characterization of ion-driven conformations in diphenylacetylene molecular switches arron wolk...

16
Characterization of Ion- Driven Conformations in Diphenylacetylene Molecular Switches Arron Wolk Johnson Lab Yale University

Upload: cleopatra-williamson

Post on 27-Dec-2015

218 views

Category:

Documents


1 download

TRANSCRIPT

Characterization of Ion-Driven Conformations in Diphenylacetylene

Molecular Switches

Arron Wolk

Johnson Lab

Yale University

Hydrogen Bonding in Supramolecular Complexes

• Infrared predissociation of cryogenically cooled ions

• Accessing the vibrational transitions of amide functionalities in supramolecular complexes

Catalytic Cycles

Host-GuestInteractions

Protein Folding

SolventInteractions

Electospray Ionization

Andersen, Biopolymers, 2006

N-H ••• O=C Bonds

Hydrogen Bond Linkages

Electrostatic InteractionsC-O ••• Na+

Rizzo, JACS, 2011

Cryogenic Mass Spectrometry: H2-Tagging in a Quadrupole Ion Trap

Wiley-McLarenextraction region

Ion optics

To time-of-flightand 2-D infrared analysis

Electrosprayneedle

Heated capillary

90° ionbender

RF only quadrupolesH2/He filled 3-D quadrupoleion trap with temperature

control to 8 KEinzel

Octopoles

1st skimmer

2nd skimmerDifferential

aperture

50 K heat shield

1x10-5 1.5x10-23x10-7Pressure (Torr) 1.5 760

•Adapted from Lai-Sheng Wang’s H2 tagging instrument

•Paul trap interfaced to our standard TOF experiment.

•Molecular H2 tag, analogous to Ar tag in previous predissociation experiments.

•We have interfaced our Ar tagging, TOF instrument to a new electrospray ionization source

Trapping, Cooling, and Tagging

He/H2 buffer gas

RF

RF

Pulsedvalve

Ions in Ions out

Paul Trap at 10K

100’s of collisions for translational cooling

1,000-10,000’s of collisionsfor internal energy cooling

72 74 76 78

Time of Flight (s)

30 ms

50 ms

40 ms

20 ms

10 ms

doubly-chargedparent

a)

b)

c)

d)

e)

trap residence time:

Sig

nal I

nten

sity

(ar

bitr

ary

units

)

hydrogen adduct formation

5

10

15

*

The Diphenylacetylene Scaffold

• Rigid scaffold limits conformational complexity

• Creates specific acceptor-donor interactions

• An ideal molecular switch backbone that responds with a conformation switch

Donor1

Acceptor

Donor2

?

O

O

O

NH

NH

O

NH

OR

Urea Amide

Lactone

NH

NH

O

NH

O

O

O

O

R

Cl-

Sodium Complex

νesterC=O

ν C=O

νCH

νfreeC=O

FreeNH

DonorNH

Photon Energy, cm-1

1200 1500 1800 2100 2400 2700 3000 3300 3600

Carbonyl Region NH Region

O

O

O

NH

NH

O

NH

OR

Na+

B3LYP/6-31+G(d,p)

A Neutral Analog

3000 3300 36001600 1650 17001750

B3LYP/6-31+G(d,p)

Na+ Complex

Free NH

Urea NHs

TMA+ Complex

Photon Energy, cm-1

Acceptor Possible Donors

•Acceptor redshifts •Two donors redshift•Remaining carbonyls largely unaffected

Donor NH Perturbation

1700 3200 3300 3400 3500Photon Energy (cm-1)

N-H

N-H

C=O

ν NHfree

O

O

O

NH

N

O

N

O

N

H H

O

O

O

NH

N

O

N

O

N

H H

O2N

Larger ShiftAcceptor Responds!

Electrostatic Potential:Positive Counterions

+-Na+ Complex TMA+ Complex

Na+

TMA+

A Story of Electrostatics

Cations Anions

O

O

O

NH

NH

O

NH

OR

Na+ TMA+ Cl- I-

Charge Solvationvs.

Double H-bond

Steric effectsversus

double H-bond

Three cation solvators Three cation solvators

The Chloride Anion

1650 1700 1750 2700 2850 3000 3150 3300 3450

Photon Energy (cm-1)

esterνCH

Free NH

Conformation Switch

Donor NHs

νamide

νurea

• Only one neutral NH h-bond donor

• Acceptor blueshifts, losing a hydrogen bond

•Spectator C=O’s blueshift

O

O

O

NH

N

O

N

O

N

H H

B3LYP/6-31+G(d,p)

NN

O

N

O

Cl

O

O

O

HHH

NN

O

N

O

Cl

O

O

O

HHH

O2N

TMA+

Cl-

Surveying Charge Solvation

+

-

Na+ TMA+

Cl-

2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600Photon Energy, cm-1

Switch*•Cl-

Switch•Cl-

Switch•Br-

Switch•I-

Halide SeriesDonor acidity drops

AcceptorProton Affinitydrops

Conclusions• Gained microscopic picture of an amide-based molecular

switch accommodating a charge center• Observed conformation switch in gas-phase• Future studies:

O

O

O

NH

N

O

N

OR

H H

Anion-DependentSwitching

Cl-

Molecular Switch Dynamics

Versatile Hydrogen Bond Framework

RO

O

NH

N

O O

NH

pH-DependentSwitching

RO

O

NH

N

O O

Fe H

Oxidation-DependentSwitching

O

O

NH

N

O O

H

Fluorescence Studies:Materials Mimic

N

O

R1

HN

O

NH

N

O

O

R2

H

H

R3

N

R3

O

H

Hydrogen-Bonded Scaffold Mimic

H+ e-

hv

Thank You• Ian Jones and Andrew Hamilton• Etienne Garand, Mike Kamrath, Chris Leavitt, and Mark

Johnson

Comparison to FTIR