants  in  comparison  to  conventional  methods?

Building  the  Future:  Assessing  3D  Printing’s  Opportunities  and  Challenges,  March  2013.  (Anthony  

Vicari,  Ross  Kozarsky)  

According  to  Vicari,  “3D  printing’s  biggest  benefits  include  enhanced  materials  utilization  and  part  

complexity,  potential  for  multifunctional  customized  structures,  streamlined  manufacturing  and  boosted  

open  innovation.  The  major  challenges  currently  hindering  the  technology’s  commercial  penetration  

include  material  cost  and  selection,  printer  throughput  and  resolution  and  adequate  design  software.    

The  analysis  in  this  report  uses  the  Lux  Innovation  Grid  and  other  forecast  model  analyses  to  understand  

how  the  3D  printing  market  will  develop,  how  the  competitive  landscape  will  shift  and  how  global  

megatrends  are  driving  interest  in  3D  printing.  Vicari’s  analysis  also  provides  detailed  background  on  the  

numerous  technological  processes  within  3D  printing,  including  stereolithography,  digital  light  

processing,  sintering,  melting,  fused  deposition  modeling  and  more.  This  report  provides  an  excellent  

foundation  for  understanding  the  3D  printing  landscape  and  how  global  megatrends  may  impact  the  

future  market  size,  competitiveness  and  sustainability.  

Page 83: Chemelot Ventures Master Thesis

82

How  3D  Printing  Adds  Up:  Emerging  Materials,  Processes,  Applications,  and  Business  Models,  March  

2014.  (Anthony  Vicari)  

In  this  report,  Vicari  provides  an  overview  of  3D  printing  including  the  relevant  printable  materials  by  

industry  and  a  view  of  the  competitive  landscape  through  the  Lux  Innovation  grid.  With  this  grid,  the  

report  provides  a  clearer  depiction  of  the  emerging  printer  developers  and  printed  part  developers.  With  

this  landscape,  Vicari  then  provides  a  forecast  for  the  3D  printing  market,  for  the  next  decade.  With  this  

report,  Vicari  provides  his  interpretation  of  the  potential  of  the  3D  printing  market.  The  competitive  

implications  of  shifts  in  emerging  materials,  process  and  applications  are  provided  through  the  use  of  

business  models  and  scenario  analyses,  ultimately  providing  a  deep  level  of  insight  into  how  megatrends  

in  the  market  may  impact  the  3D  printing’s  technological  development.  To  conclude  the  report,  Vicari  

creates  an  overview  of  key  3D  printing  companies,  establishing  a  foundation  for  future  research  on  

potential  warm  leads  within  the  orthopedic  implant  industry.  

3D  Printing  Update  2016  Edition,  April  2016.  (Anthony  Schiavo)

As  stated  in  the  Executive  Summary,  “the  3D  Printing  Update  report  assesses  emerging  start-­‐ups  and  

established  players  on  the  Lux  Innovation  Grid  to  identify  winners,  losers,  over-­‐hyped  start-­‐ups  and  

hidden  gems.  The  central  messages  of  this  update  are  meant  to  highlight  the  current  trends  within  the  

3D-­‐printer  manufacturing  market  as  well  as  the  industry  life  cycle  across  all  printing  platforms  and  

applications.  With  this  report  Schiavo  attempts  to  show  how  “established  printer  corporations  have  

come  under  attack  from  a  wave  of  startups  with  alternate  technological  approaches  and  business  

strategies.”  It  is  Schiavo’s  belief  that  the  maturity  of  the  printing  platform/application  market  has  shifted  

the  core  challenge  for  end  users  has  taken  a  shift  from  the  technology  itself  to  a  more  centralized  focus  

on  strategy  development  and  implementation.  As  stated  in  the  report,  3D  printing  is  defined  as  the  

additive  manufacturing  of  objects  by  depositing  and  patterning  successive  layers  of  material.  With  this  

2016  update,  a  clear  image  is  created,  regarding  how  the  3D  printing  technology  value  chain  has  

developed  and  where  developers  of  the  technology  find  themselves  positioned  within  the  orthopedic  

implant  industry.  Given  the  background  information  within  Schiavo’s  report,  LuxResearch  has  also  

provided  an  innovation  grid  that  assists  in  determining  3D  developer  positioning  by  gauging  against  two  

criteria,  technical  value  and  business  execution.  By  also  incorporating  variables  such  as  maturity  and  a  

ranking  referred  to  as  the  “Lux  Take,”  Schiavo’s  report  provides  a  basis  for  fundamental  comparing  the  

potential  of  3D-­‐Printing  technology  developers.  With  this  additional  insight  into  key  players  in  the  

Page 84: Chemelot Ventures Master Thesis

83

market  and  emerging  startups,  Schiavo  creates  a  foundation  to  understand  how  value  is  created  within  

the  orthopedic  implant  value  chain.  

Application  of  3D  printing  in  orthopedics:  status  quo  and  opportunities  in  China,  May  2015.  (Cai  Hong)

According  to  Cai  Hong,  the  application  of  3D  printing  in  orthopedics  is  experiencing  a  rapid  transition,  

with  “real  world”  clinical  translations  as  the  only  valid  opportunity  to  comprehend  3D  printing’s  place  in  

the  future  of  orthopedics.  “Currently  a  major  limiting  factor  may  be  the  policies  and  regulations  from  the  

government,  particularly  those  on  the  manufacturing  of  the  3D  printing-­‐based  patient-­‐specific  implants.”    

Hong’s  report  provides  a  perspective  on  the  implications  that  the  introduction  of  the  3D  printer  has  on  

the  global  orthopedic  implant  market.  With  the  use  of  computed  tomography  (CT)  and  magnetic  

resonance  imaging  (MRI)  technologies,  3D  images  and  ultimately  3D  prototypes  of  bones  can  be  

obtained  through  the  use  of  a  layered  manufacturing  technique  (LMT).  These  techniques  are  being  

mimicked  for  teaching,  presentation  and  surgical  design  purposes  and  are  becoming  the  basis  for  rapid  

prototyping  manufacturing  (RPM)  techniques.  As  the  3D  printing  technology  gains  traction  in  the  field  of  

orthopedic  implants,  it  is  noteworthy  that  this  technological  development  is  accompanied  by  the  

possibility  for  less-­‐developed  countries  to  attain,  use  and  benefit  from  this  technology.  The  differing  

policies  and  regulations  and  hesitance  by  national  governments  to  fully  acknowledge  and  adopt  3D  

printing  as  the  future  industry  standard  of  patient-­‐specific  implants  is  the  key  hindrance  to  3D  printing’s  

emergence  as  the  globally-­‐adopted  implant  manufacturing  technology.  It  is  believed  that  with  time  to  

test  and  prove  the  validity  of  the  3D  printing  technology  in  the  manufacturing  of  orthopedic  implants,  

governments  will  notice  significantly  less  risk  of  changing  the  status  quo.  Thus,  the  global  acceptance  and  

adoption  of  3D  printing  as  the  orthopedic  implant  industry  standard  manufacturing  process  will  be  

attainable  to  governments  throughout  all  regions  of  the  world.      

 How  does  the  introduction  of  innovative  materials  and  process  technologies  impact  the  market  

dynamics  of  the  healthcare  segment?

Orthopedic  implants  are  a  component  of  the  Life  Science  industry.  In  order  to  effectively  analyze  the  

market  dynamics  and  how  organizations  interact  within  the  orthopedic  implant  value  chain,  the  market  

and  scope  of  research  must  be  clearly  defined.  Within  the  Life  Science  industry,  the  healthcare  segment  

incorporates  medical  devices  such  as  orthopedic  implants.  According  to  the  Institute  for  Orthopaedic  

Surgery,  implants  are  defined  as,  “a  device  (or  tissue  or  substance)  that  is  transferred,  grafted,  or  

inserted  into  a  living  body,”  with  the  intention  to  replace  a  missing  joint  or  bone  or  to  support  a  

Page 85: Chemelot Ventures Master Thesis

84

damaged  bone.  (Institute  for  Orthopedic  Surgery,  2016)    To  be  more  specific,  our  report  will  address  

implants  characterized  by  the  FDA  as  Class  III  implants.  As  stated  by  Carola  Van  Eck,    “This  is  the  most  

scientifically  rigorous  classification  of  medical  devices  and  encompasses  most  of  the  orthopedic  implants  

on  the  market  today.”(Van  Eck,  2016)  In  addition  to  this  definition,  the  scope  of  the  report  will  

incorporate  biocompatible,  active  and  regenerative  orthopedic  implants.  Incorporating  one  more  level  of  

specificity,  the  scope  of  research  will  investigate  the  compatibility  of  3D  printing  biocompatible,  implant  

materials  and  the  market  dynamics  surrounding  this  discontinuously,  innovative  process.  To  gain  a  clear  

understanding  of  the  market  dynamics,  it  is  important  to  provide  an  idea  of  how  the  value  chain  may  

look  and  who  the  major  players  are  in  the  market.  In  order  to  properly  assess  startups  during  analysis,  it  

is  key  to  first  understand  how  each  company  creates  and  captures  value.