chapter 7- alkenes: structure and reactivity · chapter 7- alkenes: structure and reactivity ......

20
10/28/15 1 Chapter 7- Alkenes: Structure and Reactivity Ashley Piekarski, Ph.D. Alkene What is an alkene func<onal group? hydrocarbon with carbon-carbon double bond occurs in many natural materials (flavors, fragrances, vitamins)

Upload: trinhhuong

Post on 26-Aug-2018

233 views

Category:

Documents


1 download

TRANSCRIPT

10/28/15  

1  

Chapter 7- Alkenes: Structure and Reactivity

Ashley  Piekarski,  Ph.D.  

Alkene

•  What  is  an  alkene  func<onal  group?  •  hydrocarbon with carbon-carbon double bond •  occurs in many natural materials (flavors,

fragrances, vitamins)

10/28/15  

2  

Why am I learning this, Dr. P?

•  C-­‐C  double  bonds  are  present  in  most  organic  and  biological  molecules  

•  Alkene  stereochemistry  

•  Focus  on  a  general  alkene  reac<on:  Electrophilic  addi4on  

Use of alkenes

•  Ethylene  and  propylene  are  the  most  important  organic  chemicals  produced  

10/28/15  

3  

Degree of Unsaturation

•  Are  alkenes  saturated  or  unsaturated?  •  Formula for saturated acyclic compound is

CnH2n+2

•  Degree  of  unsatura<on:  number  of  mul<ple  bonds  or  rings  •  Each ring or multiple bond replaces 2H’s

Learning check

•  How  many  degrees  of  unsaturated  are  in  C6H10?  What  are  some  possible  structure  for  this  molecular  formula?  

10/28/15  

4  

With other elements

•  Organohalogens  (X:  F,  Cl,  Br,  I)  •  Halogen replaces a hydrogen

•  For  example,  C4H6Br2  and  C4H8  have  one  degree  of  unsatura<on  

•  Organoxygen  compounds  (C,  H,  O)  •   These  don’t  affect  the  total  count  of  H’s  

Organonitrogen compounds

•  Nitrogen  has  three  bonds  •  So if it connects where H was, it adds a

connection point •  Subtract one H for equivalent degree of

unsaturation in hydrocarbon

10/28/15  

5  

Summary

•  Count  pairs  of  H’s  below  CnH2n+2  

•  Add  number  of  halogens  to  number  of  H’s  •  Ignore  oxygens    •  Subtract  N’s-­‐  they  have  two  connec<ons  

Learning check

•  Calculate  the  degree  of  unsatura<on  for  C10H12N2O3  

10/28/15  

6  

Nomenclature

•  Name  the  parent  hydrocarbon  •  Number  carbons  in  chain  so  the  double-­‐bond  carbons  have  the  lowest  possible  numbers  

•  Rings  have  a  “cyclo”  prefix  

Common names

10/28/15  

7  

Learning check

(E)-4-methylhept-2-ene(E)-hex-2-ene

4-ethylcyclopent-1-ene

Cl

(1S,3S)-1-chloro-3-ethylcyclopentane

(1R,3S)-1,3-diethylcyclopentane

Cl

(Z)-4-chloro-3-methyloct-3-ene (Z)-4-ethyl-2,3-dimethylhept-3-ene

+ HBr

Cl

•  Name  the  following  alkenes:  

(E)-4-methylhept-2-ene(E)-hex-2-ene

4-ethylcyclopent-1-ene

Cl

(1S,3S)-1-chloro-3-ethylcyclopentane

(1R,3S)-1,3-diethylcyclopentane

Cl

(Z)-4-chloro-3-methyloct-3-ene (Z)-4-ethyl-2,3-dimethylhept-3-ene

+ HBr

Cl

Stereochemistry

•  Make  a  model  of  1,2-­‐dichloroethene.  •  Can  you  rotate  the  double-­‐bond,  like  an  alkane?  

•  This  creates  two  possible  isomers  for  alkenes!  

10/28/15  

8  

Cis- and Trans- Isomers

•  The  presence  of  a  carbon-­‐carbon  double  bond  can  create  two  possible  structures  •  cis isomer- 2 similar groups on the same side

of the double bond •  trans isomer- similar groups on opposite sides

•  Each  carbon  must  have  two  different  groups  for  these  isomers  to  occur  

•  Now,  draw  the  cis-­‐  and  trans-­‐  isomers  for  1,2-­‐dichloroethene  

Cis- and Trans- Isomers

10/28/15  

9  

Sequence Rules: The E, Z Designation

•  Neither  compound  is  clearly  “cis”  or  “trans”  •  Substituents on C1 are different than those on

C2 •  We need to define “similarity” in a precise way

to distinguish the two stereoisomers •  Cis,  trans  nomenclature  only  works  for  disubs<tuted  double  bonds  

E, Z Stereochemistry

•  Compare  where  higher  priority  groups  are  with  respect  to  bond  and  designate  as  prefix  •  E –entgegen, opposite sides •  Z –zusammen, together on the same side

10/28/15  

10  

Ranking Priority Rules!

•  Rule  1  •  Rank atoms that are connected at comparison

point •  Higher atomic number gets higher priority

Ranking Priority Rules!

•  Rule  2  •  If atomic numbers are the same, compare at

next connection point at same distance •  Compare until something has higher atomic

number •  Do not combine- always compare

10/28/15  

11  

Ranking Priority Rules!

•  Rule  3  •  Substituent is drawn with connections shown

and no double or triple bonds •  Added atoms are valued with 0 ligands

themselves

Learning check

•  Name  the  following  alkenes  using  E,  Z  configura<on:  

(E)-4-methylhept-2-ene(E)-hex-2-ene

4-ethylcyclopent-1-ene

Cl

(1S,3S)-1-chloro-3-ethylcyclopentane

(1R,3S)-1,3-diethylcyclopentane

Cl

(Z)-4-chloro-3-methyloct-3-ene (Z)-4-ethyl-2,3-dimethylhept-3-ene

+ HBr

Cl

10/28/15  

12  

Stability of Alkenes

•  Cis  alkenes  are  less  stable  than  trans  alkenes  •  Compare  heat  given  off  on  hydrogena<on  •  Less  stable  isomer  is  higher  in  energy  

Comparing Stabilities of Alkenes

•  Evaluate  heat  given  off  when  C=C  is  converted  to  C-­‐C  bond  

•  More  stable  alkene  gives  off  less  heat  

10/28/15  

13  

Hyperconjugation

•  Hyperconjuga3on  is  the  stabilizing  interac<on  between  filled  pi  orbital  and  a  neighboring  filled  C-­‐H  sigma  bond  on  a  subs<tuent.    The  more  subs<tuents  there  are,  the  greater  the  stabiliza<on  of  the  alkene  

Electrophilic Addition of Alkenes- Mechanism

10/28/15  

14  

Electrophilic Addition Energy Diagram

•  Two  step  process  •  First  transi<on  state  is  high  energy  point  

Electrophilic Addition Examples

10/28/15  

15  

Markovnikov’s Rule

•  Addi<on  is  regiospecific  •  Halide will attack the carbon that is more

substituted

Markovnikov’s Rule

•  Why?  •  What is the intermediate of an electrophilic

addition reaction?

10/28/15  

16  

Learning check

•  Predict  the  product  for  the  following  reac<on:  

(E)-4-methylhept-2-ene(E)-hex-2-ene

4-ethylcyclopent-1-ene

Cl

(1S,3S)-1-chloro-3-ethylcyclopentane

(1R,3S)-1,3-diethylcyclopentane

Cl

(Z)-4-chloro-3-methyloct-3-ene (Z)-4-ethyl-2,3-dimethylhept-3-ene

+ HBr

Cl

Learning check

•  Retrosynthesis:  predict  the  reactants  to  make  the  following  product  

(E)-4-methylhept-2-ene(E)-hex-2-ene

4-ethylcyclopent-1-ene

Cl

(1S,3S)-1-chloro-3-ethylcyclopentane

(1R,3S)-1,3-diethylcyclopentane

Cl

(Z)-4-chloro-3-methyloct-3-ene (Z)-4-ethyl-2,3-dimethylhept-3-ene

+ HBr

Cl

10/28/15  

17  

Carbocation Structure and Stability

•  Carboca<ons  are  planar  and  the  tricoordinate  carbon  is  surrounded  by  only  6  electrons  in  sp2  orbitals  

•  The  fourth  orbital  on  carbon  is  a  vacant  p-­‐orbital  

Carbocation Structure and Stability

•  The  stability  of  the  carboca<on  (measured  by  energy  needed  to  form  it  from  R-­‐X)  is  increased  by  the  presence  of  alkyl  subs<tuents  

10/28/15  

18  

Inductive stabilization

The Hammond Postulate

•  If  carboca<on  intermediate  is  more  stable  than  another,  why  is  the  reac<on  through  the  more  stable  one  faster?  •  The relative stability of the intermediate is related to

an equilibrium constant (ΔGº) •  The relative stability of the transition state (which

describes the size of the rate constant) is the activation energy (ΔG‡)

•  The transition state is transient and cannot be examined

10/28/15  

19  

Transition State Structures

•  A  transi3on  state  is  the  highest  energy  species  in  a  reac<on  step  

•  By  defini<on,  its  structure  is  not  stable  enough  to  exist  for  one  vibra<on  

•  But  the  structure  controls  the  rate  of  reac<on  

•  So  we  need  to  be  able  to  guess  about  its  proper<es  in  an  informed  way  

•  We  classify  them  in  general  ways  and  look  for  trends  in  reac<vity  –  the  conclusions  are  in  the  Hammond  Postulate  

Hammond Postulate

•  A  transi<on  state  should  be  similar  to  an  intermediate  that  is  close  in  energy  

•   Sequen4al  states  on  a  reac4on  path  that  are  close  in  energy  are  likely  to  be  close  in  structure  -­‐  G.  S.  Hammond  

10/28/15  

20  

Competing Reactions

•  Normal  Expecta<on:  Faster  reac<on  gives  more  stable  intermediate  

•  Intermediate  resembles  transi<on  state  

Rearrangements of Carbocations

•  Carboca<ons  undergo  structural  rearrangements  following  set  pajerns  

•  1,2-­‐H  and  1,2-­‐alkyl  shiks  occur  •  Goes  to  give  more  stable  carboca<on  •  Can  go  through  less  stable  ions  as  intermediates