chapter 7 assembly line balancing

58
Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA. 1 Mata Kuliah : SISTEM PRODUKSI Chapter 7 Assembly Line Balancing

Upload: azure

Post on 08-Jan-2016

277 views

Category:

Documents


26 download

DESCRIPTION

Chapter 7 Assembly Line Balancing. OBJECTIVES. Assembly Line balancing. An Assembly Line Layout. 1. 3. Work. Station. Work Station. 4. 5. 2. Work Station. Belt Conveyor. Office. Note: 5 tasks or operations; 3 work stations. Repetitive Layout. Assembly Line Balancing. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

1Mata Kuliah : SISTEM PRODUKSI

Chapter 7

Assembly Line Balancing

Page 2: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

2Mata Kuliah : SISTEM PRODUKSI

Assembly Line balancing

OBJECTIVES

Page 3: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

3Mata Kuliah : SISTEM PRODUKSI

An Assembly Line Layout

Page 4: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

4Mata Kuliah : SISTEM PRODUKSI

Repetitive Layout

1 3

2

4

5

WorkWork

OfficeOffice

Belt ConveyorBelt Conveyor

Work Work StationStation

Note: 5 tasks or operations; 3 work stationsNote: 5 tasks or operations; 3 work stations

Work StationWork Station

StationStation

Page 5: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

5Mata Kuliah : SISTEM PRODUKSI

Assembly Line Balancing

Analysis of production lines Nearly equally divides work between

workstations while meeting required output

Objectives– Maximize efficiency– Minimize number of

work stations

Page 6: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

6Mata Kuliah : SISTEM PRODUKSI

Assembly Line BalancingThe General Procedure

Determine cycle time by taking the demand (or production rate) per day and dividing it into the productive time available per day

Calculate the theoretical minimum number of work stations by dividing total task time by cycle time

Perform the line balance and assign specific assembly tasks to each work station

Page 7: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

7Mata Kuliah : SISTEM PRODUKSI

Assembly Line Balancing Steps

1. Determine tasks (operations)2. Determine sequence3. Draw precedence diagram4. Estimate task times5. Calculate cycle time 6. Calculate number of work stations7. Assign tasks 8. Calculate efficiency

Page 8: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

8Mata Kuliah : SISTEM PRODUKSI

Assembly Line Balancing Equations

Cycle time = Production time available

Demand per day

Minimum number of work stations

Task times

Cycle time

Efficiency =

=

Task times

* (Cycle time)(Actual number of work stations)

Page 9: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

9Mata Kuliah : SISTEM PRODUKSI

KRITERIA PEMBANDING

EFISIENSI LINI BALANCE DELAY IDLE TIME

Page 10: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

10Mata Kuliah : SISTEM PRODUKSI

EFISIENSI LINI rasio antara waktu yang digunakan dengan

waktu yang tersedia. Efisiensi Lini Sebelum Diseimbangkan :

Eff (Σ ti / (R x T)) x 100%

Dengan

ti : waktu proses elemen kerja yang ada dijalur terpanjang.

R : jumlah daerah yang terbentuk dari precedence diagram.

T : waktu terbesar dari semua elemen kerja.

Page 11: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

11Mata Kuliah : SISTEM PRODUKSI

EFISIENSI LINI

efisiensi lini perakitan setelah diseimbangkan :

Eff (Σ ti / (CT x N)) x 100%

Dengan :

n : jumlah elemen kerja yang ada

CT : cycle time atau waktu siklus

N : jumlah stasiun kerja yang terbentuk

Page 12: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

12Mata Kuliah : SISTEM PRODUKSI

BALANCE DELAY

rasio antara waktu idle dalam lini dengan waktu yang tersedia.

Nilai balance delay semakin mendekati 0, semakin baik, karena hal ini menunjukkan bahwa waktu idle yang terdapat dalam lini perakitan juga semakin mendekati 0.

Page 13: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

13Mata Kuliah : SISTEM PRODUKSI

BALANCE DELAY

BALANCE DELAY SEBELUM DISEIMBANGKAN :

BD ((R x T) – Σti / (R x T)) x 100% Dengan :ti : waktu proses elemen kerja yang ada di

jalur terpanjang.R : jumlah daerah yang terbentuk dari

precedence diagram.T : waktu terbesar dari semua elemen

kerja.

Page 14: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

14Mata Kuliah : SISTEM PRODUKSI

BALANCE DELAY

balance delay lini perakitan setelah diseimbangkan :

BD ((CT x N) – Σti / (CT x N)) x 100%

Dengan :

n : jumlah elemen kerja yang ada

CT : cycle time atau waktu siklus

N : jumlah stasiun kerja yang terbentuk

Page 15: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

15Mata Kuliah : SISTEM PRODUKSI

IDLE TIME

waktu menganggur yang terkandung dalam lini perakitan.

Besarnya idle time dapat dihitung dengan cara mengurangi waktu yang tersedia dengan waktu yang digunakan.

Page 16: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

16Mata Kuliah : SISTEM PRODUKSI

IDLE TIME

Idle time sebelum diseimbangkan :

Idle R x T – Σ ti

Dengan

ti : waktu proses elemen kerja yang ada di jalur terpanjang.

R : jumlah daerah yang terbentuk dari precedence diagram

T : waktu terbesar dari semua elemen kerja

Page 17: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

17Mata Kuliah : SISTEM PRODUKSI

IDLE TIME

idle time lini perakitan setelah diseimbangkan :

Idle CT x N – Σ ti

Dengan

n : jumlah elemen kerja yang ada

CT : cycle time atau waktu siklus

N : jumlah stasiun kerja yang terbentuk

Page 18: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

18Mata Kuliah : SISTEM PRODUKSI

PERMASALAHAN

APABILA : EFISIENSI MENINGKAT BALANCE DELAY BERKURANG IDLE TIME BERKURANGPada sebuah usaha untuk

menyeimbangkan lini perakitan, ada kalanya menghasilkan beberapa alternatif solusi, yang apabila dilihat dari 3 kriteria diatas, sama-sama baiknya.

Page 19: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

19Mata Kuliah : SISTEM PRODUKSI

SMOOTHING INDEX parameter untuk memilih alternatif solusi

yang akan diimplementasikan dengan indeks penghalusan (smoothing index)

SI Σ (STmax – STi)2

Dengan STmax : waktu terbesar dari stasiun kerja

yang terbentuk. STi : waktu stasiun kerja i yang terbentuk N : jumlah stasiun kerja yang terbentuk Nilai SI yang semakin kecil menunjukkan

tingkat keseimbangan beban kerja setiap stasiun kerja yang tinggi.

Page 20: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

20Mata Kuliah : SISTEM PRODUKSI

Station 1

Minutes per Unit 6

Station 2

7

Station 3

3

Assembly Lines Balancing Concepts

Question: Suppose you load work into the three work stations below such that each will take the corresponding number of minutes as shown. What is the cycle time of this line?

Question: Suppose you load work into the three work stations below such that each will take the corresponding number of minutes as shown. What is the cycle time of this line?

Answer: The cycle time of the line is always determined by the work station taking the longest time. In this problem, the cycle time of the line is 7 minutes. There is also going to be idle time at the other two work stations.

Answer: The cycle time of the line is always determined by the work station taking the longest time. In this problem, the cycle time of the line is 7 minutes. There is also going to be idle time at the other two work stations.

Page 21: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

21Mata Kuliah : SISTEM PRODUKSI

Example of Line Balancing

You’ve just been assigned the job a setting up an electric fan assembly line with the following tasks:

Task Time (Mins) Description PredecessorsA 2 Assemble frame NoneB 1 Mount switch AC 3.25 Assemble motor housing NoneD 1.2 Mount motor housing in frame A, CE 0.5 Attach blade DF 1 Assemble and attach safety grill EG 1 Attach cord BH 1.4 Test F, G

Page 22: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

22Mata Kuliah : SISTEM PRODUKSI

Example of Line Balancing: Structuring the Precedence Diagram

Task PredecessorsA None

A

B A

B

C None

C

D A, C

D

Task PredecessorsE D

E

F E

F

G B

G

H E, G

H

Page 23: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

23Mata Kuliah : SISTEM PRODUKSI

Example of Line Balancing: Precedence Diagram

A

C

B

D E F

GH

2

3.25

1

1.2 .5

11.4

1

Question: Which process step defines the maximum rate of production?

Question: Which process step defines the maximum rate of production?

Answer: Task C is the cycle time of the line and therefore, the maximum rate of production.

Answer: Task C is the cycle time of the line and therefore, the maximum rate of production.

Page 24: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

25Mata Kuliah : SISTEM PRODUKSI

Example of Line Balancing: Determine Cycle Time

Required Cycle Time, C = Production time per period

Required output per periodRequired Cycle Time, C =

Production time per period

Required output per period

C = 420 mins / day

100 units / day= 4.2 mins / unitC =

420 mins / day

100 units / day= 4.2 mins / unit

Question: Suppose we want to assemble 100 fans per day. What would our cycle time have to be?

Question: Suppose we want to assemble 100 fans per day. What would our cycle time have to be?

Answer: Answer:

Page 25: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

26Mata Kuliah : SISTEM PRODUKSI

Example of Line Balancing: Determine Theoretical Minimum Number of

WorkstationsQuestion: What is the theoretical minimum

number of workstations for this problem? Question: What is the theoretical minimum

number of workstations for this problem?

Answer: Answer: Theoretical Min. Number of Workstations, N

N = Sum of task times (T)

Cycle time (C)

t

t

Theoretical Min. Number of Workstations, N

N = Sum of task times (T)

Cycle time (C)

t

t

N = 11.35 mins / unit

4.2 mins / unit= 2.702, or 3t

N = 11.35 mins / unit

4.2 mins / unit= 2.702, or 3t

Page 26: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

27Mata Kuliah : SISTEM PRODUKSI

Example of Line Balancing: Rules To Follow for Loading Workstations

Assign tasks to station 1, then 2, etc. in sequence. Keep assigning to a workstation ensuring that precedence is maintained and total work is less than or equal to the cycle time. Use the following rules to select tasks for assignment.

Primary: Assign tasks in order of the largest number of following tasks

Secondary (tie-breaking): Assign tasks in order of the longest operating time

Page 27: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

28Mata Kuliah : SISTEM PRODUKSI

A

C

B

D E F

GH

2

3.25

1

1.2 .5

11.4

1

Station 1 Station 2 Station 3

Task Followers Time (Mins)A 6 2C 4 3.25D 3 1.2B 2 1E 2 0.5F 1 1G 1 1H 0 1.4

Page 28: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

29Mata Kuliah : SISTEM PRODUKSI

A

C

B

D E F

GH

2

3.25

1

1.2 .5

11.4

1

Station 1 Station 2 Station 3

A (4.2-2=2.2)

Task Followers Time (Mins)A 6 2C 4 3.25D 3 1.2B 2 1E 2 0.5F 1 1G 1 1H 0 1.4

Page 29: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

30Mata Kuliah : SISTEM PRODUKSI

A

C

B

D E F

GH

2

3.25

1

1.2 .5

11.4

1

A (4.2-2=2.2)B (2.2-1=1.2)

Task Followers Time (Mins)A 6 2C 4 3.25D 3 1.2B 2 1E 2 0.5F 1 1G 1 1H 0 1.4

Station 1 Station 2 Station 3

Page 30: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

31Mata Kuliah : SISTEM PRODUKSI

A

C

B

D E F

GH

2

3.25

1

1.2 .5

11.4

1

A (4.2-2=2.2)B (2.2-1=1.2)G (1.2-1= .2)

Idle= .2

Task Followers Time (Mins)A 6 2C 4 3.25D 3 1.2B 2 1E 2 0.5F 1 1G 1 1H 0 1.4

Station 1 Station 2 Station 3

Page 31: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

32Mata Kuliah : SISTEM PRODUKSI

A

C

B

D E F

GH

2

3.25

1

1.2 .5

11.4

1

C (4.2-3.25)=.95

Task Followers Time (Mins)A 6 2C 4 3.25D 3 1.2B 2 1E 2 0.5F 1 1G 1 1H 0 1.4

A (4.2-2=2.2)B (2.2-1=1.2)G (1.2-1= .2)

Idle= .2

Station 1 Station 2 Station 3

Page 32: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

33Mata Kuliah : SISTEM PRODUKSI

C (4.2-3.25)=.95

Idle = .95

A

C

B

D E F

GH

2

3.25

1

1.2 .5

11.4

1

Task Followers Time (Mins)A 6 2C 4 3.25D 3 1.2B 2 1E 2 0.5F 1 1G 1 1H 0 1.4

A (4.2-2=2.2)B (2.2-1=1.2)G (1.2-1= .2)

Idle= .2

Station 1 Station 2 Station 3

Page 33: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

34Mata Kuliah : SISTEM PRODUKSI

C (4.2-3.25)=.95

Idle = .95

A

C

B

D E F

GH

2

3.25

1

1.2 .5

11.4

1

D (4.2-1.2)=3

Task Followers Time (Mins)A 6 2C 4 3.25D 3 1.2B 2 1E 2 0.5F 1 1G 1 1H 0 1.4

A (4.2-2=2.2)B (2.2-1=1.2)G (1.2-1= .2)

Idle= .2

Station 1 Station 2 Station 3

Page 34: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

35Mata Kuliah : SISTEM PRODUKSI

A

C

B

D E F

GH

2

3.25

1

1.2 .5

11.4

1

C (4.2-3.25)=.95

Idle = .95

D (4.2-1.2)=3E (3-.5)=2.5

Task Followers Time (Mins)A 6 2C 4 3.25D 3 1.2B 2 1E 2 0.5F 1 1G 1 1H 0 1.4

A (4.2-2=2.2)B (2.2-1=1.2)G (1.2-1= .2)

Idle= .2

Station 1 Station 2 Station 3

Page 35: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

36Mata Kuliah : SISTEM PRODUKSI

A

C

B

D E F

GH

2

3.25

1

1.2 .5

11.4

1

C (4.2-3.25)=.95

Idle = .95

D (4.2-1.2)=3E (3-.5)=2.5F (2.5-1)=1.5

Task Followers Time (Mins)A 6 2C 4 3.25D 3 1.2B 2 1E 2 0.5F 1 1G 1 1H 0 1.4

A (4.2-2=2.2)B (2.2-1=1.2)G (1.2-1= .2)

Idle= .2

Station 1 Station 2 Station 3

Page 36: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

37Mata Kuliah : SISTEM PRODUKSI

A

C

B

D E F

GH

2

3.25

1

1.2 .5

11.4

1

C (4.2-3.25)=.95

Idle = .95

D (4.2-1.2)=3E (3-.5)=2.5F (2.5-1)=1.5H (1.5-1.4)=.1Idle = .1

Task Followers Time (Mins)A 6 2C 4 3.25D 3 1.2B 2 1E 2 0.5F 1 1G 1 1H 0 1.4

A (4.2-2=2.2)B (2.2-1=1.2)G (1.2-1= .2)

Idle= .2

Station 1 Station 2 Station 3

Which station is the bottleneck? What is the effective cycle time?

Page 37: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

38Mata Kuliah : SISTEM PRODUKSI

Example of Line Balancing: Determine the Efficiency of the Assembly Line

Efficiency =Sum of task times (T)

Actual number of workstations (Na) x Cycle time (C)Efficiency =

Sum of task times (T)

Actual number of workstations (Na) x Cycle time (C)

Efficiency =11.35 mins / unit

(3)(4.2mins / unit)=.901Efficiency =

11.35 mins / unit

(3)(4.2mins / unit)=.901

Page 38: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

39Mata Kuliah : SISTEM PRODUKSI

Assigning Tasks in Assembly Line Balancing

Longest task time - choose task with longest operation time

Most following tasks - choose task with largest number of following tasks

Ranked positional weight - choose task where the sum of the times for each following task is longest

Shortest task time - choose task with shortest operation time

Least number of following tasks - choose task with fewest subsequent tasks

Page 39: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

40Mata Kuliah : SISTEM PRODUKSI

METODE HEURISTIC

Kilbridge – Wester Heuristic Metode Moodie – Young Metode Immediate Update First

Fit / IUFF (Heuristic) Rank and assign Heuristic

Page 40: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

41Mata Kuliah : SISTEM PRODUKSI

Kilbridge – Wester Heuristic

Buat precedence diagram. Pada precedence diagram yang telah dibuat, tandai daerah-daerah yang memuat elemen-elemen kerja yang tidak saling bergantung.

Tentukan CT dengan cara mencoba-coba factor dari total waktu elemen kerja yang ada. Setelah CT ditentukan, kemudian tentukan jumlah stasiun kerja yang mungkin terbentuk menggunakan rumus :

N Σ ti / CT Dengan N : jumlah stasiun kerja ti : elemen kerja ke-i

Page 41: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

42Mata Kuliah : SISTEM PRODUKSI

Distribusikan elemen kerja pada setiap stasiun kerja dengan aturan bahwa total waktu elemen kerja yang terdistribusi pada sebuah stasiun kerja tidak boleh melebihi CT.

Keluarkan elemen kerja yang telah didistribusikan pada stasiun kerja, dan ulangi langkah 3 sampai semua elemen kerja yang ada terdistribusi ke stasiun kerja.

Kilbridge – Wester Heuristic

Page 42: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

43Mata Kuliah : SISTEM PRODUKSI

CASE

Page 43: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

44Mata Kuliah : SISTEM PRODUKSI

METODE MOODIE-YOUNG

Metode ini terdiri dari 2 fase yaitu : Fase 1 : pada fase ini, dari precedence

diagram kemudian dibuat matrik P dan F, yang menggambarkan elemen kerja pendahulu (P) dan elemen kerja sesudahnya (F) untuk semua elemen kerja yang ada. Apabila ada 2 elemen yang bisa dipilih, maka dipilih elemen yang mempunyai waktu terbesar.

Page 44: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

45Mata Kuliah : SISTEM PRODUKSI

METODE MOODIE-YOUNG

Fase 2 : Pada fase ini, dilakukan re-distribusi elemen kerja ke setiap stasiun kerja hasil dari fase 1.

Page 45: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

46Mata Kuliah : SISTEM PRODUKSI

Fase 2 ini dilakukan dengan beberapa langkah : Identifikasi waktu stasiun kerja terbesar dan

waktu stasiun kerja terkecil. Tentukan GOAL, dengan rumus :GOAL ( waktu SK max – waktu SK min ) / 2 Identifikasi sebuah elemen kerja yang terdapat

dalam stasiun kerja dengan waktu yang paling maksimum, yang mempunyai waktu lebih kecil dari GOAL, yang elemen kerja tersebut apabila dipindah ke stasiun kerja dengan waktu yang paling minimum tidak melanggar precedence diagram.

Pindahkan elemen kerja tersebut. Ulangi evaluasi sampai tidak ada lagi elemen

kerja yang dapat dipindah.

Page 46: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

47Mata Kuliah : SISTEM PRODUKSI

CASE

Page 47: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

48Mata Kuliah : SISTEM PRODUKSI

Metode Immediate Update First Fit / IUFF (Heuristic)

Pengelompokan elemen kerja dilakukan dengan melibatkan sebuah fungsi score.

digunakan notasi IUFFn, dengan n 1,….,8, untuk menggambarkan fungsi mana yang digunakan.

Page 48: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

49Mata Kuliah : SISTEM PRODUKSI

Penggolongan Fungsi Score : Bobot posisi (Helgeson dan Birnie) Kebalikan bobot posisi Jumlah pengikut Jumlah pengikut langsung Jumlah predecessor Waktu elemen kerja Berat posisi mundur yang berulang Tepi mundur yang berulang

Metode Immediate Update First Fit / IUFF (Heuristic)

Page 49: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

50Mata Kuliah : SISTEM PRODUKSI

Langkah-Langkah : Berikan fungsi score n(x) untuk setiap

elemen kerja x. Update, sekumpulan elemen kerja yang

tersedia (elemen kerja yang mempunyai elemen kerja pendahulu yang sudah dikelompokkan pada sebuah stasiun kerja).

Untuk elemen kerja yang tersisa, kelompokkan elemen kerja berurutan dari yang mempunyai fungsi score tertinggi kemudian kembali lagi ke langkah 2.

Metode Immediate Update First Fit / IUFF (Heuristic)

Page 50: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

51Mata Kuliah : SISTEM PRODUKSI

CASE

Page 51: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

52Mata Kuliah : SISTEM PRODUKSI

Rank and assign Heuristic

Pada metode ini, setelah fungsi score setiap elemen kerja dihitung, kemudian elemen kerja di rangking berdasar fungsi score-nya.

Elemen kerja yang mempunyai fungsi score tertinggi diberi rangking 1, dan seterusnya.

Page 52: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

53Mata Kuliah : SISTEM PRODUKSI

Langkah-langkah : Hitung fungsi score setiap elemen kerja

berdasarkan fungsi yang ada pada metode IUFF.

Buat perangkingan untuk semua elemen kerja berdasarkan nilai fungsi score-nya.

Kelompokkan elemen kerja-elemen kerja pada stasiun kerja dengan memperhatikan precedence diagram dan batasan CT.

Rank and assign Heuristic

Page 53: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

54Mata Kuliah : SISTEM PRODUKSI

CASE

Page 54: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

55Mata Kuliah : SISTEM PRODUKSI

Question Bowl

If the production time per day is 1200 minutes and the required output per day is 500 units, which of the following will be the required workstation cycle time for this assembly line?

a. 2.4 minutesb. 0.42 minutesc. 1200 unitsd. 500 unitse. None of the above

Answer: a. 2.4 minutes (1200/500=2.4 minutes)

Page 55: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

56Mata Kuliah : SISTEM PRODUKSI

Question BowlYou have just finished determining the

cycle time for an assembly line to be 5 minutes. The sum of all the tasks required on this assembly is is 60 minutes. Which of the following is the theoretical minimum number of workstations required to satisfy the workstation cycle time?

a. 1 workstationb. 5 workstationsc. 12 workstationsd. 60 workstationse. None of the above

Answer: c. 12 workstations (60/5=12)

Page 56: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

57Mata Kuliah : SISTEM PRODUKSI

Question Bowl

If the sum of the task times for an assembly line is 30 minutes, the actual number of workstations is 5, and the workstation cycle time is 10 minutes, what is the resulting efficiency of this assembly line?

a. 0.00b. 0.60c. 1.00d. 1.20e. Can not be computed from the data

aboveAnswer: b. 0.60 (30/(5x10)=0.60)

Page 57: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

58Mata Kuliah : SISTEM PRODUKSI

Question Bowl

Which of the following are ways that we can accommodate a 20 second task in a 18 second cycle time?

a. Share the taskb. Use parallel workstationsc. Use a more skilled workerd. All of the abovee. None of the above

Answer: d. All of the above

Page 58: Chapter 7 Assembly Line Balancing

Andre Sugiyono © 2006 Jurusan Teknik Industri UNISSULA.

59Mata Kuliah : SISTEM PRODUKSI

Question Bowl

Which of the following are “ambient conditions” that should be considered in layout design?

a. Noise levelb. Lighting c. Temperatured. Scent e. All of the above

Answer: e. All of the above