chem. 31 – 4/15 lecture. announcements i exam 2 – hope to have graded by next monday lab reports...

19
Chem. 31 – 4/15 Lecture

Upload: winifred-blake

Post on 17-Dec-2015

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

Chem. 31 – 4/15 Lecture

Page 2: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

Announcements I• Exam 2 – Hope to have graded by next

Monday• Lab Reports

– AA report now due Monday, 4/20 (best to try to complete before your last lab next week)

– Soda Ash report will likely be postponed until the following Monday

• New Homework Set– Will be Posted today (at least for Set 3.1)– First due date/last quiz will be 4/29 (2 weeks

from today)

Page 3: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

Announcements II• Today’s Lecture

– Chapter 22: Chromatography (topics not on Exam 2)• Relative Retention• Resolution• Optimization to Improve Separation

– Chapter 8: Acid Base Chemistry• Weak Acid Problems

Page 4: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

Chromatography Definition Section – Relative Retention

• For a separation to occur, two compounds, A and B, must have different k values (different partitioning between two phases)

• The greater the difference in k values, the easier the separation

• Relative Retention = a = kB/kA (where B elutes after A) = measure of separation ease = “selectivity coefficient”

• a value close to 1 means difficult separation

Page 5: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

Chromatography Reading Chromatograms

• Determination of parameters from reading chromatogram (HPLC example)

• a (for 1st 2 peaks) = kB/ kA = tRB’/ tRA’ = (5.757 – 2.374)/(4.958 – 2.374) = 1.31

Page 6: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

ChromatographyWhat do all these Parameters Mean? III

• a values – Can “adjust” value by choosing column (HPLC or GC)

that is more “selective” for one compound than another or change the solvent (HPLC) to one which “dissolves” one compound better than another

– example: on a non-polar column, diethyl ether (Kow = 6.8, bp = 34.6°C) and methanol (Kow = 0.15, bp = 64.7°C) are observed to partially co-elute giving a small a value.

– switching to a polar column will increase retention of methanol (stronger interaction with new column) and decrease retention of diethyl ether (weaker interaction with new column), increasing a.

– with HPLC, it is often possible to change the eluent to increase a. For example, adjusting the pH can affect retention of a weak acid while not affecting retention of a neutral compound

Page 7: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

ChromatographyBand Broadening

• Band Shape given by Gaussian Distribution

• Gaussian Distribution

• Normal Distribution Area = 1• Widths

– σ (std deviation)– w = 4σ– w1/2 = 2.35σ

Gaussian Shape (Supposedly)

2

21

exp2

1xx

y

Inflection lines

w

Height

Half Height

w1/2

Will use most

Page 8: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

ChromatographyColumn Efficiency

• Number of Theoretical Plates = N = Primary measure of “efficiency”

• N=1 corresponds to 1 liquid-liquid extraction• Good efficiency means:

– Large N value– Late eluting peaks still have narrow peak widths– Minimal band broadening

• N = 16(tR/w)2

large N Value

low N value

Page 9: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

ChromatographyColumn Efficiency

• Relative measure of efficiency = H = Plate height = L/N where L = column length

• H = length of column needed to get a plate number of 1

• Smaller H means greater efficiency• Note: H is independent of L (although usually

calculated using L), N depends on L• Improvement of Efficiency

– Increase column length (N = L/H) so doubled column length will have twice the N value (no change in H)

– Decrease H (use smaller diameter open tubular columns or smaller packing material) → greater N in same column length

or

Page 10: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

ChromatographyMeasurement of Efficiency

• Later eluting peaks normally used to avoid effects from extra-column broadening

• Example: N = 16(14.6/0.9)2 = 4200 (vs. ~3000 for pk 3)

• H = L/N = 250 mm/4200 = 0.06 mm

W ~ 0.9 min

Page 11: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

ChromatographyResolution

• Resolution = measure of how well separated two peaks are

• Resolution = Δtr/wav (where wav = average peak width) (use this equation for calculating resolution)

• RS < 1, means significant overlap• RS = 1.5, means about minimum for

“baseline resolution” (at least for two peaks of equal height)

Page 12: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

Chromatography Resolution Example

• RS calculation example:– 1st two retained peaks:

• tR(1st pk) = 8.20 min., w = 0.505 min.

• tR(2nd pk) = 9.09 min., w = 0.536 min

Resolution = 0.89/0.521 = 1.70

Resolution not baseline due to peak tailing

min2 4 6 8 10 12

Norm.

22

24

26

28

30

32

34

ADC1 A, ADC1 CHANNEL A (MATT\042709C 2009-04-27 15-58-52\042709000005.D)

Area:

145.0

52

Area:

57.56

94

11.89

6 9.09

0

1.83

4

8.20

4

10.87

9

O

HH

OHH

H

H

OHOH

OO

HOH

HH

OH

H

OHH

O

mannosan – 8.20 min.

galactosan – 9.09 min.

(Data from Matt Padilla)

main difference: axial – equitorial switch of 2 vs. 4 C OH groups is axial

Page 13: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

ChromatographyOptimization – Resolution Equation

• How to improve resolution– Increase N (increase column length, use more efficient

column)– Increase a (use more selective column or mobile phase)– Increase k values (increase retention)

• Which way works best?– Increase in k requires no new column (try first) but it

will require more time and will not work if kB is large to begin with

– Increase N requires a new column (same type)– Increasing a is the best but often requires a new

column.• What if resolution is very good (e.g. = 5)?

– Can decrease k to have faster chromatogram

B

BS k

kNR

1

1

4

1

not in most recent

version of text

B for 2nd component

Page 14: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

ChromatographyGraphical Representation

Initial Separation Smaller H (narrower peaks)

Larger k or longer column – Dt increases more than width

Increased alpha (more retention of 2nd peak)

Page 15: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

ChromatographySome Questions

1. A GC is operated close to the maximum column temperature and for a desired analyte, k = 20. Is this good?

2. Two columns are tried for a GC separation of compounds X and Y. Both give initial resolution values of 1.2. Column A has a kB value of 0.8 while column B has a kB value of 5.0 (B for 2nd eluting compound). Which column looks more promising?

Page 16: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

Acid – Base Equilibria (Ch. 8)

• Weak Acid Problems:– e.g. What is pH and the concentration of major

species in a 2.0 x 10-4 M HCO2H (formic acid, Ka = 1.80 x 10-4) solution ?

– Can use either systematic method or ICE method.

– Systematic method will give correct answers, but full solution results in cubic equation

– ICE method works most of the time– Use of systematic method with assumptions

allows determining when ICE method can be used

Page 17: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

Acid – Base Equilibria

• Weak Acid Problem – cont.:– Systematic Approach (HCO2H = HA to make

problem more general where HA = weak acid)• Step 1 (Equations) HA ↔ H+ + A-

H2O ↔ H+ + OH-

• Step 2: Charge Balance Equation: [H+] = [A-] + [OH-] 2 assumptions possible: ([A-] >> [OH-] – assumption used

in ICE method or [A-] << [OH-])• Step 3: Mass Balance Equation: [HA]o = 2.0 x 10-4 M

= [HA] + [A-]• Step 4: Kw = [H+][OH-] and Ka = [A-][H+]/[HA]• Step 5: 4 equations (1 ea. steps 2 + 3, 2 equa. step

4), unk.: [HA], [A-] [H+], [OH-]

Page 18: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

Acid – Base Equilibria• Weak Acid Problem – cont.:

– Assumption #1: [A-] >> [OH-] so [A-] = [H+]– Discussion: this assumption means that we

expect that there will be more H+ from formic acid than from water. This assumption makes sense when [HA]o is large and Ka is not that small (valid for [HA]o>10-6 M for formic acid)

– ICE approach (Gives same result as systematic method if assumption #1 is made)

– (Equations) HA ↔ H+ + A-

Initital 2.0 x 10-4 0 0 Change - x +x +x Equil. 2.0 x 10-4 – x x x

Page 19: Chem. 31 – 4/15 Lecture. Announcements I Exam 2 – Hope to have graded by next Monday Lab Reports –AA report now due Monday, 4/20 (best to try to complete

Acid – Base Equilibria

• Weak Acid Problem – Using ICE Approach– Ka = [H+][A-]/[HA] = x2/(2.0 x 10-4 – x)x = 1.2 x 10-4 M (using quadratic equation)Note: sometimes (but not in this case), a 2nd

assumption can be made that x << 2.0 x 10-4 to avoid needing to use the quadratic equation

[H+] = [A-] = 1.2 x 10-4 M; pH = 3.92[HA] = 2.0 x 10-4 – 1.2 x 10-4 = 8 x 10-5 M

Note: a = fraction of dissociation = [A-]/[HA]total

a = 1.2 x 10-4 /2.0 x 10-4 = 0.60