chapter 7: failure prediction for cyclic and impact loading all machines and structural designs are...

39
Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are always at work and each object must respond in some fashion. Carl Osgood, Fatigue Design Image: Aloha Airlines flight 243, a Boeing 737-200, taken April 28, 1988. The mid-flight fuselage failure was caused by corrosion assisted fatigue.

Upload: herminia-cacho

Post on 22-Apr-2015

15 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Chapter 7: Failure Prediction for Cyclic and Impact Loading

All machines and structural designs are problems in fatigue because the forces of Nature are always at work and each object must respond in some fashion.Carl Osgood, Fatigue Design

Image: Aloha Airlines flight 243, a Boeing 737-200, taken April 28, 1988. The mid-flight fuselage failure was caused by corrosion assisted fatigue.

Page 2: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

On the Bridge!

Figure 7.1 “On the Bridge,” an illustration from Punch magazine in 1891 warning the populace that death was waiting for them on the next bridge. Note the cracks in the iron bridge. [From Petroski (1992).]

Esfuerzos variables, repetidos, alternantes o fluctuantes

Page 3: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Mecánica de la fracturaFallo por fatiga en un perno debida a la flexión unidireccional repetida. La falla comenzó en la raíz de la rosca en A, se propagó casi de lado a lado de la sección transversal, lo cual se muestra por las marcas de playa en B, antes de la fractura rápida final en C.

Fallo por fatiga

La falla por fatiga se debe a la formation y propagation de grietas. Por lo general, una grieta de fractura se inicia en una discontinuidad del material donde el esfuerzo ciclico es máximo. Las discontinuidades pueden surgir debido a:• El diseño de cambios rapidos en la section transversal, cuñeros, orificios, etc., donde ocurren concentraciones del esfuerzo.• Elementos que giran y/o se deslizan entre si (cojinetes, engranes, levas, etc.) bajo presión alta constante, lo que desarrolla esfuerzos de contacto concentrados por debajo de la superficie, los cuales pueden causar picaduras o astilladuras despues de muchos ciclos de carga.• Falta de cuidado en las ubicaciones de estampados, marcas de herramienta, raspaduras y rebabas; diseño defectuoso de juntas; ensamble inapropiado; y otros errores de fabrication.• La propia composition del material después de su proceso de laminado, forjado, fundido, estirado, calentado, etc. Surgen discontinuidades microscopicas y submicroscopicas en la superficie o por debajo de ella, asi como inclusiones de material extrano, segregaciones de aleacion, huecos, precipitaciones de particulas duras y discontinuidades cristalinas.

Page 4: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Mecánica de la fractura

Page 5: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Cyclic Stress

Figure 7.2 Variation in nonzero cyclic mean stress.

Text Reference: Figure 7.2, page 261

Métodos: 1. Esfuerzo-vida2. Deformación-vida3. Mecánica de la fractura elástica

lineal

Page 6: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Método del Esfuerzo – vidaR.R. Moore Specimen

Figure 7.3 R.R. Moore machine fatigue test specimen.

Text Reference: Figure 7.3, page 264

Se basa sólo en los niveles de esfuerzo, es el enfoque menos exacto, especialmente para aplicaciones de bajo ciclaje. Sin embargo, es el método más tradicional, puesto que es el más fácil de implementar para una amplia variedad de aplicaciones de diseño, tiene una gran cantidad de datos de soporte y representa de manera adecuada las aplicaciones de alto ciclaje.

Carga constante de flexión: el momento flexionante es uniforme en la parte curva.Ciclos hasta fallo

Page 7: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Fatigue Strength vs. Cycles to Failure (cont.)

Figure 7.4 Fatigue strengths as a function of number of loading cycles. Steel alloys, límite a fatiga experimental de la probeta para Flexión: 0,5; Axial: 0,45; Torsión 0,29 del valor de Su.

Text Reference: Figure 7.4, page 266

Page 8: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Fatigue Strength vs. Cycles to Failure (cont.)

Figure 7.4 Fatigue strengths as a function of number of loading cycles. Aluminum alloys, with less pronounced knee and no endurance limit.

Text Reference: Figure 7.4, page 266

Forjado

Fundición en molde permanente

Fundición en molde de arena

Page 9: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Curvas S-N

Fracción de la resistencia a la fatiga, f de Sut a los 1e+3 ciclos para Se=Sé=o,5Sut, Fuente: Diseño en ingeniería mecánica de Shigley, V.8

Representación semilogarímica. Ajuste:

)log(3

1;

)( 2

e

ut

e

utbf S

Sfb

S

SfaaNS

Page 10: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Example 7.4

Barra maquinada AISI 1020 43(295)-57(395) / 0,3Hallar: los límites a la fatiga modificados para las barras con y sin muesca, así como las

resistencias a fatiga para 1e4 ciclos.

Figure 7.8 Tensile-loaded bar. (a) Unnotched; (b) notched.

Text Reference: Figure 7.8, page 277

Page 11: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Cyclic Stress

Page 12: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Cyclic Properties of Some Metals

Material Condition

Yieldstrength,Sy

Mpa

Fatiguestrength,

’f,Mpa

Fatigueductility

coefficient’f

Fatiguestrength

exponent,a

Fatigueductility

exponent,

Steel10154340104510451045104541424142414241424142

NormalizedTemperedQ&Ta 80°FQ&T 360°FQ&T 500°FQ&T 600°FQ&T 80°FQ&T 400°FQ&T 600°FQ&T 700°FQ&T 840°F

2281172

-17201275965

2070172013401070900

8271655214027202275179025852650217020001550

0.950.73

-0.070.250.35

-0.070.090.400.45

-0.110-0.076-0.065-0.055-0.080-0.070-0.075-0.076-0.081-0.080-0.080

-0.64-0.62-1.00-0.60-0.68-0.69-1.00-0.76-0.66-0.73-0.75

Aluminum11002014202454567075

AnnealedT6

T351H311

T6

97462379234469

19384811037241317

1.800.420.220.460.19

-0.106-0.106-0.124-0.110-0.126

-0.69-0.65-0.59-0.67-0.52

aQuenched and tempered

Table 7.1 Cyclic properties of some metals [From Shigley and Mischke (1989) and Suresh (1991)]

Text Reference: Table 7.1, page 263

Page 13: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Fatigue Strength vs. Cycles to Failure

Figure 7.4 Fatigue strengths as a function of number of loading cycles.

Ferrous alloys, showing clear endurance limit.

Text Reference: Figure 7.4, page 266

Bajo – altociclaje

Page 14: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Fatigue Strength vs. Cycles to Failure (cont.)

Figure 7.4 Fatigue strengths as a function of number of loading cycles. (c) Selected properties of assorted polymer classes.

Text Reference: Figure 7.4, page 266

Page 15: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Endurance Limit vs. Ultimate Strength

Figure 7.5 Endurance limit as a function of ultimate strength for wrought steels.

Text Reference: Figure 7.5, page 267

Page 16: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Approximate Endurance Limit for Various Materials

Material Number of Cycles Relation Magnesium alloys 108 S’e=0.35Su Copper alloys 108 0.25Su< S’e <0.5 Su Nickel alloys 108 0.35 Su < S’e <0.65

Su Titanium 107 0.45 Su < S’e <0.65

Su Aluminum alloys 5 x 108 S’e =0.45 Su (Su

<48ksi) S’e =19 ksi (Su

≥48ksi)

Table 7.2 Approximate endurance limit for various materials [From Juvinall and Marshek (1991)].

Text Reference: Table 7.2, page 267

Page 17: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Surface Finish Factors

Figure 7.7 Surface finish factors for steel Function of ultimate strength in tension for different machine processes. [From Shigley and Mitchell (1983).]

Text Reference: Figure 7.7, page 273

Page 18: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Surface Finish Factors (cont.)

Text Reference: Figure 7.7, page 274

Figure 7.7 Surface finish factors for steel (b) Function of ultimate strength and surface roughness as measured with a stylus profilometer. [From Johnson (1967).]

Page 19: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Surface Finish Factor

Manufacturing

Factor e

Exponent f

Process Mpa ksi Grinding 1.58 1.34 -0.085 Machining or cold drawing

4.51 2.70 -0.265

Hot rolling 57.7 14.4 -0.718 None (as forged)

272.0 39.9 -0.995

Table 7.3 Surface finish factor [From Shigley and Mischke (1989)].

Usage:

kf=a(Sut)b

Text Reference: Table 7.3, page 274

Page 20: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Reliability Correction FactorsFactor tamaño, kb

Excepción, carga axial: kb=1

Page 21: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Reliability Correction FactorsFactor tamaño, kb

Text Reference: Table 7.4, page 275

Reliability Correction FactorsFactor tipo de esfuerzo, kc

1, para cargas de flexión0,85, cargas axiales0,59, esfuerzos de torsión pura0,577 torsión combinada (criterio DET)

kc

Excepción, carga axial: kb=1

Page 22: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Reliability Correction Factors

Table Reliability correction factors for eight probabilities of survival.

Factor temperatura

100070

10595.010104.010115.010432.0975.0 41238253

F

FFFFd

Tdonde

TTTTk

Page 23: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Notch Sensitivity

Figure 7.6 Notch sensitivity as a function of notch radius for several materials and types of loading. [From Sines and Waisman (1959)].

Text Reference: Figure 7.6, page 272

Page 24: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Notch Sensitivity

q = 0.20 hierro fundido todos los grados

Page 25: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Examen Sep06

1/ Un resorte de una puerta tiene sección rectangular 50x6 (mm) y longitud 800 mm. Uno de sus extremos se haya empotrado y en el otro se producen deflexiones entre 75 y 150 mm cíclicamente. Determinar el coeficiente de seguridad en la sección más peligrosa en: a) caso citado b) si a L/2 se le practica un taladro de O 12,5mm. Condiciones de carga de (a)Material estirado en frio, E=210Gpa, Su=1034MPa y ν= 0,3 Fiabilidad 90% aT=20ºC…………3 puntos

text reference: Figure 5.1, page 184

Page 26: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Example Sep07

1/ El eje de la figura, se somete a una carga P en inversión completa, de tal manera que los esfuerzos tangenciales representan la mitad que los normales.

A) Determinar la carga máxima a fatiga que soporta el eje con n=1,2. B) Para un n= 0,6 determinar el N hasta rotura.

Datos: AISI 1080, Fiabilidad 90% a T= 50ºC

Ejercicio propuesto: B. Hamrock, page 301

Page 27: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Example

1/ El eje de la figura, posee en el extremo izquierdo una polea de ø70 y T1/T2=2.5. En la sección C, posee un engranaje de m=2 y Z=20. Se desea transmitir un Mt= 400 kg cm.

Determinar el coeficiente de seguridad en la sección más peligrosa.

Datos: AISI 1020, Fiabilidad 90% a T= 50ºC

Page 28: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Influence of Non-Zero Mean Stress

Figure 7.9 Influence of nonzero mean stress on fatigue life for tensile loading as estimated by four empirical relationships.

Text Reference: Figure 7.9, page 280

Page 29: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Modified Goodman Diagram

Figure 7.10 Complete modified Goodman diagram, plotting stress as ordinate and mean stress as abscissa.

Text Reference: Figure 7.10, page 283

Page 30: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Example 7.7

Figure 7.11 Modified Goodman diagram for Example 7.7.

Text Reference: Figure 7.11, page 285

Page 31: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Alternating Stress Ratio vs. Mean Stress Ratio

Figure 7.12 Alternating stress ratio as a function of mean stress ratio for axially loaded cast iron.

Text Reference: Figure 7.12, page 287

Page 32: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Correction Factor Y

Figure 7.13 Correction factor Y to compensate for plate width in fracture mechanics approach to fatigue crack propogation. [From Suresh (1991).]

Text Reference: Figure 7.13, page 289

Page 33: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Properties vs. Strain Rate

Figure 7.14 Mechanical properties of mild steel at room temperature as a function of average strain rate. [From Manjoine (1994).]

Text Reference: Figure 7.14, page 291

Page 34: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Example 7.10

Figure 7.15 Diver impacting diving board, used in Example 7.10. (a) Side view; (b) front view; (c) side view showing forces and coordinates.

Text Reference: Figure 7.15, page 293

Page 35: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Brake Stud

Figure 7.16 Dimensions of existing brake stud design. Note that no radius has been specified at point A-A.

Text Reference: Figure 7.16, page 296

Page 36: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Applied Loads and Resultant Stress Cycle

Figure 7.17 Press brake loads. (a) Shear and bending moment diagram for applied load; (b) stress cycle.

Page 37: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Daño Acumulativo

Regla de Daño lineal o de Palgrem Miner

1...2

2

1

1 N

n

N

n

Se predice la falla cuando la fracción de daño por niveles diferentes de esfuerzo excede la unidad.

El nivel de daño es directamente proporcional al número de ciclos, donde no importa la secuencia de los mismos.

Page 38: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Daño Acumulativo

1...2

2

1

1 N

n

N

n

Para la barra sin muesca, el esfuerzo de fatiga se refleja en la siguiente tabla:

% tiempo Esfuerzo(ksi)

20 25

30 30

40 35

10 40

Hallar el número de ciclos hasta la falla acumulativa

Page 39: Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are

Daño Acumulativo

1...2

2

1

1 N

n

N

n

Para la barra sin muesca, el esfuerzo de fatiga se refleja en la siguiente tabla:

% tiempo Esfuerzo(ksi)

20 25

30 30

40 35

10 40