characterization of coated conductors in the ultra-high ... ·...

37
Characteriza*on of coated conductors in the ultrahigh field regime. Plan 1. Mo*va*on 2. Prepara*on ultra narrow bridges 3. Setup for measuring for ultra fast IV measurements in pulsed magne*c fields 4. Tes*ng bridges: I c (T, SF) and R(T,B) 5. Measuring V(I,B,T) curves in pulsed fields up to 65T 6. Calcula*on of I c from V(I,B) dependencies 7. Summary 8. Future plans D. Abraimov 1 , F. F. Balakirev 2 , and D.C. Larbales9er 1 1 ASC, NHMFL, Tallahassee 2 NHMFL Pulsed Field Facility, Los Alamos Na9onal Laboratory SuperPower Inc. 7.5% and 15% Zr doped tapes produced for CORC applica9on were used for I c measurements This work was supported in part by the U.S. Na9onal Science Founda9on under Grant No. DMR1157490 and the State of Florida.

Upload: others

Post on 29-Nov-2019

5 views

Category:

Documents


0 download

TRANSCRIPT

Characteriza*on  of  coated  conductors  in  the  ultra-­‐high  field  regime.  

Plan  

1.  Mo*va*on  

2.  Prepara*on  ultra  narrow  bridges  3.  Setup  for  measuring  for  ultra  fast  I-­‐V  measurements  in  pulsed  magne*c  fields  

4.  Tes*ng  bridges:  Ic(T,  SF)  and  R(T,B)  5.  Measuring  V(I,B,T)  curves  in  pulsed  fields  up  to  65T  

6.  Calcula*on  of  Ic  from  V(I,B)  dependencies  

7.  Summary  

8.  Future  plans  

D.  Abraimov1,  F.  F.  Balakirev2,  and  D.C.  Larbales9er1  1ASC,  NHMFL,  Tallahassee  2NHMFL  Pulsed  Field  Facility,  Los  Alamos  Na9onal  Laboratory  

SuperPower  Inc.  7.5%  and  15%  Zr  doped  tapes  produced  for  CORC  applica9on  were  used  for  Ic  measurements  

This  work  was  supported  in  part  by  the  U.S.  Na9onal  Science  Founda9on  under  Grant  No.  DMR-­‐1157490  and  the  State  of  Florida.  

Mo*va*on  

•  ReBCO  superconductors  become  a  choice  material  for  developing  all  

superconduc*ng  magnets  capable  genera*ng  ultra-­‐high  fields  due  to  very  high  

cri*cal  current  densi*es  in  the  presence  of  magne*c  fields  and  high  irreversibility  

fields  

•  Therefore,  it  is  important  to  develop  instrumenta*on  suitable  for  tes*ng  Ic  ,  Jc,  fp  

of  ReBCO  conductors  in  such  regime  

•  Recent  progress  in  introducing  high  concentra*on  ar*ficial  pinning  centers  (APC)  

in  ReBCO  conductors  makes  them  op*mized  for  low-­‐temperature  high-­‐field  

applica*ons  

•  The  understanding  performance  of  APC  at  ultra-­‐high  fields  is  fascina*ng  vortex  

dynamics  problem  and  important  applica*on  task  

•  For  now  pulsed  magnets  is  the  only  available  choice  for  genera*ng  fields  above  

45T  

Manufacturer   Material   α  at  BIIc   α  at  18  o  

SuperPower   ReBCO   0.67-­‐0.76   0.7-­‐0.9  

SuNAM   ReBCO   0.6;  0.6   0.69;  0.68  

SuperOx   ReBCO   0.54;  0.54   0.588;  0.59  

Fujikura   ReBCO   0.641;  0.69   0.70  

AMSC   ReBCO   0.74  

Bruker   ReBCO   0.88-­‐0.89  

𝐼↓𝑐 ~ 𝐵↑−𝛼   

Tapes  from  different  manufacturers  have  different  slope  α

Transport  Ic(B,4K)  were  measured  by  D.  Abraimov,  A.  Fransis,  M.  Santos,  and  J.  Jaroszynski  

10 1001

10

Uni Houston 15% Zr; 0.9 µm ReBCO Bruker T190D-C SN1; 2 µm ReBCO Bruker T190D-C SN2; 2 µm ReBCO SP215; 7.5% Zr; (2X50 µm Cu); ~1.55 µm ReBCO Uni Houston 7.5% Zr; 0.9 µm ReBCO SP 15% Zr; 1.52 µm ReBCO; W=4mm (2x5µm Cu) SP26; 840 um bridge; 7.5% Zr; 1um ReBCO

J c(B,4

.2K

), M

A/c

m2

B, T

Comparison  Jc  from  different  ReBCO  samples  (0.9um  –  2um  thick)    

Uni  Houston  data  taken  from  :  <<Strongly  enhanced  vortex  pinning  in  a  broad  temperature  and  magne*c  field  range  of  Zr-­‐added  MOCVD  coated  conductors>>  Aixia  Xu,  et  al.   Mo*va*on  

Transport  Ic(B,4K)    were  measured  by    D.  Abraimov,      Aixia  Xu,  J.  Jaroszynski  

20 30 40 50 60 70 80 90 1001

2

3

4

5

6

789

10

Uni Houston 15% Zr; 0.9 µm ReBCO Bruker T190D-C SN1; 2 µm ReBCO Bruker T190D-C SN2; 2 µm ReBCO SP215; 7.5% Zr; (2X50 µm Cu); ~1.55 µm ReBCO Uni Houston 7.5% Zr; 0.9 µm ReBCO SP 15% Zr; 1.52 µm ReBCO; W=4mm (2x5µm Cu) SP26; 840 um bridge; 7.5% Zr; 1um ReBCO

J c(B,4

.2K

), M

A/c

m2

B, T

Can  we  trust  extrapola*ons?  

Uni  Houston  data  taken  from  :  <<Strongly  enhanced  vortex  pinning  in  a  broad  temperature  and  magne*c  field  range  of  Zr-­‐added  MOCVD  coated  conductors>>  Aixia  Xu,  et  al.   Mo*va*on  

Transport  Ic(B,4K)    were  measured  by    D.  Abraimov,      Aixia  Xu,  J.  Jaroszynski  

 Project

 SP  

machine  

 ReBCO  

thickness,  µm  

 Zr  

doping,  %

Substrate  

thickn

ess,  µm

 Cu  layer  thickness,  

µm

α

 <Ic(15T,  4K)>,  A

 Je(15T,4K),  kA/cm2

32T   M3   0.9-­‐1   7.5   50   2x50   0.746  j   183  j   45.5  j  32T   M4   1.5-­‐1.6   7.5   50   2x50   0.776*     283*   70.4*  

CORC®   M3   ≈1   7.5   38   2x5   0.754   241   108  CORC®   M4   ≈1.5-­‐1.6   7.5   30   2x5   0.77   302   164  CORC®   M4   ≈1.5-­‐1.6   15   50   2x5   0.864   320   117  

*  Average  out  of  15  representa*ve  tapes  j Average  out  of  12  representa*ve  tapes  

Different  tape  architecture  for  magnet  and  cable  applica*ons  In-­‐field  transport  proper*es  at  4K,  BIIc  orienta*on  for  SuperPower    Inc.  4  mm  wide  tapes  

The  first  two  rows  are  representa*ve  M3  and  M4  tapes  purchased  for  32T  magnet  project.    Other  rows  were  tested  for  CORC®  project.  

Slightly  lower  α  values  for  M3  tapes  suggest  that  those  tapes  may  have  smaller  Zr  doping,  than  M4  tapes.  Tapes  with  nominal  15%  Zr  doping  have  larger  α, but  not  as  high,  as  for  tapes  produced  in  Houston  Uni.  lab.    

Ic~B  –α    

Transport  Ic(B,4K)  were  measured  by  D.  Abraimov,  A.  Francis,  M.  Santos,  and  J.  Jaroszynski  

1 10200

400

600

800

1000

12001400160018002000

Un i Ho usto n 1 5% Z r; 0.9 µm R eBCO Br uke r T19 0D- C SN1 ; 2 µm Re BCO Br uke r T19 0D- C SN2 ; 2 µm Re BCO SP21 5; 7.5 % Z r; ( 2X5 0 µm C u); ~1 .55 µm R eBCO Un i Ho usto n 7 .5% Zr ; 0. 9 µm ReBCO SP 1 5% Z r; 1.5 2 µm ReBCO ; W= 4m m (2 x5µm Cu) SP26 ; 8 40 um br idg e; 7.5 % Zr ; 1 um ReBC O

f pin(

B, B

IIc, 4

.2K

), G

N/m

3

B, T

What  is  shape  of  pinning  force  density  at  higher  fields?  

SP  15%  Zr  

SP215  7.5%

 Zr  

Mo*va*on  

4.2  K,  B⊥  tape  

Transport  Ic(B,4K)    were  measured  by    D.  Abraimov,      Aixia  Xu,  J.  Jaroszynski  

1.  Technical:  find  procedure  of  measuring  Ic(B,T,θ)  in  pulsed  field  up  to  65T  

for  commercially  available  high  Jc  ReBCO;  

2.  For  magnet  applica*on:    

•  Transport  current  property  -­‐  explore  Ic  limi*ng  factors  at  cri*cal  

magne*c  field  orienta*ons  –  near  18o-­‐20o;  

•  Transport  current  and  mechanical  property  -­‐  find  experimentally    

maximum  in  field  shear  stress  for  ReBCO  layer  in  B_|_  tape  

orienta*on;  

3.  Physics/Material  science  and  assistance  to  tape  manufacturers:    

calculate  and  compare  vortex  pinning  force  dependence  fp(B,  T)  for  two  

SuperPower  Inc.  tapes  containing  different  Zr  doping:  7.5%    and  15%;  

Purposes  of  this  experiment  

Major  problems:      1.  High  induc*on  voltages  in  the  sample,    2.  The  very  limited  *meframe  to    

•  ramp  current,    •  detect  voltage,    •  compare  it  with  defined  threshold,  and    •  decide  to  stop  current  ramp  just  above  Ic.;    

3.  Possible  Joule  hea*ng  in  the  sample  due  to  induced  eddy  currents;    

4.  Forces  on  the  sample  and  leads  due  to  magne*c  interac*on  with  the  applied  field.    

Since  pulse  dura*ons  are  <0.1  sec.,    measurements  of  high  Ic  are  a  tough  technical  task.    

•  To  compare  the  effect  of  different  BZO  pinning  concentra*ons  we  used  

SuperPower  Inc.  tapes  with  7.5%  Zr  and  15%  Zr  doping    

•  Tapes  with  30  µm,  38  µm,  and  50  µm  thick  substrates  and  5  µm  thick  Cu  

layer  were  used  

•  Two  stage  photolithography  process  was  used  to  paoern  4mm  x  4mm  

samples.    

•  We  used  chemical  etching  to  remove  Cu,  Ag,  and  ReBCO  

•  To  get  uniform  width  and  reduce  Ic  all  bridges  were  subsequently  trimmed  

with  a  focused  ion  beam  (FIB)  

•  Using  NHMFL  facili*es  we  prepared  14  bridges  ranging  47µm-­‐  7.7µm  in  

length  and  4.8µm  –  0.49µm  in  width.    

Sample  prepara*on  for  Ic  measurements  in  ultra-­‐high  magne*c  fields  

Ultra-­‐narrow  bridges  

Sample:  4X4  mm;  Bridge:  50  um  X  200  um  Current  pads:  820  um  X  830  um    

Mask  paoern  

Sample  prepara*on  

Used  photolithography  to  paoern    structures  

Used  chemical    etching  

Bridges  were  trimmed  with  focused  ion  beam  in  SEM  

SEM  image  of  bridge  N13  7.5%  Zr  doped  ReBCO  SuperPower  I.D.  M4-­‐337-­‐2  0709  

a-­‐axis  grains  

ReBCO    

FIB  trimmed  bridge  

Buffer  

Hastelloy    substrate  

For  ultra  narrow  bridges  we  choose  region  free  from  a-­‐axis  grains  and  CuO  par*cles  

Sample  prepara*on  

W=  577  nm  L=  12.4  µm  t=  1.5  µm  (ReBCO  thickness)  

Thanks  to  Bob  Goddard  and  Fumetake  Kametani  we  have  very  negligible  stage  driV  and  therefore  can  make  rou*nely  bridges  about  ~0.5µm  wide  and  about  8  µm  long  

SEM  image  of  bridge  N13  

SEM  image  of  bridge  N10  

SEM  image  of  bridge  N10  

•  To  prevent  overhea*ng  and  genera*ng  forces/torques  due  magne*za*on  currents  minimize  volumes  of  conduc*ve  materials  in  sample;  

•  To  avoid  using  massive  current  leads  reduce  criXcal  current  values  by  reducing  bridge  cross  sec*on;    

•  To  prevent  breaking  a  bridge  by  Lorentz  force  choose  sample  orienta*on  in  which  Lorentz  force  is  directed  toward  substrate;  

•  To  avert  large  Eddy  currents  in  current  and  voltage  leads  use  twisted  pairs  with  a  small  pitch.  Place  connec*ons  between  probe  leads  and  sample  leads  away  from  field  center.    

•  To  avoid  voltage  and  bias  current  noise  fix  voltage  and  current  leads  to  probe;    

Probe  for  measuring  in  pulsed  magnet  

Sample  

Heater  

Pick-­‐up  coil  Cernox   Sapphire  holder  

•  For  data  acquisi*on  we  use  RedPitaya  development  board  with    o  RF  input  and  output:  DAC,  ADC  -­‐Sample  rate  125  Msps;    o  CPU:  Dual  core  ARM  Cortex  A9  /  FPGA:  Xilinx  Zynq  7010  SoC    o  Used  to  generate  bias  current  signal,  detect  sample  voltage  and  voltage  propor*onal  to  

sample  current  o  RedPitaya  was  programmed  in  Verilog  o  Board  was  connected  with  PC  via  TCP  protocol  (Internet)  

•  Current  source:  Valhalla  Scien*fic  2500  •  Voltage  amplifiers:    

o  Home  built  X100,    o  Stanford  Research  SR560  with  low  noise  preamplifier  

•  Cryonon  22C  temperature  controller  

Electronics  used  for  ultrafast  Ic  (B,T)  measurements:  

RedPitaya  development  board   RedPitaya  development  board  in  Aluminum  box  

0 5 10 15 20 25 30 35 40 45 500

1

2

3

4

5

6

1

2

34

5

678

910

11 121314

W, µ

m

L, µm

Width  and  length  of  FIB  trimmed  ReBCO  bridges  

SuperPower  15%  Zr  doped  tapes  

1010

100

1000

BN1 3.3um Ic (mA) BN2 4.8um Ic (mA) BN3 2.1um Ic (mA) BN4 1.9um Ic (mA) BN5 2.48um Ic (mA) BN6 1.21um Ic (mA) BN7 1.2um Ic (mA) BN8 1.44um Ic (mA) BN9 0.76um Ic (mA) BN10 0.49um Ic (mA) BN11 0.697um Ic (mA) BN12 0.66um Ic (mA) BN13 0.577um Ic (mA) BN14 0.77um Ic (mA)

Ic measured in 15T SC magnet rescaled from full width tape to bridge widthI c(4

K, B

), m

A

B, T

20 30 40 50 60

B perpendicular to tape orientatrion

We  need  to  measure  currents  up  to  10  mA  -­‐  200  mA    

Es*ma*on  of  bias  current  values  by  extrapola*on  

0 1 2 3 4 5 6-5

0

5

10

15

20

25

30

35

1

2

345

678

91011121314

Exp

ecte

d Lo

rent

z fo

rce

at 6

0T, m

gf

Bridge Width, um

Expected  Lorentz  force  at  60T  for  prepared  bridges  

Geometry  of  FIB  trimmed  ReBCO  bridges  from  SuperPower  tapes  and  es*mated  transport  /mechanical  proper*es  

76 77 78 79 80 81 82 83 84 85

30

40

50

60

70

80

90

100

0123

567

8910

11121314

151617

18192021

I c(0T)

at <

E>=

10 µ

V/c

m, m

A

T, KMay  9,  2016  Bridge  N5  measured  with  KE  6220  and  KE2182A  

Temperature  dependence  of  self  field  Ic  for  Bridge  N5    

Ic  up=  4.0  A      n  up=  18.8  

Example  of  I-­‐V  curve  for  bridge  N10  measured  at  84.6  K;  SF    I-­‐V  point  measure  during  ~70  ms.  with  voltage  noise  ~25  nV  (SD=9nV)  

-5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007 85 K 82.991 K 81K 79 K 77K 75T 73 K 71K 69 K 67 K 65 K 63 K 61 K 59 K 57 K

R, a

.u.

B, T

R(B,T)  measured  in  pulsed  magnet    -­‐  bridge  N5  

33.6o  to  magne*c  field;    maximum  Lorentz  force  orienta*on  

55 60 65 70 75 80 850

10

20

30

40

50

60

µ oHirr,

T

T, K

Hirr(T)  measured  in  pulsed  magnet    -­‐  bridge  N5  

33.6o  to  magne*c  field;    maximum  Lorentz  force  orienta*on  

0 10 20 30 40 50 60 70 800

10

20

30

40

50

60

70

80

90

100

110

BN10 BN5

µ oHirr,

T

Temperature, K

Hirr(T)  for  bridges  N5  and  N10  

65  T  

100  T  

BN5  at  33.6o  to  magne*c  field;    BN10  at  41.6o  to  magne*c  field;  maximum  Lorentz  force  orienta*on  

Example  of  *me  dependencies  of  magne*c  field,  bias  current  and  sample  voltage  for  bridge  N10  at  52K  

Current  step  200  µA  

41.6  deg.  to  magne*c  field;  maximum  Lorentz  force  orienta*on  

Voltage  trace  values  are  calculated  by  FPGA  algorithm  at  the  end  of  each  current  pulse  as  a  difference  between  current  on  and  current  off  por*ons  of  the  pulse.    

Time  dependencies  of  magne*c  field,  bias  current  and  sample  voltage  for  bridge  N10  at  30K  

Current  step  200  µA  

Dura*on  of  this  process  36  ms.     41.6  deg.  to  magne*c  field;  maximum  Lorentz  force  

We  detected  one  V-­‐I-­‐B  point  in  about  0.33  ms.  with  voltage  noise  reaching  up  to  about  2-­‐3  µV.    Field  values  were  sampled  at  rate  2  µs.  per  point.  

49.0

49.1

49.2

49.3

49.4

49.5

49.6

-3.2

0.0

3.2

6.4

9.6

0

130

2 6 0

3 9 0

5 2 0

6 5 0

7 8 0

Voltage, µV

Current, µA

B (T)

Example  of  V(I,B)  curve  measured  at  30K  in  pulsed  field  

1416

1820

2224

2628

3032

3436

3840

4244

464850

-8

-4

0

4

8

12

0

10 00

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

Voltage, µV

Current, µAB (T)

Seven  V(I,B)  curves  measured  at  30K  (maximum  B=50T)  

Time  dependencies  of  magne*c  field,  bias  current  and  sample  voltage  for  bridge  N10  at  10.4K  

Current  step  220  µA  Current  offset  100µA  

Dura*on  of  this  process  39  ms.    

Couple  hundred  megabytes  of  high  resolu*on  current  and  voltage  traces  are  recorded  by  the  same  apparatus  for  each  30-­‐65T  magnet  pulse,  allowing  careful  off-­‐line  analysis  of  current-­‐voltage  response.  

10 20 30 40 50 60100

1000

T=10.4 K T=30 K; run 1 T=30 K; run 2

I c(B), µA

B, T

Transport  Ic(B)  at  3µV  (≈3700  µV/cm)  of  15%  Zr  doped  ReBCO  oriented  at  41.6o  to  field  measured  in  pulsed  magnet  

This  sample  survived  19  pulses  Bmax=  5T  –  65T  

10 20 30 40 50 60 700.01

0.1

1

T=10.4 K T=30 K; run 1 T=30 K; run 2

J c(B

), M

A/c

m2

B, T

Transport  Jc(B)  at  3µV  (≈3700  µV/cm)  of  15%  Zr  doped  ReBCO  oriented  at  41.6o  to  field  measured  in  pulsed  magnet  

T=30K  data  fit  to     𝐼↓𝑐 ~ 𝐵↑−𝛼   14.3  T-­‐49.5  T      α=  -­‐1.94    14.3T-­‐34  T        α=  -­‐1.63    

𝑉↓1 = 𝑉↓𝑐 (𝐼↓𝑐1 /𝐼↓𝑐  )↑𝑛   

𝐼↓𝑐 = 𝐼↓𝑐1 /𝑒𝑥𝑝[𝑙𝑛(𝑉↓1 /𝑉↓𝑐  )/𝑛 ]   

Calcula*ng  Ic  defined  at  standard  voltage  criterion    Vo  (<E>=1  µV/cm)  from  data  measured  at  different  voltage  

criterion  using  n-­‐value    

Timescales  related  to  this  experiment  V-­‐I-­‐B  point  measured  in  pulsed  mode  ~0.332  ms.  

Current  pulse  length  t  current=0.166    ms.  (smooth  sin(ωt)  shaped)  Magnet  pulse  dura*on  about  100  ms.  

dB/dt      =  2408  T/s  ,  which  is  about  9  *me  larger  max.  dB/dt  in  AC  modern  loss  setup  

“Inverse  aoempt  frequency  of  pinned  fluxons  usually  to  is  assumed  to  be  of  order  10  -­‐10  -­‐10  -­‐13    s.  “    10  -­‐10  <<  t  current  Therefore    in  spite  of  fast  V-­‐I-­‐B  detecXon  we  could  expect  observing  flux  creep  regime  and  therefore  power  dependence  E~Jn.    However,  exposing  sample  to  high  dB/dT  will  lead  to  high  electric  fields  102  –  103  µV/cm  much  above  Ec=  1  µV/cm.  Therefore  we  expect  to  get  flux  flow  regime.  

A.Gurevich,  et  al.  PRB  48  6477  (1993)  

J.  Huang,    et  al.,  Physica  C  184,  371  (1991).  

I

V

Fixng  Ic  data  from  V(I,B)  curves  

To  calculate  Ic  in  experiments  with  DC  field  we  use  several  I-­‐V  points  near  region  of  resis*ve  transi*on  by  fixng  data  points  with  dependence  𝑉= 𝑉↓𝑐 (𝐼/𝐼↓𝑐  )↑𝑛 .      During  pulsed  measurements  we  measure  V(I,  B)  dependence,  therefore  fixng  is  more  difficult:  

For  short  periods  of  *me:  𝐵(𝑡)≈𝐵↓𝑜 + 𝑑𝐵/𝑑𝑡 𝑡  𝐼(𝑡)= 𝐼↓𝑜 + 𝑑𝐼/𝑑𝑡 𝑡  

𝑉(𝐼,𝐵)= 𝑉↓𝑐 (𝐼/𝐼↓𝑐 (𝐵) )↑𝑛   

𝐼↓𝑐 (𝐵)= 𝐼↓𝑐0 𝐵↑−𝛼   

𝑉(𝐼)= 𝑉↓𝑐 (𝐼/𝐼↓𝑐0 (𝐵↓0 + 𝑑𝐵/𝑑𝐼 (𝐼− 𝐼↓0 ))↑−𝛼  )↑𝑛   

𝐵(𝐼)≈𝐵↓0 + 𝑑𝐵/𝑑𝐼 (𝐼− 𝐼↓0 )  

Combining  above  equa*ons  together:  

Within  small  field  range  

Too  many  fixng  parameters  

Near  pulse  peak  we  may  add  𝑑↑2 𝐵/𝑑𝐼↑2    term  

•  We  have  shown  the  possibility  of  detec*ng  the  Ic  of  high  Jc  ReBCO  tapes  in  ultra-­‐high  pulsed  fields;  

•  However  α  values  ( 𝐼↓𝑐 ~ 𝐵↑−𝛼 )  are  unrealis*cally  high.  

Future  plans:    •  In  future  to  understand  the  influence  of  I-­‐V  sampling  rate,  we  plan  to  

correlate  Jc  measured  with  standard  low  noise  electronics  and  FPGA-­‐based  electronics  using  a  superconduc*ng  magnet;  

•  To  get  more  V(I,B,T)  curves  per  magnet  pulse,  we  plan  to  introduce  *me-­‐dependent  maximum  ramping  current  synchronized  with  pulse  profile  B(*me).    

•  With  more  Ic  points  measured,  we  expect  to  get  smooth  pinning  force  density  fp(B,T)  dependencies  in  the  ultra-­‐high  field  region;    

•  We  plan  to  correlate  Jc  (B,T)  and  fp(B,T)  measured  in  ultra-­‐high  fields  at  different  orienta*ons  with  images  of  pinning  defects  obtained  on  the  state  of  the  art  sub-­‐Angstrom  scanning/transmission  electron  microscope  (NHMFL-­‐FSU).  Such  correla*ons  can  be  used  for  improving  understanding  of  pinning  anisotropy  in  new  coated  conductor  tapes  and,  therefore,    s*mulate  engineering  pinning  precipitates  op*mized  for  magnet  applica*ons.  

Summary