chapter ii figures

Upload: interferonsrini

Post on 30-May-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Chapter II Figures

    1/16

    Figure 2.1: IPTG induction of A- and B-crystallinLanes 1 & 2: Induction A-crystallin before and after addition of 1mM IPTG.Lanes 3

    & 4: Induction B-crystallin before and after addition of 1mM IPTG.Lane 5:

    Molecular weight marker.

    1

    21 kDa

    31 kDa

    45 kDa

    66 kDa

    116 & 97 kDa

    200 kDa

    14 kDa

    2 3 4 51

    21 kDa

    31 kDa

    45 kDa

    66 kDa

    116 & 97 kDa

    200 kDa

    14 kDa

    2 3 4 5

  • 8/14/2019 Chapter II Figures

    2/16

    Figure 2.2: Purification profiles of recombinant A- and B-crystallins.panel A & B: elution profile on DEAE-sephacel (ion-exchange). panel C & D: elution

    profile on sephacryl-S300 (gel filteration). Peaks corresponding to A- and B-crystallin are indicated by arrows.

  • 8/14/2019 Chapter II Figures

    3/16

    Figure 2.3: Purification of A- and B-crystallin.Panel A & B: Fractions of A-crystallin from DEAE-sephacel (ion-exchange) and

    sephacryl-S300 (gel filtration) respectively. Panel C & D: Fractions of B-crystallinfromDEAE-Sephacel (ion-exchange) and Sephacryl-S300 (gel filtration) respectively.

    Fractions corresponding to the A- and B-crystallin (subunit mass - 20 kDa) is

    indicated by arrows.

    A BAA BB

    C DCC DD

  • 8/14/2019 Chapter II Figures

    4/16

    Figure 2.4: Sephacryl-S300 (gel filteration) profile of the goat eye lens homogenate

    Figure 2.5: Purified crystallins.

    Lane 1: A- ,Lane 2: B-,Lane 3: goat L-crystallin andLane 4: molecular weightmarker

    Volume (ml)

    0 20 40 60 80 100 120 140 160

    A280nm

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    -crystallin

    H-crystallin L-crystallin

    -crystallin

    116 & 97 kDa

    21 kDa

    31 kDa

    45 kDa

    66 kDa

    200 kDa

    14 kDa

    1 2 3 4

    116 & 97 kDa

    21 kDa

    31 kDa

    45 kDa

    66 kDa

    200 kDa

    14 kDa

    1 2 3 4

  • 8/14/2019 Chapter II Figures

    5/16

    Table 2.1: Client proteins and assay conditions employed for assessing the

    chaperone-like activity (CLA) of -crystallin variants.

    S.

    No.

    Clientpro

    tein

    Chaperone

    (mg/ml)

    Client/Chaper

    one

    Ratio(w/w)

    Assaycondit

    ions

    1 Goat L-crystallin

    (0.2 mg/ml)

    0.05 4.0 Heat - aggregation at 60oC,

    50mM sodium phosphate bufferpH 7.2, containing 100 mMNaCl

    2 Goat -crystallin(0.25 mg/ml)

    0.02 12.5 Heat - aggregation at 60oC,50mM sodium phosphate buffer

    pH 7.2, containing 100 mM

    NaCl

    3 Carbonic anhydrase

    (0.2 mg/ml)

    0.2 1.0 Heat - aggregation at 60oC,

    50mM sodium phosphate buffer

    pH 7.2, containing 100 mMNaCl

    4 Citrate synthase(0.05 mg/ml)

    0.05 1.0 Heat - aggregation at 60oC,40mM HEPES-KOH buffer pH

    7.9

    5 Citrate synthase

    (0.05 mg/ml)

    0.05 1.0 Heat - aggregation at 45oC,

    40mM HEPES-KOH buffer pH

    7.9

    6 Insulin

    (0.4 mg/ml)

    0.5 0.8 DTT - aggregation at 37oC,

    50mM sodium phosphate buffer

    pH 7.2, containing 100 mMNaCl

    7 Goat -crystallin

    (0.25 mg/ml)

    0.15 1.6 UV - aggregation at 25 oC,

    50mM sodium phosphate bufferpH 7.2

    8 Glucose-6

    phosphate

    dehydrogenase(0.5 U/ml)

    0.1 200 Heat - inactivation at 42oC,

    100 mM Tris-cl, pH 7.0

  • 8/14/2019 Chapter II Figures

    6/16

  • 8/14/2019 Chapter II Figures

    7/16

    Figure 2.6: Formation of recombinant -crystallin heteropolymers.Immunoprecipitation (IP) followed by Western blotting (WB) of -crystallin

    heteropolymers with A to B 3:1 & 1:3 ratio were done using A or B specificantibodies.

    3:1 1:3 3:1 1:3

    29 kDa

    20 kDa

    IP : A A B BWB : B B A A

  • 8/14/2019 Chapter II Figures

    8/16

    Figure 2.7: Chaperone-like activity (CLA) of -crystallin variants. Panel A: Representative graph of chaperone activity of -crystallin variants in

    suppressing heat-induced aggregation of L-crystallin at 60oC. Panel B: Relativechaperone activity (percentage protection) was determined considering aggregation of

    L-crystallin in the absence of -crystallins as 100%. Data are mean SD (n=4).

    Variations in superscripts indicate significance (P

  • 8/14/2019 Chapter II Figures

    9/16

    Figure 2.8: Relative chaperone activity of -crystallin variants as assessed bysuppression of heat-induced aggregation of citrate synthase at 60 oC (Panel A) and 45oC

    (Panel B). Increased chaperone activity upon preheat treatment with heat-induced

    aggregation of citrate synthase assay 45oC (Panel C). Percentage increase in chaperone

    activity inPanel Cwas determined considering the activity of unheated -crystallin as100%. Data are mean SD (n=4). Variations in superscripts indicate significance

    (P

  • 8/14/2019 Chapter II Figures

    10/16

    Figure 2.9: Relative chaperone activity of -crystallin variants with heat-inducedaggregation of -crystallin at 60oC ( Panel A) and UV-induced aggregation of -crystallin at 25oC (Panel B). Data are mean SD (n=4). Variations in superscripts

    indicate significance (P

  • 8/14/2019 Chapter II Figures

    11/16

    Figure 2.10: The chaperone activity of -crystallin variants as assessed by thesuppression of heat-induced aggregation of carbonic anhydrase at 60oC. Data are mean SD (n=4). Variations in superscripts indicate significance (P

  • 8/14/2019 Chapter II Figures

    12/16

    Figure 2.11: Relative chaperone activity of -crystallin variants with DTT-inducedaggregation of insulin at 37oC. Data are mean SD (n=4). Variations in superscriptsindicate significance (P

  • 8/14/2019 Chapter II Figures

    13/16

    Figure 2.12: The chaperone activity of -crystallins variants as assessed by thesuppression of heat-induced inactivation of glucose-6-phosphate dehydrogenase(G6PD) at 42oC. G6PD assay was performed by measuring the increase in absorbance at

    340nm due to the reduction of NADP. Data represent percentage protection and are

    mean SD (n=4).

    %R

    esidualactivity

    0

    10

    20

    30

    40

    50

    A B L 3:1 1:3 1:1

  • 8/14/2019 Chapter II Figures

    14/16

    Figure 2.13: Far-UV CD profile (secondary structure) of -crystallin variants

    Table 2.2: Percentage distribution of secondary-structural elements of unheated

    (native) and pre-heated -crystallin variants.Secondary-structural content among native and pre-heated -crystallin variants wasnot significant (P>0.05) by MannWhitney test. Significance in difference (P

  • 8/14/2019 Chapter II Figures

    15/16

    Figure 2.14: Tryptophan fluorescence of -crystallin variants.

    Wavelength (nm)

    300 320 340 360 380 400

    Flu

    orescence

    intensity

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    4

    1

    2

    3

    5

    6 1 : A2 : L3 : 1:14 : 3:1

    5 : 1:3

    6 : B

  • 8/14/2019 Chapter II Figures

    16/16

    Figure 2.15: Near-UV CD profile (tertiary structure) ofpanel A: native -crystallin

    variants andpanel B: comparative profile -crystallin variants of preheated whichhave shown an alteration in tertiary structure upon preheating.

    W a v e l e n g t h ( n m )

    2 6 0 2 8 0 3 0 0 3 2 0 3 4 0

    MolarEllipticity

    - 6 0 0 0

    - 4 0 0 0

    - 2 0 0 0

    0

    2 0 0 0

    4 0 0 0

    6 0 0 0

    1

    2

    3

    4

    5

    6

    1 - A2 - 3 : 13 - 1 : 1

    4 - L5 - 1 : 36 - B

    A

    W a v e l e n g t h ( n m )

    2 6 0 2 8 0 3 0 0 3 2 0 3 4 0

    MolarEllipticity

    - 6 0 0 0

    - 4 0 0 0

    - 2 0 0 0

    0

    2 0 0 0

    4 0 0 0

    1

    2

    3

    4

    1 : A

    2 : p r H tA3 : 3 : 14 : p r H t 3 : 1

    B

    W a v e l e n g t h ( n m )

    2 6 0 2 8 0 3 0 0 3 2 0 3 4 0

    MolarEllipticity

    - 6 0 0 0

    - 4 0 0 0

    - 2 0 0 0

    0

    2 0 0 0

    4 0 0 0

    6 0 0 0

    1

    2

    3

    4

    5

    6

    1 - A2 - 3 : 13 - 1 : 1

    4 - L5 - 1 : 36 - B

    A

    W a v e l e n g t h ( n m )

    2 6 0 2 8 0 3 0 0 3 2 0 3 4 0

    MolarEllipticity

    - 6 0 0 0

    - 4 0 0 0

    - 2 0 0 0

    0

    2 0 0 0

    4 0 0 0

    1

    2

    3

    4

    1 : A

    2 : p r H tA3 : 3 : 14 : p r H t 3 : 1

    B

    W a v e le n g t h ( n m )

    2 6 0 2 8 0 3 0 0 3 2 0 3 4 0

    MolarEllipticity

    - 6 0 0 0

    - 4 0 0 0

    - 2 0 0 0

    0

    2 0 0 0

    4 0 0 0

    6 0 0 0

    1

    2

    3

    4

    5

    6

    1 - A2 - 3 : 13 - 1 : 14 - L5 - 1 : 36 - B

    A

    W a v e l e n g t h ( n m )

    2 6 0 2 8 0 3 0 0 3 2 0 3 4 0

    MolarEllipticity

    - 6 0 0 0

    - 4 0 0 0

    - 2 0 0 0

    0

    2 0 0 0

    4 0 0 0

    1

    2

    3

    4

    1 : A

    2 : p r H tA3 : 3 : 1

    4 : p r H t 3 : 1

    B

    W a v e le n g t h ( n m )

    2 6 0 2 8 0 3 0 0 3 2 0 3 4 0

    MolarEllipticity

    - 6 0 0 0

    - 4 0 0 0

    - 2 0 0 0

    0

    2 0 0 0

    4 0 0 0

    6 0 0 0

    1

    2

    3

    4

    5

    6

    1 - A2 - 3 : 13 - 1 : 14 - L5 - 1 : 36 - B

    A

    W a v e l e n g t h ( n m )

    2 6 0 2 8 0 3 0 0 3 2 0 3 4 0

    MolarEllipticity

    - 6 0 0 0

    - 4 0 0 0

    - 2 0 0 0

    0

    2 0 0 0

    4 0 0 0

    1

    2

    3

    4

    1 : A

    2 : p r H tA3 : 3 : 1

    4 : p r H t 3 : 1

    B