chem11%hl%%% % % % % % % %...

3
Chem 11 HL February 23, 2015 Catalysis of Ozone Depletion Ozone: Ozone, O3 is a Vshaped (bent) molecule with a bond angle of 116.8°, and two equal O – O bond lengths of 128 pm (1 pm = 10 12 m). Contributing resonance forms for ozone: Bond order for the O – O bond on ozone: Each bond order for the O – O bond = !"!#$ !"#$%& !" !!! !"#$%#& !"#$% !"!#$ !"#$%& !" !!! !"#$%$"&# = ! ! = 1.5 The Wavelength of Light Required to Dissociate Oxygen and Ozone The energy, E, of a photon of light is inversely proportional to the wavelength λ, so the greater the energy, the shorter the wavelength and vice versa. = = !! ! Where, h = Planck’s constant = 6.63 X 10 34 Js ν = frequency of the radiation c = speed of light = 3.00 X 10 8 ms 1 λ = wavelength of the radiation The bond order in ozone (1.5) is lower than the bond order in oxygen (2), which means that the O = O double bond in oxygen is stronger. Radiation of shorter wavelength is required to break the stronger bond in oxygen. Bond enthalpy The bond enthalpy of a bond is defined as the energy required to break 1 mol of bonds in gaseous covalent molecules under standard conditions. It is also referred to as bond dissociation enthalpy (section 11 of the Data booklet). Bond enthalpy reflects the strength of a covalent bond.

Upload: others

Post on 24-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chem11%HL%%% % % % % % % % %%%%February23,%2015%blogs.ubc.ca/msk2015/files/2015/02/Notes-Ozone-Depletion.pdf · Notes - Ozone Depletion Author: Binal Khakharia Created Date: 2/28/2015

Chem  11  HL                            February  23,  2015  

Catalysis  of  Ozone  Depletion    Ozone:  • Ozone,  O3  is  a  V-­‐shaped  (bent)  molecule  with  a  bond  angle  of  116.8°,  and  two  equal  O  –  

O  bond  lengths  of  128  pm  (1  pm  =  10-­‐12  m).    • Contributing  resonance  forms  for  ozone:  

 • Bond  order  for  the  O  –  O  bond  on  ozone:  • Each  bond  order  for  the  O  –  O  bond  =  !"!#$  !"#$%&  !"  !!!  !"#$%#&  !"#$%

!"!#$  !"#$%&  !"  !!!  !"#$%$"&#= !

!= 1.5  

 The  Wavelength  of  Light  Required  to  Dissociate  Oxygen  and  Ozone    • The  energy,  E,  of  a  photon  of  light  is  inversely  proportional  to  the  wavelength  λ,  so  the  

greater  the  energy,  the  shorter  the  wavelength  and  vice  versa.    

  𝐸 = ℎ𝜈 = !!!  

Where,     h  =  Planck’s  constant  =  6.63  X  10-­‐34  J  s     ν  =  frequency  of  the  radiation     c  =  speed  of  light  =  3.00  X  10-­‐8  m  s-­‐1     λ  =  wavelength  of  the  radiation    

• The  bond  order  in  ozone  (1.5)  is  lower  than  the  bond  order  in  oxygen  (2),  which  means  that  the  O  =  O  double  bond  in  oxygen  is  stronger.  

• Radiation  of  shorter  wavelength  is  required  to  break  the  stronger  bond  in  oxygen.      Bond  enthalpy  The  bond  enthalpy  of  a  bond  is  defined  as  the  energy  required  to  break  1  mol  of  bonds  in  gaseous  covalent  molecules  under  standard  conditions.  It  is  also  referred  to  as  bond  dissociation  enthalpy  (section  11  of  the  Data  booklet).  Bond  enthalpy  reflects  the  strength  of  a  covalent  bond.      

Page 2: Chem11%HL%%% % % % % % % % %%%%February23,%2015%blogs.ubc.ca/msk2015/files/2015/02/Notes-Ozone-Depletion.pdf · Notes - Ozone Depletion Author: Binal Khakharia Created Date: 2/28/2015

Chem  11  HL                            February  23,  2015  

Problem    The  average  bond  enthalpy  in  ozone  is  362  kJ  mol-­‐1.  Using  the  energy  and  wavelength  relationship  given  above,  and  the  bond  enthalpy  data  given  in  section  11  of  the  Data  Booklet,  calculate  the  maximum  wavelength,  in  nm,  of  the  UV  radiation  required  to  break  the  O  =  O  double  bond  in  oxygen  and  the  O  –  O  bond  in  ozone.    Solution    Oxygen:  the  bond  enthalpy  for  O  =  O  is  498  kJ  mol-­‐1.      To  calculate  the  energy  of  photons  in  J,  first  convert  kJ  to  J,  and  then  divide  by  Avogadro’s  constant:  

𝐸 =498  ×  1000  𝐽  𝑚𝑜𝑙!!

6.02  ×  10!"  𝑚𝑜𝑙!! = 8.27  ×  10!!"𝐽    𝐸 = !!

!,  so  𝐸𝜆 = ℎ𝑐  

 

∴ 𝜆 =ℎ𝑐𝐸 =

(6.63  ×  10!!"  𝐽  𝑠)(3.00  ×  10!  𝑚  𝑠!!)8.27  ×  10!!"  𝐽 = 2.41  ×  10!!  𝑚  

 Since  1  nm  =  10-­‐9  m,  𝝀  =  241  nm.    Ozone:  the  bond  enthalpy  for  the  O  –  O  bond  in  ozone  is  362  kJ  mol-­‐1    

𝐸 =362  ×  1000  𝐽  𝑚𝑜𝑙!!

6.02  ×  10!"  𝑚𝑜𝑙!! = 6.01  ×  10!!"𝐽    

∴ 𝜆 =ℎ𝑐𝐸 =

(6.63  ×  10!!"  𝐽  𝑠)(3.00  ×  10!  𝑚  𝑠!!)6.01  ×  10!!"  𝐽 = 3.31  ×  10!!  𝑚  

 ∴ 𝝀  =  331  nm.                            

Page 3: Chem11%HL%%% % % % % % % % %%%%February23,%2015%blogs.ubc.ca/msk2015/files/2015/02/Notes-Ozone-Depletion.pdf · Notes - Ozone Depletion Author: Binal Khakharia Created Date: 2/28/2015

Chem  11  HL                            February  23,  2015  

UV  Radiation  and  Our  Atmosphere    • The  ultraviolet  radiation  in  the  electromagnetic  spectrum,  ranging  from  100  nm  to  400  

nm,  can  be  further  broken  down  into  UVA,  UVB,  or  UVC  depending  on  their  wavelength:  

o Ultraviolet  A,  UVA:    § 400  nm  to  315  nm  § long  wave,  black  light  § not  absorbed  by  the  ozone  layer,  as  it  does  not  have  enough  energy  to  

break  apart  the  bonds  in  ozone  § makes  up  ~95%  of  the  sun’s  UV  radiation  to  reach  the  Earth  § helps  the  skin  form  vitamin  D  § overexposure  causes  sunburns  and  cataracts  

 o ultraviolet  B,  UVB:  

§ 315  nm  to  280  nm  § medium  wave  § mostly  absorbed  by  the  ozone  layer,  less  than  5%  reaches  the  Earth  § harmful  to  DNA;  damages  the  DNA  molecules  leading  to  a  distorted  

formation  of  proteins  or  even  cell  death  § induces  skin  cancer  and  suppresses  certain  immune  system  activities  

 o ultraviolet  C,  UVC:  

§ 280  nm  to  100  nm  § short  wave  § completely  absorbed  by  the  ozone  layer  and  the  atmosphere.  

 • Water  vapour,  oxygen,  and  carbon  dioxide,  along  with  clouds,  smoke  and  dust  in  the  

atmosphere  also  absorb  and  scatter  radiation.