chapter(13.( neurodynamicschapter(13.(neurodynamics neural’networks’and’learning’machines’...

37
Chapter 13. Neurodynamics Neural Networks and Learning Machines (Haykin) 2019 Lecture Notes on Selflearning Neural Algorithms ByoungTak Zhang School of Computer Science and Engineering Seoul National University Version 20171109/20191028/20191104

Upload: others

Post on 26-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

Chapter  13.  Neurodynamics

Neural  Networks  and  Learning  Machines  (Haykin)

2019  Lecture  Notes  on  Self-­‐learning  Neural  Algorithms

Byoung-­‐Tak  ZhangSchool  of  Computer  Science  and  Engineering

Seoul  National  University

Version  20171109/20191028/20191104

Page 2: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

Contents

13.1  Introduction    ……………………………………………………..……………………………....   313.2  Dynamic  Systems     ……………………………………………….…….………………..….   513.3  Stability  of  Equilibrium  States         …………………………....………………….……....   813.4  Attractors ……….………..………………….……………………………………..……….....   1313.5  Neurodynamic Models   ……………………………..…………………………...…...….   1413.6  Attractors  and  Recurrent  Networks          ….……..……..…….…….………………..   1813.7  Hopfield  Model ….……………………………………..……..…….……….…………..   1913.8  Cohen-­‐Grossberg Theorem   ……………….…………..………….………….....…….   3113.9  Brain-­‐State-­‐In-­‐A-­‐Box  Model   ……………………….……..…......................….   33Summary  and  Discussion     …………….…………….………………………….……………...    37

(c)  2017  Biointelligence  Lab,  SNU 2

Page 3: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 3

13.1  Introduction  (1/2)

• Time  plays  a  critical  role  in  learning.  Two  ways  in  which  time  manifests  itself  in  the  learning  process:1. A  static  neural  network  (NN)  is  made  into  a  dynamic  mapper  by  stimulating  

it  via  a  memory  structure,  short  term  or  long  term.2. Time  is  built  into  the  operation  of  a  neural  network  through  the  use  of  

feedback.• Two  ways  of  applying  feedback  in  NNs:

1. Local  feedback,  which  is  applied  to  a  single  neuron  inside  the  network;2. Global  feedback,  which  encompasses   one  or  more  layers  of  hidden  

neurons—or  better  still,  the  whole  network.• Feedback  is  like  a  double-­‐edged  sword  in  that  when  it  is  applied  

improperly,  it  can  produce  harmful  effects.   In  particular,   the  application  of  feedback  can  cause  a  system  that  is  originally  stable  to  become  unstable.  Our  primary  interest  in  this  chapter  is  in  the  stability  of  recurrent  networks.

• The  subject  of  neural  networks  viewed  as  nonlinear  dynamic  systems,  with  particular  emphasis  on  the  stability  problem,  is  referred   to  as  neurodynamics.

Page 4: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 4

13.1  Introduction  (2/2)

• An  important  feature  of  the  stability  (or  instability)  of  a  nonlinear  dynamic  system  is  that  it  is  a  property  of  the  whole  system.  – The  presence  of  stability  always  implies  some  form  of  

coordination  between  the  individual  parts  of  the  system.• The  study  of  neurodynamics may  follow  one  of  two  routes,  

depending  on  the  application  of  interest:– Deterministic  neurodynamics,  in  which  the  neural  network  

model  has  a  deterministic  behavior.  Described  by  a  set  of  nonlinear  differential  equations  è This  chapter.

– Statistical  neurodynamics,  in  which  the  neural  network  model   is  perturbed  by  the  presence  of  noise.  Described  by  stochastic  nonlinear  differential  equations,  thereby  expressing  the  solution  in  probabilistic  terms.  

Page 5: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 5

13.2  Dynamic  Systems  (1/3)

A  dynamic  system  is  a  system  whose  state  varies  with  time.

( ) ( )( ) , = 1, 2, ..., j j jd x t F x t j Ndt

=

( ) ( ) ( ) ( )1 2[ , , ... , ]TNt x t x t x t=x

( ) ( )( )d t tdt

=x F x

Figure  13.1      A  two-­‐dimensional  trajectory  (orbit)  of  a  dynamic  system.

velocity  vector  fieldor  vector  field

Page 6: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 6

13.2  Dynamic  Systems  (2/3)

Figure  13.2      A  two-­‐dimensional   state  (phase)  portrait  of  a  dynamic  system.

Figure  13.3      A  two-­‐dimensional   vector  field  of  a  dynamic  system.

Page 7: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 7

13.2  Dynamic  Systems  (3/3)

( ) ( ) K− ≤ −F x F u x u

M

x x.

x u

Lipschitz    condition

Let        denote  the    norm,  or    Euclidean    length,  of    the  vector    

Let        and        be    a    pair    of    vectors    in    an    open    set        in    a    noraml    vector    (state)    space.Then,    acco K Mx urding    to    the    Lipschitz    condition,    there    exists    a    constant        for    all        and        in     .

( ( ) ) S ( ( ))⋅ = ∇ ⋅∫ ∫S V

d dVF x n F x

If the divergence ( ) (which is a scalar) is zero,the system is conservative and if it is negative the system is dissipative

∇ ⋅ , , .

F x

Divergence  Theorem

Volume  integral  of  the  divergence  of  F(x)

Surface  integral  of  the  outwardly  directed  normal  component  of  F(x)Net  flux  flowing  out  of  the  region  surrounded  by  the  closed  surface  S

Page 8: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 8

13.3  Stability  of  Equilibrium  States (1/6)

Table  13.1 ( ) =F x 0

( ) = + ( )t tΔx x x

( ) + ( )t≈ ΔF x x A x

= ( ) | =∂∂

x xA F xx

( ) ( )d t tdt

Δ ≈ Δx A x

Jacobian

Taylor  series   expansion

Equilibrium  state

Page 9: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 9

13.3  Stability  of  Equilibrium  States (2/6)Figure  13.4      (a)  Stable  node.  (b)  Stable  focus.  (c)  Unstable  node.  (d)  Unstable  focus.  (e)  Saddle  point.  (f)  Center.  

Page 10: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 10

13.3  Stability  of  Equilibrium  States (3/6)

Lyapunov’s  Theorems

The equilibrium state is stable if, in a small neighborhood ofthere exists a positive - definite function such that its derivative with respect to time is negative semidefinite in t

VTheorem1. x x,

(x) hat region.

The equilibrium state is asymptotically stable if, in a small neighborhood of , there exists a positive - definite function such that its derivative with respect to time is negative de

VTheorem2. x

x (x)finite in that region.

Page 11: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 11

13.3  Stability  of  Equilibrium  States (5/6)

( ) 0 for x≤ ∈ −d V udt

x x

According    to    Theorem    1,

( ) < 0 for x∈ −d V udt

x x

According    to    Theorem  2,

( ) ( )

. ( ) = 0

VV

V

xx

xx

Requirement :The    Lyapunov    function to    be    a      positive -­‐ definite  function1.  The    function has    continous    partial    derivatives    with    respect    to    the    elements  of    the    state2. .

( ) > 0 - .∈V u ux x x x3. if where        is    a    small    neighborhood    around

Page 12: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 12

13.3  Stability  of  Equilibrium  States (6/6)

1 2 3c < <

xc c cFigure  13.6    Lyapunov    surfaces    for    decreasing    value    of    constant     ,    with     .  The    equilibribum    state    

is    denoted    by    the  point     .

Page 13: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 13

13.4  Attractors• A  k-­‐dimensional  surface  embedded   in  the  N-­‐dimensional  state  space,  

which  is  defined  by  the  set  of  equations

• These  manifolds are  called  attractors in  that  they  are  bounded  subsets  to  which  regions  of  initial  conditions  of  a  nonzero  state-­‐space  volume  converge  as  time  t  increases.

( )1 2

1, 2, ... , , , ... , 0,

=⎧

= ⎨ <⎩j N

j kM x x x

k N

Figure  13.7      Illustration  of  the  notion  of  a  basin  of  attraction  and  the  idea  of  a  separatrix.

-­‐ Point  attractors-­‐ Limit  cycle-­‐ Basin  (domain)  of  attraction-­‐ Separatrix-­‐ Hyperbolic  attractor

Page 14: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 14

13.5  Neurodynamic Models  (1/4)

• General  properties  of  the  neurodynamic  systems1. A  large  number  of  degrees  of  freedom

The  human  cortex  is  a  highly  parallel,  distributed  system  that  is  estimated  to  possess  about  10  billion  neurons,  with  each  neuron  modeled  by  one  or  more  state  variables.  The  system  is  characterized  by  a  very  large  number  of  coupling  constants  represented  by  the  strengths  (efficacies)  of  the  individual  synaptic  junctions.

2. NonlinearityA  neurodynamic  system  is  inherently  nonlinear.  In  fact,  nonlinearity  is  essential  for  creating  a  universal  computing  machine.

3. DissipationA  neurodynamic  system  is  dissipative.  It  is  therefore  characterized  by  the  convergence  of  the  state-­‐space  volume  onto  a  manifold  of  lower  dimensionality  as  time  goes  on.

4. NoiseFinally,  noise  is  an  intrinsic  characteristic  of  neurodynamic  systems.  In  real-­‐life  neurons,  membrane  noise  is  generated  at  synaptic  junctions

Page 15: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 15

13.5  Neurodynamic Models  (2/4)

Figure  13.8      Additive  model  of  a  neuron,  labeled   j.

Page 16: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 16

13.5  Neurodynamic Models  (3/4)

( ) ( ) ( )1

Nj

j ji i jij

jdv v tC w x t I

dtt R =

+ = +∑

( ) ( )( )j jx t v tϕ=

( ) ( ) ( ) ,1

= 1, 2, ..., N

j jj ji i j

ij

dv t v tC w x t I j N

dt R =

= − + +∑

( ) ( )1φ , = 1, 2, ...,

1 + expjj

v j Nv

=−

Additive  model

Flowing  away Flowing  toward

Cj:    leakage  capacitanceRj:  leakage  resistance

wji:  conductancexi:  potential

I =  V/R  (Kirchoff’s law)

Page 17: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 17

13.5  Neurodynamic Models  (4/4)

( ) ( ) ( )( ) = φ , = 1, 2, ..., jj ji i j

i

dv tv t w v t I j N

dt− + +∑

( ) ( ) ( )jdx t = x t φ x t , = 1, 2, ...,

dt j ji i jiw K j N⎛ ⎞− + +⎜ ⎟⎝ ⎠

Related  model

( ) ( ) = k kj jj

v t w x t∑ = k kj j

jI w K∑

Normalizing  wji and  Ijwrt Rj ( ) ( )( )j jx t v tϕ=cf:

[Pineda,  1987]

tauj =  RjCj

Page 18: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU18

13.6  Manipulation  of  Attractors  as  Recurrent  Network  Paradigm

• A  neurodynamic  model  can  have  complicated  attractor  structures and  may  therefore  exhibit  useful  computational  capabilities.

• The  identification  of  attractors with  computational  objects  is  one  of  the  foundations  of  neural  network  paradigms.

• One  way  in  which  the  collective  properties  of  a  neural  network  may  be  used  to  implement  a  computational  task  is  by  way  of  the  concept  of  energy  minimization.

• The  Hopfield  network  and  brain-­‐state-­‐in-­‐a-­‐box  model  are  examples  of  an  associative  memory  with  no  hidden  neurons;  an  associative  memory  is  an  important  resource  for  intelligent  behavior.  Another  neurodynamic  model  is  that  of  an  input–output  mapper,  the  operation  of  which  relies  on  the  availability  of  hidden  neurons.

Page 19: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 19

13.7  Hopfield  Model  (1/12)

• The  Hopfield  network  (model)  consists  of  a  set  of  neurons  and  a  corresponding  set  of  unit-­‐time  delays,  forming  a  multiple-­‐loop  feedback  system.

Figure  13.9      Architectural  graph  of  a  Hopfield  network  consisting  of  N  =  4  neurons.

1 1

12

N N

ji i ji ji j

E w x x= =≠

= − ∑∑

1

N

j ji i ji

v w x b=

= +∑

( ) 1 exp( ) φ = tanh2 1 exp( )i i

ii

a v a vx va v

− −⎛ ⎞= =⎜ ⎟ + −⎝ ⎠

Page 20: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 20

13.7  Hopfield  Model  (2/12)

• Dynamics  of  the  Hopfield  network

• To  study  the  stability  of  this  system  of  differential  equations,  we  make  three  assumptions:– The  matrix  of  synaptic  weights  is  symmetric

– Each  neuron  has  a  nonlinear  activation  of  its  own– The  inverse  of  the  nonlinear  activation  function  exists

for all and ji ijw w i j=( )1φiv x−=

( ) 1 exp( ) φ = tanh2 1 exp( )i i

ii

a v a vx va v

− −⎛ ⎞= =⎜ ⎟ + −⎝ ⎠

( ) ( ) ( )( )1

= φ , = 1, ... , N

jj j ji i i j

ij

v tdC v t w v t I j Ndt R =

− + +∑

Page 21: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

21

13.7  Hopfield  Model  (3/12)

φ2i i

v oa d

dv ==

( )1 1 1φ log1i

i

xv xa x

− −⎛ ⎞= = − ⎜ ⎟+⎝ ⎠

( )1 1φ log1ixxx

− −⎛ ⎞= − ⎜ ⎟+⎝ ⎠

( ) ( )1 11φ φii

x xa

− −=

( )1

01 1 1 1

1 1 φ2

jN N N Nx

ji i j j j ji j j jj

E w x x x dx I xR

= = = =

= − + −∑∑ ∑ ∑∫

1 1

N Nj j

ji i jj i j

v dxdE w x Idt R dt= =

⎛ ⎞= − − +⎜ ⎟⎜ ⎟⎝ ⎠∑ ∑

Figure  13.10      Plots  of  (a)  the  standard  sigmoidal  nonlinearity,  and  (b)  its  inverse.

è

Energy  function  of  the  Hopfield  network

Differentiating  E wrt t

Page 22: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

22

13.7  Hopfield  Model  (4/12)

1

Nj j

jj

dv dxdE Cdt dt dt=

⎛ ⎞= − ⎜ ⎟

⎝ ⎠∑

( ) ( )2

1 1

1 1φ φ

N Nj j

j j j j j jj j j

dx dxdE d dC x C xdt dt dt dt dx

− −

= =

⎡ ⎤⎛ ⎞⎡ ⎤= − = − ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎢ ⎥⎝ ⎠ ⎣ ⎦∑ ∑

( )1φ 0 for all j j jj

d x xdx

− ≥2

0 for all jj

dxx

dt⎛ ⎞

≥⎜ ⎟⎝ ⎠

( ) ( ) ( )( )1

= φ , = 1, ... , N

jj j ji i i j

ij

v tdC v t w v t I j Ndt R =

− + +∑1 1

N Nj j

ji i jj i j

v dxdE w x Idt R dt= =

⎛ ⎞= − − +⎜ ⎟⎜ ⎟⎝ ⎠∑ ∑

Note:  

( )1 1 1φ log1i

i

xv xa x

− −⎛ ⎞= = − ⎜ ⎟+⎝ ⎠

dph/dt=  dph/dx  dx/dt

𝑑𝐸𝑑𝑡

≤ 0      for  all  𝑡

è

è

1. The  energy  function  E  is  a  Lyapunov  function  of  the  continuous  Hopfield  model.

2. The  model  is  stable in  accordance  with  Lyapunov’s theorem  1.

Page 23: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 23

13.7  Hopfield  Model  (5/12)

< 0 except at a fixed pointdEdt

• The  (Lyapunov)  energy  function  E  of  a  Hopfield  network  is  a  monotonically  decreasing  function  of  time.

• Accordingly,  the  Hopfield  network  is  asymptotically  stable  in  the  Lyapunov  sense;  the  attractor  fixed  points are  the  minima  of  the  energy  function,  and  vice  versa.

Figure  13.12      An  energy  contour  map  for  a  two-­‐neuron,  two-­‐stable-­‐state  system.  The  ordinate  and  abscissa  are  the  outputs  of  the  two  neurons.  Stable  states  are  located  near  the  lower  left  and  upper  right  corners,  and  unstable  extrema  are  located  at  the  other  two  corners.  The  arrows  show  the  motion  of  the  state.  This  motion  is  not  generally  perpendicular  to  the  energy  contours.  

Page 24: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  BiointelligenceLab,  SNU 24

13.7  Hopfield  Model  (6/12)

( )φ 0 0j =

( )1

01 1 1

1 1 φ 2

jN N N x

ji i j ji j j ji j

E w x x x dxR

= = =≠

= − +∑∑ ∑ ∫

( )1

01 1 1

1 1 φ2

jN N N x

ji i ji j j j ji j

E w x x x dxa R

= = =≠

= − +∑∑ ∑ ∫

1.  The  output  of  neuron  j  has  the  asymptotic  values

2.  The  midpoint  of  the  activation  function  of  the  neuron  lies  at  the  origin

1 for

1 for j

jj

vx

v+ = ∞⎧⎪= ⎨− = −∞⎪⎩

1 1

12

N N

ji i ji ji j

E w x x= =≠

= − ∑∑

Figure  13.11      Plot  of  the  integral  

( ) ( )1 11φ φii

x xa

− −=

If  gain  𝑎𝑗 → ∞,  the  second  term  goes  to  0,  and  the  continuous  Hopfield  model  becomes  the  discrete  Hopfield  model

for  discrete  Hopfield  model

Page 25: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 25

13.7  Hopfield  Model  (7/12)

The  Discrete  Hopfield  Model  as  a  Content-­‐Addressable  Memory

1

N

j ji i ji

v w x b=

= +∑• The  induced  local  field  vj of  neuron   j  is  defined  by

where  bj is  a  fixed  bias  applied  externally  to  neuron  j.  Hence,  neuron  j  modifies   its  state  xj according  to  the  deterministic  rule

1 if for 0

1 if for 0j

jj

vx

v+ >⎧⎪= ⎨− <⎪⎩

• This  relation  may  be  rewritten  in  the  compact  form sgn(v )j jx =

• Energy  function1 1

12

N N

ji i ji ji j

E w x x= =≠

= − ∑∑

Page 26: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 26

13.7  Hopfield  Model  (8/12)

The  Discrete  Hopfield  Model  as  a  Content-­‐Addressable   MemoryStorage  of  samples  (=  learning)

– According  to  the  outer-­‐product   rule  of  storage—that  is,  the  generalization  of  Hebb’s  postulate  of  learning—the  synaptic  weight  from  neuron  i to  neuron  j is  defined  by

, ,1

1 M

ji j iwN µ µ

µ=

= ξ ξ∑

0 for all iiw i=

Figure  13.13      Illustration  of  the  encoding–decoding  performed  by  a  recurrent  network.

Page 27: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

13.7  Hopfield  Model   (9/12)

(c)  2017  Biointelligence  Lab,  SNU 27

The  Discrete  Hopfield  Model  as  a  Content-­‐Addressable   Memory1. Storage  Phase

– The  output  of  each  neuron  in  the  network  is   fed  back  to  all  other  neurons.– There  is  no  self-­‐feedback  in  the  network  (i.e.,wii =  0).– The  weight  matrix  of  the  network  is  symmetric,  as  shown  by  the  following  

relation

2. Retrieval  Phase

1

1 M

MN µ µ

µξ ξ Τ

=

= −∑W Ι

Τ =W W

, j = 1, 2, …, N1

sgnN

j ji i ji

y w y b=

⎛ ⎞= +⎜ ⎟⎝ ⎠∑

sgn( )= +y Wy b

Page 28: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

13.7  Hopfield  Model  (10/12)

28

Page 29: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

13.7  Hopfield  Model  (11/12)

(c)  2017  Biointelligence  Lab,  SNU 29

Figure  13.14 (a)  Architectural  graph  of  Hopfield  network  for  N  =  3  neurons.  (b)  Diagram  depicting  the  two  stable  states  and  flow  of  the  network.

, j = 1, 2, …, N( )( ) ( )j j jd x t F x tdt

=

Page 30: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

13.7  Hopfield  Model   (12/12)

(c)  2017  Biointelligence  Lab,  SNU 30

Spurious  States• An  eigenanalysis of  the  weight  matrix  W leads  us  to  take  the  following  

viewpoint  of  the  discrete  Hopfield  network  used  as  a  content-­‐addressable  memory1. The  discrete  Hopfield  network  acts  as  a  vector  projector  in  the  sense  that  it  

projects  a  probe  onto  a  subspace  spanned  by  the  fundamental  memory  vectors.

2. The  underlying  dynamics  of  the  network  drive  the  resulting  projected  vector  to  one  of  the  corners  of  a  unit  hypercube  where  the  energy  function  is  minimized.

• Tradeoff  between   two  conflicting  requirements:1. The  need  to  preserve  the  fundamental  memory  vectors  as  fixed  points  in  the  

state  space.2. The  desire  to  have  few  spurious  states.

Page 31: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

13.8  The  Cohen-­‐Grossberg Theorem  (1/2)

(c)  2017  Biointelligence  Lab,  SNU 31

, j = 1, 2, …, N1

( ) ( ) ( )N

j j j j j ji i ii

d u a u b u c udt

ϕ=

⎡ ⎤= −⎢ ⎥⎣ ⎦∑

01 1 1

1 ( ) ( ) ( ) ( )2

jN N N u

ji i i j j j ji j j

E c u u b dϕ ϕ λ ϕ λ λ= = =

′= −∑∑ ∑∫

ij jic c=

( ) 0j ja u ≥

(u ) ( ) 0j j j jj

d udu

ϕ ϕ′ = ≥

Symmetricity

Nonnegativity

Monotonicity

A  general  principle  for  assessing  the  stability  of  a  certain  class  of  neural  networks:

which  admits  a  Lyapunov function:

if  the  following  three  conditions hold:

Page 32: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 32

13.8  The  Cohen-­‐Grossberg Theorem  (2/2)

01 1 1

1 ( ) ( ) ( )2

jN N N v j

ji i i j j j ji j j j

vE w v v I v dv

Rϕ ϕ ϕ

= = =

⎛ ⎞′= − + −⎜ ⎟⎜ ⎟⎝ ⎠

∑∑ ∑∫𝑑𝐸𝑑𝑡

≤ 0

Cohen–Grossberg Theorem

, j = 1, 2, …, N1

( ) ( ) ( )N

j j j j j ji i ii

d u a u b u c udt

ϕ=

⎡ ⎤= −⎢ ⎥⎣ ⎦∑

( ) ( ) ( ) ,1

= 1, 2, ..., N

j jj ji i j

ij

dv t v tC w x t I j N

dt R =

= − + +∑

Note:

Page 33: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 33

Figure  13.15 (a)  Block  diagram  of  the  brain-­‐state-­‐in-­‐a-­‐box  (BSB)  model.  (b)  Signal-­‐flow  graph  of  the  linear  associator represented  by  the  weight  matrix  W.

13.9  Brain-­‐State-­‐in-­‐a-­‐Box  Model (1/4)

( ) ( ) ( )n n nβ= +y x Wx

( 1) ( ( ))n nϕ+ =x y

1 if ( ) 1( 1) ( ( )) ( ) if 1 ( ) 1

1 if ( ) 1

j

j j i i

i

y nx n y n y n y n

y nϕ

+ > +⎧⎪+ = = − ≤ ≤ +⎨⎪ − < −⎩

Page 34: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 34

BSB  ModelFigure  13.16 Piecewise-­‐linear  activation  function  used  in  the  BSB  model.

13.9  Brain-­‐State-­‐in-­‐a-­‐Box  Model  (2/4)

1( 1) ( ) , 1, 2, ,

N

j ji ii

x n c x n j Nϕ=

⎛ ⎞+ = =⎜ ⎟⎝ ⎠∑ K

ji ji jic wδ β= +

1( ) ( ) ( ) , 1, 2, ,

N

j j ji ii

d x t x t c x t j Ndt

ϕ=

⎛ ⎞= − + =⎜ ⎟⎝ ⎠∑ K

1( ) ( )

N

j ji ii

x t c v t=

=∑1

( ) ( )N

j ji ii

v t c x t=

=∑

1( ) ( ) ( ( )), 1, 2, ,

N

j j ji ii

d v t v t c v t j Ndt

ϕ=

= − + =∑ K

Continuous  form

Equivalent  form

To  transform  this  into  the  additive  model,  we  introduce

Page 35: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

35

Lyapunov (Energy)  Function  of  BSB

13.9  Brain-­‐State-­‐in-­‐a-­‐Box  Model  (3/4)

1 12 2

N N

ji j ii j

E w x xβ β Τ

= =

= − = −∑∑ x Wx

01 1 1

1 ( ) ( ) ( )2

jN N N v

ji i ji j j

E c v v v v dvϕ ϕ ϕ= = =

′= − +∑∑ ∑∫

Dynamics  of  the  BSB  Model• It  can  be  demonstrated  that  the  BSB  model  is  a  gradient  descent  algorithm  that  

minimizes  the  energy  function  E.• The  equilibrium  states  of  the  BSB  model  are  defined  by  certain  corners  of  the  unit  

huypercube and  its  orgin.• For  every  corner  to  serve  as  a  possible   equilibrium  sate  of  BSB,  the  weight  matrix  W

should  be  diagonal  dominant,  which  means  that• For  an  equilibrium  state  to  be  stable,  i.e.  for  a  certain  corner  of  the  unit  hypercube  to  be  

a  fixed  point  attractor,  the  weight  matrix  W should  be  strongly  diagonal  dominant:

w for 1,2, ,jj iji j

w j N≠

≥ =∑ K

w + for 1,2, ,jj iji j

w j Nα≠

≥ =∑ K

Page 36: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

(c)  2017  Biointelligence  Lab,  SNU 36

Clustering

13.9  Brain-­‐State-­‐in-­‐a-­‐Box  Model  (4/4)

Figure  13.17 Illustrative  example  of  a  two-­‐neuron  BSB  model,  operating  under  four  different  initial  conditions:•  the  four  shaded  areas  of  the  figure  represent  the  model’s  basins  of  attraction;•  the  corresponding  trajectories  of  the  model  are  plotted   in  blue;•  the  four  corners,  where  the  trajectories  terminate,  are  printed  as  black  dots.

Page 37: Chapter(13.( NeurodynamicsChapter(13.(Neurodynamics Neural’Networks’and’Learning’Machines’ (Haykin) 2019Lecture(Notes(on(SelfAlearning(NeuralAlgorithms ByoungATak(Zhang Contents

Summary  and  Discussion

(c)  2017  BiointelligenceLab,  SNU 37

l Dynamic Systems• Stability, Liapunov functions• Attractors

l Neurodynamic Models• Additive model• Related model

l Hopfield Model (Discrete)• Recurrent network (associative memory)• Liapunov (energy) function• Content-addressable memory

l BSB Model• Liapunov function• Clustering