characterization of algal cell culture in production

1
Results And Observations 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Optical Density (680 nm and 750 nm) Time (day) Chlorella vulgaris Culture Growth in Different Agitation Rates 680 nm 750 nm Increased shaker speed from 80 to 100 rpm due to cell accumulation Increased shaker speed from 100 to 120 rpm due cell accumulation Optimal Conditions: 25°C, 60% Humidity, 120 rpm, 2.0% v/v CODetermination of Optimal Conditions of Growth Effect of CO₂ on Growth Kinetics 0 2 4 6 8 10 12 0 1 2 3 4 5 6 7 Optical Density (680 nm) Time (day) Effect of CO₂ on Scenedesmus bijuga Culture Growth 0.03% CO₂ (ambient) 1% CO2% CO2.5% COy = 0.1986x + 0.6661 y = 0.1542x + 10.453 y = 0.2538x + 7.1674 Growth Comparison of Different Strains of Algae Under Same Shaker Conditions 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 Productivity (g/L/day) Time (day) Growth Comparison Between Algae Strains SB CSO CV y = 0.0085x + 0.073 y = 0.0048x + 0.063 y = 0.0064x + 0.0623 Daily Productivity 0 0.05 0.1 0.15 0.2 0.25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Productivity (g/L/day) Time (day) Daily Productivity of Scenedesmus bijuga in Different Concentrations of CO₂ 0.03% CO₂ (ambient) 1% CO2% CO2.5% COy = ‐0.0025x + 0.1129 y = 0.0054x + 0.1508 y = 0.0015x + 0.1681 y = 0.002x + 0.0812 y = 0.3895x + 3.1309 Characterization of Algal Cell Culture in Photobioreactors for Biodiesel Production Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, MA 02139 Amrut Biswal, Kimberly Ramos (presenter), Naguib BoutrosGhali, Ashwitha Rajagopal, Rachel Yao, Messara Tawfik, Rajet Vatsa and JeanFrançois P. Hamel Contact: [email protected] Microalgal biofuels are a viable alternative for fossil fuels to reduce the amount of greenhouse gases released into the atmosphere from fuel consumption. However, microalgal biofuel production requires large volumes of algae and costs approximately 50% more than traditional fuel production. Therefore, there is a need to improve cell and lipid productivities in the photobioreactor process. This project focuses on determining cell productivity in the shaker flask and the traditional mechanicallystirred bioreactor, the quantification of lipids by spectroscopy, and the design of a novel spacesaving bioreactor. The strains studied are: Scenedesmus bijuga, Chlorella sorokiniana, and Chlorella vulgaris. The multiple cell strains grown in the shaker flask were kept at varying conditions to determine the optimum environment for cell growth. The cells did not grow when initially placed under fluorescent lights in a standard shaker. As an alternative, a specificallydesigned shaker for algal culture with LED lights fixed on the interior ceiling was used. Cell growth was monitored by measuring spectroscopic absorbance at wavelengths of 680 nm and 750 nm. The traditional stirred tank bioreactor (STR) was operated with 2 L of algae and was kept running for 10 days. The doubling time was observed to be approximately fortyeight hours. The novel space saving reactor consists of growing the algae on a substrate surface rather than suspended in medium. Medium is sprayed over the algae while it is attached to a supporting surface. This method significantly increases the amount of algae produced per unit volume, since most of the volume in the traditional reactor is water, and not biomass. Algae biofuel and biomass production are limited by a lack of real time knowledge of viable cell growth, and cellular lipid content. Thus, developing a realtime monitoring system for algae cultures is of great advantage to effectively increase their productivity. Visible/nearinfrared spectroscopy was used to establish a lowcost sensor for lipids. In addition to measuring the daily algal cell count with a hemocytometer, the cells were stained with fluorescent Nile red dye in DMSO to observe the intracellular lipid droplets from which biofuels are derived. The stained cultures were then analyzed via fluorescent microscopy (reference method) and spectroscopy, daily. Afterwards, these two methods were correlated to ultimately identify a strong correlation in which the implementation of spectroscopy is an effective realtime cellular lipid monitoring system for microalgae. Abstract Experimental Procedure Shaker Platform: Cells were transferred from culture vials (50 mL) into individual 250mL flasks under aseptic conditions, then 50 mL of BG11 medium added to it. (flasks to maintain ratio of 100 mL liquid in 250mL flask). Flasks of cells were incubated at 25°C with shaker speed 120 rpm with 60% humidity, LED light (Cool white, 6500K) at a diurnal schedule of 12 hours. COcontent was varied from ambient (0.03%) to 2.5% v/v. Stirred Tank Bioreactor: 200 mL of cell culture with an optical density of 11 was aseptically inoculated in a Sartorius Biotstat® Aplus bioreactor. It was then adjusted to 2 L with BG11 culture medium. Novel Space Saving Reactor: Different porous media were used was solid substates. Finally filter paper (Size: 11 cm). 8 mL of algal cell culture were filtered through a glass filter paper, using a Büchner funnel under moderate pressure. The run off filtrate was continuously refiltered till all the cells were seeded to the filter medium. Optimization of a CostEffective Lipid Monitoring System for Green Microalgae with RealTime Applications: Fluorescence microscopy was selected to quantify algal lipid concentrations; microscopy with Nile Red lipophilic stain with DMSO as solvent is an accepted reference method for algal lipid detection. A design for lowcost, realtime lipid sensor utilizing visible fluorescence microspectroscopy monitoring system is being proposed for about $4,000 (current systems cost upwards of $25,000).To successfully establish it; the realtime and timepoint approaches were correlated using statistical significance tests (“ttest”) to evaluate the effectiveness of the spectroscopic monitoring system. This would help establish a lowcost option for feedback control to optimize algal biofuel production Shaker Experimental Setup Gas exchange (CO, N) Agitation Autotrophic algal cell culture under photosynthesis Specifically designed, climate controlled shaker for algal culture incubation  (Kuhner ClimoShaker ISF1X), STR Setup Conditions: Temperature = 20°C pH of 7.1 with phosphate buffer. Aeration rate of 80 cm 3 /min of 2.5% CO₂ (97.5% N 2 ) Agitation rate = 350 rpm Result For STR 0 0.5 1 1.5 2 2.5 3 1 2 3 4 5 6 7 8 9 10 Optical Density (680 nm and 750 nm) Time (day) Scenedesmus bijuga Growth in STR 680 nm 750 nm Novel Space Saving Reactor Algal cell culture in medium leads to poor optimization of the cells and lipid production. Our Approach: Cell culture on a solid substrate and optimal medium transfer through nebulization of medium. Challenges: Layered growth affects uniform spread of nutrients, gas and light. Finding optimum growth rate and harvest time Immediately after inoculation Four days after inoculation Conditions: 2.5 % CO 2 , 12 hour diurnal cycle, fluorescent lighting, periodic transfer of nebulized medium. Transfer of media was optimized through the use of a humidistat. Design And Optimization of A CostEffective Lipid Monitoring System For Green Microalgae With Realtime Applications Diagram of the fluorescence spectroscopy monitoring system used to measure fluorescence emission spectra of algae cell culture samples stained with fluorescent dyes DC power supply Computer Miniature diffraction grating spectrometer with SiCCD  linear array detector Glass fluorescence flow cell  with algae culture sample Receiving optical fiber 470 nm blue LED Spectroscopy Results Data Correlation Conclusions Experimental Conclusions Spectroscopic monitoring system works for particular strains of microalgae Possibly an effect of the high optical densities of the S. bijuga and C. sorokiniana strains Thus, visible/near- infrared spectroscopy may be utilized in future real-time lipid sensors for experimentally- determined species of microalgae Acknowledgements We thank K. Kaastrup and the Sikes lab for access to fluorescent microscopy and training; J. Bales (Edgerton Center), A. Coe and the Chisholm lab for the loan of light meters; G. Isabelle (Enlivity), B. Jackson (MassBay Community College), K.C. Das (University of Georgia), T. Anderlei (Kuhner) and R. Micheels (Innovative Science Tools) for their expertise, material and support. Future Work References Presented at The BIOPROCESSING Summit 2013, Boston, MA, August 1923 1. S.A. Khan, Rashmi, M.Z. Hussain, S. Prasad, U.C. Banerjee. Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews 13 (2009),  Vol.9, 23612372. 2. T. McConville. Fat content determination methods. Unpublished Manuscript,1999. 3. L. Rodol, G.C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, M.R.Tredici. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a lowcost photobioreactor. Biotechnology and Bioengineering 102 (2008), Vol.1, 100112. 4. R. Sakthivel, S. Elumalai, and M.M. Arif. Microalgae lipid research, past, present: A critical review for biodiesel production, in the future. Journal of Experimental Sciences 2 (2011), Vol.2, 2949. 5. M. Sato, Y. Murata, M. Mizusawa, H. Iwahashi, S. Oka. A simple and rapid dualuorescence viability assay for microalgae. Microbiology and Culture Collections 20 (2004), Vol. 2, 5359. 6. L. Xin, H. Hongying, Z. Yuping. Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology 102 (2011), 30983102. 7. Sobczuk, et al. Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess Biosyst Eng (2006) 28: 243–250. 8. Suh, et al. Photobioreactor Engineering: Design and Performance. Bioprocess Biosyst Eng (2003) 8: 313321. 9. Li, Ma et al. Effects of Filtration Seeding on Cell Density, Spatial Distribution,and Proliferation in Nonwoven Fibrous Matrices. Biotechnology Progress 2001, 17, 935944 Light source (170 μmol photons/m 2 /second PAR) It was observed that the culture in the STR was sustainable  with a doubling time of about  two days. . Shaker Platform: Continue to experiment with different conditions to identify optimal conditions for all three strains of algae being studied. Stirred Tank Bioreactor (STR): Additional runs will be done in order to identify optimal CO₂ levels and quantity of cell volume to use for inoculation. Novel Space Saving Reactor: Continue experimenting with different substrates to find one that most favors algae cell attachment Identify optimum time to harvest cells Optimization of a CostEffective Lipid Monitoring System for Green Microalgae: Optimize the Nile red signal Use hexanebased solvent extraction to characterize the lipids in the stained cells Expand the sensor to include cellular monitoring capabilities Results From Cell Count and Fluorescence Microscopy Experiments S. bijuga Reference staining - Successful C. sorokiniana Reference staining - Successful C. vulgaris Reference staining - Successful Linear regression ttest: Pearson’s r 0.891; R 2 – 0.794; p 0.007

Upload: others

Post on 19-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Results And Observations

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Op

tica

l Den

sity

(68

0 n

m a

nd

750

nm

)

Time (day)

Chlorella vulgaris Culture Growth in Different Agitation Rates 

680nm

750nm

Increased shaker speed from 80 to 100 rpm due to cell accumulation

Increased shaker speed from 100 to 120 rpm due cell accumulation

Optimal Conditions: 25°C, 60% Humidity, 120 rpm, 2.0% v/v CO₂

Determination of Optimal Conditions of Growth  Effect of CO₂ on Growth Kinetics

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7

Optical D

ensity (680 nm)

Time (day)

Effect of CO₂ on Scenedesmus bijuga Culture Growth

0.03% CO₂ (ambient)

1% CO₂

2% CO₂

2.5% CO₂

y = 0.1986x + 0.6661

y = 0.1542x + 10.453

y = 0.2538x + 7.1674

Growth Comparison of Different Strains of AlgaeUnder Same Shaker Conditions

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1 2 3 4 5 6 7 8 9 10 11 12

Productivity (g/L/day)

Time (day)

Growth Comparison Between Algae Strains

SB

CSO

CV

y = 0.0085x + 0.073

y = 0.0048x + 0.063

y = 0.0064x + 0.0623

Daily Productivity

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Productivity (g/L/day)

Time (day)

Daily Productivity of Scenedesmus bijuga in Different Concentrations of CO₂ 

0.03% CO₂ (ambient)

1% CO₂

2% CO₂

2.5% CO₂y = ‐0.0025x + 0.1129

y = 0.0054x + 0.1508

y = 0.0015x + 0.1681

y = ‐0.002x + 0.0812

y = 0.3895x + 3.1309

Characterization of Algal Cell Culture in Photobioreactors for Biodiesel Production

Characterization of Algal Cell Culture in Photobioreactorsfor Biodiesel Production

Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, MA 02139Amrut Biswal, Kimberly Ramos (presenter), Naguib Boutros‐Ghali, Ashwitha Rajagopal, Rachel Yao,

Messara Tawfik, Rajet Vatsa and Jean‐François P. HamelContact: [email protected]

Microalgal biofuels are a viable alternative for fossil fuels to reduce theamount of greenhouse gases released into the atmosphere from fuelconsumption. However, microalgal biofuel production requires largevolumes of algae and costs approximately 50% more than traditional fuelproduction. Therefore, there is a need to improve cell and lipidproductivities in the photobioreactor process. This project focuses ondetermining cell productivity in the shaker flask and the traditionalmechanically‐stirred bioreactor, the quantification of lipids byspectroscopy, and the design of a novel space‐saving bioreactor. Thestrains studied are: Scenedesmus bijuga, Chlorella sorokiniana, andChlorella vulgaris.

The multiple cell strains grown in the shaker flask were kept at varyingconditions to determine the optimum environment for cell growth. Thecells did not grow when initially placed under fluorescent lights in astandard shaker. As an alternative, a specifically‐designed shaker for algalculture with LED lights fixed on the interior ceiling was used. Cell growthwas monitored by measuring spectroscopic absorbance at wavelengths of680 nm and 750 nm.

The traditional stirred tank bioreactor (STR) was operated with 2 L of algaeand was kept running for 10 days. The doubling time was observed to beapproximately forty‐eight hours.

The novel space saving reactor consists of growing the algae on a substratesurface rather than suspended in medium. Medium is sprayed over thealgae while it is attached to a supporting surface. This method significantlyincreases the amount of algae produced per unit volume, since most ofthe volume in the traditional reactor is water, and not biomass.

Algae biofuel and biomass production are limited by a lack of real‐timeknowledge of viable cell growth, and cellular lipid content. Thus,developing a real‐time monitoring system for algae cultures is of greatadvantage to effectively increase their productivity. Visible/near‐infraredspectroscopy was used to establish a low‐cost sensor for lipids. In additionto measuring the daily algal cell count with a hemocytometer, the cellswere stained with fluorescent Nile red dye in DMSO to observe theintracellular lipid droplets from which biofuels are derived. The stainedcultures were then analyzed via fluorescent microscopy (referencemethod) and spectroscopy, daily. Afterwards, these two methods werecorrelated to ultimately identify a strong correlation in which theimplementation of spectroscopy is an effective real‐time cellular lipidmonitoring system for microalgae.

Abstract

Experimental Procedure

Shaker Platform:

Cells were transferred fromculture vials (50 mL) intoindividual 250‐mL flasks underaseptic conditions, then 50 mL ofBG‐11 medium added to it. (flasksto maintain ratio of 100 mL liquidin 250‐mL flask). Flasks of cellswere incubated at 25°C withshaker speed 120 rpm with 60%humidity, LED light (Cool white,6500K) at a diurnal schedule of 12hours. CO₂ content was variedfrom ambient (0.03%) to 2.5% v/v.

Stirred Tank Bioreactor:

200 mL of cell culture with an optical density of11 was aseptically inoculated in a SartoriusBiotstat® Aplus bioreactor. It was then adjustedto 2 L with BG‐11 culture medium.

Novel Space Saving Reactor:

Different porous media wereused was solid substates. Finallyfilter paper (Size: 11 cm). 8 mL ofalgal cell culture were filteredthrough a glass filter paper, usinga Büchner funnel under moderatepressure. The run off filtrate wascontinuously re‐filtered till all thecells were seeded to the filtermedium.

Optimization  of a Cost‐Effective Lipid Monitoring System for Green Microalgae with Real‐Time Applications:

Fluorescence microscopy was selected toquantify algal lipid concentrations; microscopywith Nile Red lipophilic stain with DMSO assolvent is an accepted reference method for algallipid detection.

A design for low‐cost, real‐time lipid sensorutilizing visible fluorescence micro‐spectroscopymonitoring system is being proposed for about$4,000 (current systems cost upwards of$25,000).To successfully establish it; the real‐timeand time‐point approaches were correlated usingstatistical significance tests (“t‐test”) to evaluatethe effectiveness of the spectroscopic monitoringsystem.

This would help establish a low‐cost option forfeedback control to optimize algal biofuelproduction

Shaker Experimental Setup

Gas exchange (CO₂, N₂)

Agitation

Autotrophic algal cell culture under photosynthesis 

Specifically designed, climate controlled shaker for algal culture incubation  (Kuhner Climo‐Shaker ISF1‐X), 

STR Setup

Conditions:• Temperature = 20°C• pH of 7.1 with phosphate buffer. • Aeration rate of 80 cm3/min of 2.5% CO₂ (97.5% N2)

• Agitation rate = 350 rpm

Result For STR

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

Optical D

ensity (680 nm and 750 nm)

Time (day)

Scenedesmus bijuga Growth in STR

680 nm

750 nm

Novel Space Saving Reactor

Algal cell culture in medium leads to pooroptimization of the cells and lipid production.

Our Approach: Cell culture on a solid substrateand optimal medium transfer throughnebulization of medium.

Challenges: • Layered growth affects uniform spread of nutrients, gas and light.

• Finding optimum growth rate and harvest time

Immediately after inoculation Four days after inoculation

Conditions: 2.5 % CO2, 12 hour diurnalcycle, fluorescent lighting, periodictransfer of nebulized medium. Transferof media was optimized through theuse of a humidistat.

Design And Optimization of A Cost‐Effective Lipid Monitoring System For Green Microalgae With Real‐time Applications

Diagram of the fluorescence spectroscopy monitoring system used to measure fluorescence emission spectra of algae cell culture samples stained with 

fluorescent dyes

DC power supply

Computer

Miniature diffraction grating spectrometer with Si‐CCD  

linear array detector

Glass fluorescence flow cell  with algae culture sample

Receiving optical fiber

470 nm blue LED

Spectroscopy Results – Data Correlation –Conclusions

Experimental Conclusions• Spectroscopic

monitoring system works for particular strains of microalgae

• Possibly an effect of the high optical densities of the S. bijuga and C. sorokiniana strains

• Thus, visible/near-infrared spectroscopy may be utilized in future real-time lipid sensors for experimentally-determined species of microalgae

Acknowledgements

We thank K. Kaastrup and the Sikes lab for access tofluorescent microscopy and training; J. Bales (EdgertonCenter), A. Coe and the Chisholm lab for the loan of lightmeters; G. Isabelle (Enlivity), B. Jackson (MassBayCommunity College), K.C. Das (University of Georgia), T.Anderlei (Kuhner) and R. Micheels (Innovative ScienceTools) for their expertise, material and support.

Future Work

References

Presented at The BIOPROCESSING Summit 2013, Boston, MA, August 19‐23 

1. S.A. Khan, Rashmi, M.Z. Hussain, S. Prasad, U.C. Banerjee. Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews 13 (2009),  Vol.9, 2361‐2372.

2. T. McConville. Fat content determination methods. Unpublished Manuscript,1999.

3. L. Rodol, G.C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, M.R.Tredici. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor. Biotechnology and Bioengineering 102 (2008), Vol.1, 100‐112.

4. R. Sakthivel, S. Elumalai, and M.M. Arif. Microalgae lipid research, past, present: A critical review for biodiesel production, in the future. Journal of Experimental Sciences 2 (2011), Vol.2, 29‐49.

5. M. Sato, Y. Murata, M. Mizusawa, H. Iwahashi, S. Oka. A simple and rapid dual‐uorescence viability assay for microalgae. Microbiology and Culture Collections 20 (2004), Vol. 2, 53‐59.

6. L. Xin, H. Hong‐ying, Z. Yu‐ping. Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology 102 (2011), 3098‐3102.

7. Sobczuk, et al. Effects of agitation on the microalgae Phaeodactylumtricornutum and Porphyridium cruentum. Bioprocess Biosyst Eng (2006) 28: 243–250.

8. Suh, et al. Photobioreactor Engineering: Design and Performance. Bioprocess Biosyst Eng (2003) 8: 313‐321.

9. Li, Ma et al. Effects of Filtration Seeding on Cell Density, Spatial Distribution,and Proliferation in Nonwoven Fibrous Matrices. Biotechnology Progress 2001, 17, 935‐944

Light source (170 µmolphotons/m2/second PAR)

It was observed that the culture in the STR was sustainable  with a doubling time of about  two days.

.

Shaker Platform:• Continue to experiment with different conditions to identify optimal conditions for all three strains of algae being studied.

Stirred Tank Bioreactor (STR):• Additional runs will be done in order to identify optimal CO₂ levels and quantity of cell volume to use for inoculation.

Novel Space Saving Reactor:• Continue experimenting with different substrates to find one that most favors algae cell attachment 

• Identify optimum time to harvest cells

Optimization of a Cost‐Effective Lipid Monitoring System for Green Microalgae:• Optimize the Nile red signal• Use hexane‐based solvent extraction to characterize the lipids in the stained cells

• Expand the sensor to include cellular monitoring capabilities

Results From Cell Count and Fluorescence Microscopy Experiments

S. bijugaReference staining - Successful

C. sorokinianaReference staining -Successful

C. vulgarisReference staining -Successful

Linear regression t‐test: Pearson’s r – 0.891; R2 – 0.794; p – 0.007