chapter 7 jan13

Upload: kumutha

Post on 03-Jun-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Chapter 7 Jan13

    1/98

    1

    CHAPTER 7

    Periodic Properties of theElements

  • 8/12/2019 Chapter 7 Jan13

    2/98

    2

    CONTENT

    7.1 Development of the Periodic Table7.2 Effective nuclear charge and the Sizes

    of Atoms7.3 Ionization Energy7.4 Electron Affinities7.5 Metals, Nonmetals, and Metalloids7.6 Group Trends for the Active Metals7.7 Group Trends for Selected Nonmetals

  • 8/12/2019 Chapter 7 Jan13

    3/98

    3

    Learning outcomes

    Able to relate effective nuclearchargeto

    size, ionization energy and electron affinity

    of elements in periodic table

    To differentiate metal, non-metal and

    metalloid

  • 8/12/2019 Chapter 7 Jan13

    4/98

    4

    7.1 Development of ThePeriodic Table

    The periodic table was first developed byMendeleev and Meyer on the basis of the

    similarity in properties and reactivitiesexhibited by certain elements.

    Elements in the same column of the periodic

    table have the same number of electrons intheir valence orbitals.

  • 8/12/2019 Chapter 7 Jan13

    5/98

    5

    Cont: 7.1 Development of ThePeriodic Table

    Group 1A: Group 6A:

    3Li - [He] 2s 1 8O - [He] 2s 22p 411Na - [Ne] 3s 1 16S - [Ne] 3s 23p 419K - [Ar] 4s 137

    Rb - [Kr] 5s1

  • 8/12/2019 Chapter 7 Jan13

    6/98

    6

    7.2 Effective Nuclear Chargeand Sizes of Atoms

    7.2.1 Effective Nuclear Charge

    The net positive charge experienced by anelectron on a many-electron atom.

    Not the same as the charge on the nucleus

    because of the effect of the inner electrons.

    The electron is attracted to the nucleus, but

    repelled by the inner-shell electrons that shield

    or screen it from the full nuclear charge.

  • 8/12/2019 Chapter 7 Jan13

    7/98

  • 8/12/2019 Chapter 7 Jan13

    8/98

    8

    The principal quantum number, n, ofthe valence orbitals of the atoms

    changes from top to bottom of thePeriodic Table.

    All orbitals with the same value of nare referred to as a shell.

    7.2.2 Electron Shells in Atoms

  • 8/12/2019 Chapter 7 Jan13

    9/98

  • 8/12/2019 Chapter 7 Jan13

    10/98

    10

    Cont:

  • 8/12/2019 Chapter 7 Jan13

    11/98

    11

    The maxima(peaks) appear based on electronshaving the same quantum number, n.

    n= 1 - 1stpeak (1s)n= 2 - 2ndpeak (2s2p)

    n= 3 - 3rdpeak (3s3p3d)

    Cont: 7.2.2 Electron Shells in Atoms

  • 8/12/2019 Chapter 7 Jan13

    12/98

    12

    From the graph:

    1selectrons for Helium show a maximum inradial electron density - 0.3

    1selectrons for Argon - 0.05 only

    Cont: 7.2.2 Electron Shells in Atoms

  • 8/12/2019 Chapter 7 Jan13

    13/98

    13

    Question

    Why is the 1sshell in Argon so much

    closer to the nucleus than the 1sshell inHelium?

  • 8/12/2019 Chapter 7 Jan13

    14/98

  • 8/12/2019 Chapter 7 Jan13

    15/98

  • 8/12/2019 Chapter 7 Jan13

    16/98

    16

    Cont: 7.2.3 Atomic Sizes

    1. Within each column (group) the atomicradius (and also the size of orbitals) tends

    to increasewhen nincreases.(a) n , orbital size(b) n , Zeffremains relatively constant

    n ,Atomic radius

  • 8/12/2019 Chapter 7 Jan13

    17/98

  • 8/12/2019 Chapter 7 Jan13

    18/98

    18

    Cont: 7.2.3 Atomic Sizes

    2. Within each row(period), the atomicradius decreaseas we move from left to

    right.(a) n constant, orbital sizeconstant(b) number of core electrons stay the

    same , nuclear charge (Z) acting on theelectron valence increaseZeff , Atomic radius

  • 8/12/2019 Chapter 7 Jan13

    19/98

    19

    Cont: 7.2.3 Atomic Sizes

    same nZeffincreases

    B C N O F

    0.88 0.77 0.75 0.73 0.71

    radius decreases

  • 8/12/2019 Chapter 7 Jan13

    20/98

    20

    Cont:

  • 8/12/2019 Chapter 7 Jan13

    21/98

    21

    Cont: 7.2.3 Atomic Sizes

    (Z = 3) Li 1s 22s 1 (1.52 )(Z = 4) Be 1s 22s 2 (1.13 )

    For Li, 1s2electrons shield the outer 2s1electron from the 3+ (Z value) charge nucleus.The outer electron 2s1electron experiencesZeffof slightly more than 1+.

  • 8/12/2019 Chapter 7 Jan13

    22/98

  • 8/12/2019 Chapter 7 Jan13

    23/98

    23

    7.3 Ionization Energy

    Ionization is a process of removing an electronfrom an atom or ion.

    Ionization energy of an atom or ion - theminimumenergy required to remove an electronfrom the ground state of the isolated gaseousatom or ion.

    The ease in removing electrons from an atom isan important indicator of the atoms chemicalbehaviour.

  • 8/12/2019 Chapter 7 Jan13

    24/98

    24

    Cont: 7.3 Ionization Energy

    First ionization energy, I1(or IE1)-energy needed to remove the firstelectron from a neutral gaseous atom.

    Na (g) Na+ (g) + e-

  • 8/12/2019 Chapter 7 Jan13

    25/98

    25

    Cont: 7.3 Ionization Energy

    Second ionization energy, I2(or IE2) - energy

    required to remove the secondelectron from agaseous ion.Na+(g) Na2+(g) + e-

    Ionization energies I1, I2are always positive(endothermic) where energy is absorbed fromthe surrounding.

  • 8/12/2019 Chapter 7 Jan13

    26/98

    26

    Cont:

  • 8/12/2019 Chapter 7 Jan13

    27/98

    27

    Cont: 7.3 Ionization Energy

    The greaterthe ionization energy, the moredifficultto remove an electron.

    Magnitude I1< I2 < I3Reason:The positive nuclear charge remainsthe same, the number of electrons (producerepulsive interactions) decreases.

  • 8/12/2019 Chapter 7 Jan13

    28/98

    28

    Cont:

  • 8/12/2019 Chapter 7 Jan13

    29/98

  • 8/12/2019 Chapter 7 Jan13

    30/98

    30

    Cont: 7.3 Ionization Energy

    Ionization energy increases from:I1 I2 I3 I4 I5(kJ/mol)

    786 - 3230 4360 161003s 2 3p 2 3s 2 3p 1 3s 2 3s 1 1s 2 2s 2 2p 6

    I1I

    4: 786 kJ/mol 4360 kJ/mol

    Loss of the four electrons in the 3sand 3psubshells.

  • 8/12/2019 Chapter 7 Jan13

    31/98

    31

    Cont: 7.3 Ionization Energy

    I4I5: 4360 kJ/mol 16100 kJ/molThe inner shell 2p electron (core

    electron) is much closer to the nucleus -greater Zeff.

    Large increase in ionization energy whenelectrons are removed from its noble gascore.

  • 8/12/2019 Chapter 7 Jan13

    32/98

    32

    Cont: 7.3 Ionization Energy

    The outermost electrons take part in:a) chemical bonding

    b) reaction

    The core (noble-gas core) tightly boundto the nucleus.

  • 8/12/2019 Chapter 7 Jan13

    33/98

  • 8/12/2019 Chapter 7 Jan13

    34/98

    34

    Cont: 7.3.1 Periodic Trends inIonization Energies

    3. Ionization energy of the transition

    elements increase slowly from left to right.

    4. The f -block elements show only a small

    variation in the values of I1.

  • 8/12/2019 Chapter 7 Jan13

    35/98

    35

    Cont: 7.3.1 Periodic Trends inIonization Energies

    Attraction of electrons to the nucleusdepends on:

    The effective nuclear charge (Zeff)The average distance of the electron from

    the nucleus (atomic radius).

    Attraction , Ionization energy

  • 8/12/2019 Chapter 7 Jan13

    36/98

    36

    Cont: 7.3.1 Periodic Trends inIonization Energies

    Move across a row:Increase in Zeffand decrease in

    atomic radius.

    Attraction , Ionization energy

  • 8/12/2019 Chapter 7 Jan13

    37/98

  • 8/12/2019 Chapter 7 Jan13

    38/98

    38

    Cont: 7.3.1 Periodic Trends inIonization Energies

    Irregularities:

    a) Decrease in ionization energy from:

    Beryllium [He] 2s 2 Boron [He] 2s 22p1

    o The electrons in the filled 2sorbital

    shielding the electrons in 2p.o Zeff decreases from 2+ 1+.

  • 8/12/2019 Chapter 7 Jan13

    39/98

    39

    Cont: 7.3.1 Periodic Trends inIonization Energies

    b) Decrease in ionization energy from:Nitrogen [He] 2s 22p 3Oxygen [He] 2s 22p 4

    o Due to repulsion of paired electron in thep4configuration.

  • 8/12/2019 Chapter 7 Jan13

    40/98

    40

    Example 1

    Arrange the following atoms in order of

    increasing first ionization energy:

    Ne, Na, P, Ar, K

  • 8/12/2019 Chapter 7 Jan13

    41/98

    41

    Example 1 (Answer)

    Use trends to predict.1. Na, P and Ar are in the same row.

    exhibit the order of Na

  • 8/12/2019 Chapter 7 Jan13

    42/98

    42

    Example 1 (Answer)

    3. K below Na.

    I1K is less than Na.

    K < Na < P < Ar < Ne

  • 8/12/2019 Chapter 7 Jan13

    43/98

    43

    7.4 Electron Affinities

    Measure of attraction towards electron or theease of an atom to gain electron.

    The energy change(E) that occurs when an

    electron is added to a gaseous atom is calledthe electron affinity.

    Cl(g)+ e-

    Cl-(g)

    [Ne] 3s23p5 [Ne] 3s23p6

    E(energy) = EA1= -349 kJ/mol

  • 8/12/2019 Chapter 7 Jan13

    44/98

    44

    Cont: 7.4 Electron Affinities

    Energy is released when an electron is added.The electron affinity of Cl is -349 kJ/mol.The greater the attraction, the more negative

    the electron affinity will be.EA1= -x

    the greater the affinitythe more negative the valueeasier to gain electron

  • 8/12/2019 Chapter 7 Jan13

    45/98

    45

    Cont: 7.4 Electron Affinities

    Halogen (F, Cl, Br, I) - by gaining an electron, ahalogen atom forms a stable negative ion that has anoble gas configuration.

    Noble gas configuration: Ne : 1s22s22p6Ar : 1s22s22p63s23p6

    Cl(g) + e- Cl-(g)[Ne]3s23p5 [Ne] 3s23p6 or [Ar]

    psubshell (orbital 3p) is filled to form a stablenegative ion similar to Ar.

  • 8/12/2019 Chapter 7 Jan13

    46/98

    46

    Cont: 7.4 Electron Affinities

    Positive Value of the Electron Affinity

    The noble gases posses positive values of

    electron affinity.The anion is higher in energy than the atom.

    Ar(g) + e- Ar-(g) EA1 > 0

    [Ne] 3s2

    3p6

    [Ne] 3s2

    3p6

    4s1

    As EA1 > 0, the Ar-is not stable and will not form.

  • 8/12/2019 Chapter 7 Jan13

    47/98

    47

    Cont: 7.4 Electron Affinities

    The addition of an electron to a noble gas

    requires the electron to reside in a new, higherenergy subshell or in 4sorbital.

    Occupying a higher-energy subshell is

    unfavourable.

  • 8/12/2019 Chapter 7 Jan13

    48/98

    48

    Cont: 7.4 Electron Affinities

    Generally, electron affinity becomesincreasingly negative from left to right i.e fromalkali metals to halogens.

    Electron affinities of Be : [He] 2s2andMg: [Ne] 3s2 are positive. The added electron

    would reside in an emptypsubshell that ishigher in energy (Hunds first rule).

  • 8/12/2019 Chapter 7 Jan13

    49/98

    49

    Cont: 7.4 Electron Affinities

    Group 5A

    N, P, As, Sb

    N [He] 2s 22p 3 0

    P [Ne] 3s2

    3p3

    -72 kJ/molAs [Ar] 4s 23d 104p 3 -78 kJ/molSb [Kr] 5s 24d 105p 3 -103 kJ/mol

  • 8/12/2019 Chapter 7 Jan13

    50/98

    50

    Cont: 7.4 Electron Affinities

    These elements have half-filledpsubshells.The added electron must be placed in an orbitalthat is already occupied - resulting largerelectron-electron repulsion (Hunds first rule).

    As we proceed from top to bottom, the average

    distance of the added electron from thenucleus increases. The electron-nucleusattraction decreases.

  • 8/12/2019 Chapter 7 Jan13

    51/98

    51

    Cont: 7.4 Electron Affinities

    N: [He] 2s22p3 Sb : [Kr] 5s 24d 105p 3

    strong electron-electron repulsion

    lower electron-electron repulsion

    will not accept electron

    EA1> 0 EA1= -103 kJ/mol

  • 8/12/2019 Chapter 7 Jan13

    52/98

    52

    Cont:

    g

  • 8/12/2019 Chapter 7 Jan13

    53/98

    53

    Cont: 7.4 Electron Affinities

    You can explain:F [He] 2s 22p 5 - 328 kJ/mol

    Br [Ar] 4s 23d1 04p 5 - 325 kJ/mol

    I [Kr] 5s 24d 105p 5 - 295 kJ/mol

    5p 5- away from nucleus, therefore less nucleusattraction.

  • 8/12/2019 Chapter 7 Jan13

    54/98

    54

    7.5 Metals, Nonmetals andMetalloids

    Properties of individual atoms:

    1. Atomic radii2. Ionization energies3. Electron affinities

  • 8/12/2019 Chapter 7 Jan13

    55/98

    55

    7.5.1 Metals

    Properties:Metals conduct heat and electricity.

    They are malleable - can be pounded into thinsheets.Ductile - can be drawn into wire.

    Shiny lusterAll are solids (except Hg)High melting point (except Cs, Ga)

  • 8/12/2019 Chapter 7 Jan13

    56/98

  • 8/12/2019 Chapter 7 Jan13

    57/98

    57

    Cont: 7.5.1 Metals

    Charge:

    Alkali metals 1+.Alkali earth metal 2+.Transition metals ions 2+, 1+, 3+.

    Able to form more than one positive ion.

  • 8/12/2019 Chapter 7 Jan13

    58/98

    58

    Cont: 7.5.1 Metals

    Basic oxide:

    Most metal oxides are basic oxides. Theydissolve in water, react to form metalhydroxides.Metal Oxide + Water Metal HydroxideNa2O(s) + H2O(l) 2NaOH(aq)CaO(s) + H2O(l) Ca(OH)2(aq)

  • 8/12/2019 Chapter 7 Jan13

    59/98

    59

    Cont: 7.5.1 Metals

    React with acids to form salts and water:

    Metal Oxide + Acid

    Salt + Water

    MgO(s) + 2HCl(aq) MgCl2(aq) + H2O(l)

    NiO(s) + H2SO4(aq)

    NiSO4(aq) + H2O(l)Na2O(s)+ H2SO4(aq) Na2SO4(aq) + H2O(l)

  • 8/12/2019 Chapter 7 Jan13

    60/98

  • 8/12/2019 Chapter 7 Jan13

    61/98

    61

    Example 2 (Answer)

    a) Aluminium has a 3+ charge,Al3+.The oxide ion is O2-

    Al2O3

    b) Metal oxides react with acids to form salts

    and water.Al2O3(s) + 6HNO3(aq)2Al(NO3)3(aq)+ 3H2O(l)

  • 8/12/2019 Chapter 7 Jan13

    62/98

    62

    7.5.2 Nonmetals

    Not lustrous (not shiny).Poor conductors of heat and electricity.Melting points - generally lower than those of

    metals (except diamond : 3570 C).Seven nonmetals exist as diatomic molecules.

    o H2,N2, O2, F2, Cl2- gases.

    o Br2 - liquido I2 - volatile solid

  • 8/12/2019 Chapter 7 Jan13

    63/98

    63

    Cont: 7.5.2 Nonmetals

    o Nonmetals, reacting with metals, gain electronsand become anions.

    Metal + Nonmetal Salt

    2Al(s)+ 3Br2(l) 2AlBr3(s)

  • 8/12/2019 Chapter 7 Jan13

    64/98

    64

    Cont: 7.5.2 Nonmetals

    Nonmetals gain electrons to fill their outer psubshell giving a noble-gas electronconfiguration.

    Most nonmetal oxidesare acidic oxides(molecular substance).Those dissolve in waterreact to formacids.

    Example:Selenium dioxide - SeO2Tetraphosphorus hexoxide - P4O6(s)Tetraphosphorus decoxide - P4O10(s)

  • 8/12/2019 Chapter 7 Jan13

    65/98

  • 8/12/2019 Chapter 7 Jan13

    66/98

    66

    7.5.3 Metalloids

    Metalloids have properties intermediatebetween those of metals and nonmetals.

    They may have some characteristic metallic

    properties but lack others.Example: silicon looks like a metal but it is

    brittle rather than malleable and a muchpoorer conductor of heat and electricity than

    metals.Several metalloids are semiconductors ( most

    notably silicon).

  • 8/12/2019 Chapter 7 Jan13

    67/98

  • 8/12/2019 Chapter 7 Jan13

    68/98

    68

    Cont: 7.6.1 Group 1A: TheAlkali Metals

    As a result, the alkali metals are all veryreactive, readily losing one electron to formions with a 1+ charge:

    M M+ + e-

    *M represents any one of the alkali metals

    The alkali metals are the most active metalsand thus exist in nature only as compounds.

    C 7 6 1 G 1A Th

  • 8/12/2019 Chapter 7 Jan13

    69/98

    69

    Cont: 7.6.1 Group 1A: The

    Alkali Metals

    Electrolysis is the process used to obtain metalsfrom compounds.

    The chemistry of the alkali metals is dominated by

    the formation of 1+ cations.The metals combine directly with most nonmetals.Examples:

    2M(s)+ H2(g)2MH(s)2M(s)+ S(s)M2S(s)2M (s) + Cl2(g)2MCl(s)

  • 8/12/2019 Chapter 7 Jan13

    70/98

    70

    Cont: 7.6.1 Group 1A: TheAlkali Metals

    The hydrides of the alkali metals (LiH, NaH,and so forth): hydrogen is present as H-, calledthe hydride ion.

    Note the difference between hydride ion H-and hydrogen ion H+.

    The alkali metals react vigorously with water to

    produce hydrogen gas and solutions of alkalimetal hydroxides.2M(s) + 2H2O(l) 2MOH(aq) + H2(g)

    h

  • 8/12/2019 Chapter 7 Jan13

    71/98

    71

    Cont: 7.6.1 Group 1A: TheAlkali Metals

    This reaction is very exothermic (heat isreleased).

    This reaction is most violent for the heaviermembers of the group - weaker hold on the

    single outer-shell electron.

  • 8/12/2019 Chapter 7 Jan13

    72/98

    C 7 6 1 G 1A Th

  • 8/12/2019 Chapter 7 Jan13

    73/98

    73

    Cont: 7.6.1 Group 1A: TheAlkali Metals

    Potassium, rubidium, and cesium also formcompounds that contain the O2-ion, calledsuperoxides.

    K(s)+ O2(g)KO2(s) potassium superoxide

    As the alkali metals are extremely reactive

    toward water and oxygen, they are usuallystored in hydrocarbon, such as kerosene ormineral oil.

    C t 7 6 1 G 1A Th

  • 8/12/2019 Chapter 7 Jan13

    74/98

    74

    Cont: 7.6.1 Group 1A: TheAlkali Metals

    Alkali metals salts and their aqueous solutionsare colourless unless they have a coloured anioneg yellow CrO42-.

    When alkali metal compounds are placed in a

    flame, they emit characteristic colours.(Li: red,Na: yellow,K: blue)

    7 6 2 G 2A Th Alk li

  • 8/12/2019 Chapter 7 Jan13

    75/98

    75

    7.6.2 Group 2A: The AlkalineEarth Metals

    The elements are all solids with typical metallicproperties.

    Compare to elements in Group 1A (alkalinemetals), alkaline earth metals are harder, moredense and melt at higher temperatures.

    Their I1

    are low, but not as low as those ofalkali metals.

    Less reactive than alkali metals.

    C t 7 6 2 G 2A Th

  • 8/12/2019 Chapter 7 Jan13

    76/98

    76

    Cont: 7.6.2 Group 2A: TheAlkaline Earth Metals

    Be and Mg are the least reactive.Be does not react with water or steam.

    Mg does not react with water but does reactwith steam to form Magnesium oxide andhydrogen.Mg(s)+ H2O (g)MgO (s)+ H2(g)

    The other elements react readily with water(less reactive than alkali metals).Ca (s)+ 2H2O (s) Ca(OH) 2(aq)+ H2(g)

    C t 7 6 2 G 2A Th

  • 8/12/2019 Chapter 7 Jan13

    77/98

    77

    Cont: 7.6.2 Group 2A: TheAlkaline Earth Metals

    Pattern in the reactivity of the alkaline earthmetals - the tendency to lose their two outer selectrons and form 2+ ions.

    Example:Mg(s)+ Cl2(g) MgCl2(s)2Mg(s)+ O2(g) 2MgO(s)

    Like the 1+ ions of the alkali metals, the 2+ ionsof the alkaline earth elements have a noble gasconfiguration.

  • 8/12/2019 Chapter 7 Jan13

    78/98

    78

    cont

    r

  • 8/12/2019 Chapter 7 Jan13

    79/98

    7 7 G T d f S l t d

  • 8/12/2019 Chapter 7 Jan13

    80/98

    80

    7.7 Group Trends for SelectedNonmetals

    7.7.1 HydrogenThe first element in the periodic table. 1s1electron configuration. Placed above alkali

    metals.Unique element, nonmetal, exists as diatomic gas,

    H2(g), under most conditions.The ionization energy of hydrogen, 1312 kJ/mol, is

    markedly higher than that of the active metals.Reason: the complete absence of nuclear shielding

    of its sole electron.

  • 8/12/2019 Chapter 7 Jan13

    81/98

    81

    Cont: 7.7.1 Hydrogen

    React with other nonmetals to form molecularcompounds.

    2H2(g)+ O2(g)2H2O(l)

    Hydrogen reacts with other active metals to

    form solid metal hydrides, contain the hydrideion, H-.

    7 7 2 Group 6A: The Oxygen

  • 8/12/2019 Chapter 7 Jan13

    82/98

    82

    7.7.2 Group 6A: The OxygenGroup

    Increase in metallic character as moving downthe group.

    Oxygen is colourless gas, the rest are solids.Oxygen, sulfur, and selenium are typical

    nonmetals.

    Tellurium is a metalloid.Polonium is a metal.

    OS

    Se

    Te

    Po

    Cont: 7 7 2 Group 6A: The

  • 8/12/2019 Chapter 7 Jan13

    83/98

    83

    Cont: 7.7.2 Group 6A: TheOxygen Group

    Oxygen occurs in two forms, O2and O3.O2- dioxygen (normally called as oxygen)

    O3ozone

    Ozone - toxic and pungent gas. It is alsoformed from O2in electrical discharge, eg

    lightning storm.3O2 (g) 2O3(g)

    Cont: 7 7 2 Group 6A: The

  • 8/12/2019 Chapter 7 Jan13

    84/98

    84

    Cont: 7.7.2 Group 6A: TheOxygen Group

    Oxygen has a great tendency to attractelectrons from other elements ( to oxidisethem).

    Form oxide, O2-ion. This ion has a noble gasconfiguration and thus stable.

    Peroxide, O22-and superoxide, O2-ions often

    react with themselves to produce O2-

    and O2.Eg.: 2H2O2(aq) 2H2O(l) + O2(g)

    Cont: 7 7 2 Group 6A: The

  • 8/12/2019 Chapter 7 Jan13

    85/98

    85

    Cont: 7.7.2 Group 6A: TheOxygen Group

    After oxygen, the most important element issulfur.

    The most common and stable is the yellow solid,S8.

    Sulfur is written simply as S(s).Sulfur has the tendency to gain electron

    forming sulfides, S2-.Eg.: 2Na(s) + S(s) Na2S(s)

    Cont: 7 7 2 Group 6A: The

  • 8/12/2019 Chapter 7 Jan13

    86/98

    86

    Con t: 7.7.2 Group 6A: TheOxygen Group

    Most sulfur in nature is present as metalsulfides.

    The chemistry of sulfur is more complex thanthat of oxygen.

    Sulfur can be burned in oxygen to producesulfur dioxide, the main pollutant.

  • 8/12/2019 Chapter 7 Jan13

    87/98

    87

    7.7.3 Group 7A: The Halogens

    As we move from group 6A to 7A, thenonmetallic behaviour of the elements

    increases.All the halogens are typical nonmetals (exceptAt: metalloid).

    Melting points and boiling points increase withincreasing atomic number.

    Cont: 7 7 3 Group 7A: The

  • 8/12/2019 Chapter 7 Jan13

    88/98

    88

    Con t: 7.7.3 Group 7A: TheHalogens

    Fluorineand chlorine- gas at roomtemperature.

    Bromine - liquidIodine solid(sublime easily)Each element consists of diatomic molecules:

    F2, Cl2, Br2, and I2.

    F2- pale yellow gas; Cl2(g)-yellow-greencolour;Br2(l)- reddish brown; I2(s)- greyish black.

    Cont: 7 7 3 Group 7A: The

  • 8/12/2019 Chapter 7 Jan13

    89/98

    89

    Con t: 7.7.3 Group 7A: TheHalogens

    The halogens have highly negative electronaffinities.

    The chemistry of halogens are dominated bytheir tendency to gain electrons from other

    elements to form halide ions:X2 + 2e- 2X-

    Cont: 7 7 3 Group 7A: The

  • 8/12/2019 Chapter 7 Jan13

    90/98

    90

    Con t: 7.7.3 Group 7A: TheHalogens

    Fluorine and chlorine are more reactive thanbromine and iodine.

    2Na(s) + F2(g) 2NaF(s)2H2O(l)+ 2F2(g) 4HF(aq)+ O2(g)

    Fluorine gas is difficult and dangerous to beused in laboratory because it is very reactive.

  • 8/12/2019 Chapter 7 Jan13

    91/98

    Cont: 7 7 3 Group 7A: The

  • 8/12/2019 Chapter 7 Jan13

    92/98

    92

    Con t: 7.7.3 Group 7A: TheHalogens

    Chlorine react slowly with water to formrelatively stable aqueous solutions of HCl andHOCl (hypochlorous acid):

    Cl2(g)+ H2O(l) HCl(aq) + HOCl(aq)

    The halogens react directly with most metalsto form ionic halides. Also react with hydrogento form gaseous hydrogen halide compounds.

  • 8/12/2019 Chapter 7 Jan13

    93/98

    93

    cont

    7 7 4 Group 8A: The Noble

  • 8/12/2019 Chapter 7 Jan13

    94/98

    94

    7.7.4 Group 8A: The NobleGases

    The elements are all nonmetals that are gases atroom temperature.

    They are all monoatomic(consist of single atoms

    rather than molecules).The noble gases have completely filledsandp

    subshells.All elements have high first ionization energies,

    the values decrease as moving down the group.The noble gases are exceptionally unreactive.Also called inert gases.

  • 8/12/2019 Chapter 7 Jan13

    95/98

    95

    cont

  • 8/12/2019 Chapter 7 Jan13

    96/98

    96

  • 8/12/2019 Chapter 7 Jan13

    97/98

  • 8/12/2019 Chapter 7 Jan13

    98/98