chapter 6. photonic crystals, plasmonics, and...

42
Chapter 6. Photonic Crystals, Plasmonics, and Metamaterials Reading: Saleh and Teich Chapter 7 Novotny and Hecht Chapter 11 and 12

Upload: others

Post on 25-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Chapter 6.

    Photonic Crystals, Plasmonics,

    and Metamaterials

    Reading: Saleh and Teich Chapter 7

    Novotny and Hecht Chapter 11 and 12

  • 1. Photonic Crystals

    http://optoelectronics.eecs.berkeley.edu/photonic_crystals.htmlhttps://alexandramjurgens.wordpress.com/tag/ens-cachan/

    1D 2D 3D

    Periodic photonic structures

    Period ๐‘Ž ~ ๐œ†

  • Natural Photonic Crystals

    http://optoelectronics.eecs.berkeley.edu/photonic_crystals.html

  • Photonic Crystal Optical Fibers

    Photonic Bandgap Fibers for Precision Surgery and Cancer Therapy

    http://optoelectronics.eecs.berkeley.edu/photonic_crystals.html

  • Photonic Crystal Enhanced LED

    Photonic Integrated Circuits

    http://optoelectronics.eecs.berkeley.edu/photonic_crystals.html

    Photonic Crystal Waveguide

    http://spie.org/x104683.xml

  • A photonic crystal of dielectric media has a periodic lattice structure whose constituent media have distinctive dielectric constants:

    ๐œ€๐‘Ÿ ๐ซ = ๐œ€๐‘Ÿ ๐ซ + ๐ฎ

    for all Bravais lattice vectors, ๐ฎ = ๐‘›1๐š๐Ÿ + ๐‘›2๐š๐Ÿ + ๐‘›3๐š๐Ÿ‘

    The electromagnetic modes in the photonic crystal take the form,

    ๐‡ ๐ซ, ๐‘ก = ๐‡ ๐ซ ๐‘’โˆ’๐‘–๐œ”๐‘ก , ๐„ ๐ซ, ๐‘ก =๐‘–

    ๐œ”๐œ€0๐œ€๐‘Ÿ ๐ซ๐›ป ร— ๐‡ ๐ซ, ๐‘ก

    where the spatial mode function ๐‡ ๐ซ is determined by the wave equation

    ๐›ป ร—1

    ๐œ€๐‘Ÿ ๐ซ๐›ป ร— ๐‡ ๐ซ =

    ๐œ”2

    ๐‘2๐‡ ๐ซ

    Wave Equation in a Photonic Crystal

    ๐‡๐ค ๐ซEigenmodes

    Eigenvalues ๐œ” ๐ค

    3D

  • ๐‘’๐‘–๐‘˜๐‘ง

    ๐‘Ÿ๐‘‡๐‘’โˆ’๐‘–๐‘˜๐‘ง

    Bragg ReflectionIncident light

    ๐‘‘

    ๐‘Ÿ

    The total reflection coefficient ๐‘Ÿ from a semi infinite structure:

    ๐‘Ÿ๐‘‡ = ๐‘Ÿ + ๐‘Ÿ๐‘’2๐‘–๐‘˜๐‘‘ + ๐‘Ÿ๐‘’4๐‘–๐‘˜๐‘‘ + ๐‘Ÿ๐‘’6๐‘–๐‘˜๐‘‘ +โ‹ฏ =

    ๐‘Ÿ

    1 โˆ’ ๐‘’2๐‘–๐‘˜๐‘‘

    Light cannot propagate in a crystal, when the frequency of the incident light satisfies the Bragg condition.

    Origin of the photonic bandgap

    Diverges if ๐‘’2๐‘–๐‘˜๐‘‘ = 1 โ†’ ๐‘˜ =๐œ‹

    ๐‘‘Bragg condition

    Constructive interference

  • e(x) = e(x+a)a

    e1

    Any 1d Periodic System has a Gap

    w

    0 ฯ€/a

    sin

    ax

    cos

    ax

    x = 0

    Treat it asโ€œartificiallyโ€ periodic

  • e(x) = e(x+a)a

    e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2w

    0 ฯ€/a

    Add a smallโ€œrealโ€ periodicity๐œ€2 = ๐œ€1 + ฮ”๐œ€

    sin

    ax

    cos

    ax

    x = 0

    Any 1d Periodic System has a Gap

  • band gap

    w

    0 ฯ€/a

    sin

    ax

    cos

    ax

    e(x) = e(x+a)a

    e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2

    x = 0

    Splitting of degeneracy:state concentrated in higher index (๐œ€2) has lower frequency

    Any 1d Periodic System has a Gap

    Add a smallโ€œrealโ€ periodicity๐œ€2 = ๐œ€1 + ฮ”๐œ€

  • 1D Photonic Crystal

    ๐‘› ๐‘ง = ๐‘› ๐‘ง + ฮ›

    ๐ป ๐‘ง = ๐ป๐‘˜ ๐‘ง ๐‘’๐‘–๐‘˜๐‘ง

    ๐‘” =2๐œ‹

    ฮ›Dispersion relation: cos 2๐œ‹

    ๐‘˜

    ๐‘”= Re

    1

    ๐‘ก ๐œ”

    cos 2๐œ‹๐‘˜

    ๐‘”=

    1

    ๐‘ก12๐‘ก21cos ๐œ‹

    ๐œ”

    ๐œ”๐ตโˆ’ ๐‘Ÿ12

    2 cos ๐œ‹๐œ๐œ”

    ๐œ”๐ต

    ๐‘ก12๐‘ก21 =4๐‘›1๐‘›2๐‘›1 + ๐‘›2

    2 ๐‘Ÿ122 =

    ๐‘›2 โˆ’ ๐‘›12

    ๐‘›1 + ๐‘›22

    ๐œ”๐ต =๐‘๐œ‹

    เดค๐‘›ฮ›เดค๐‘› =

    ๐‘›1๐‘‘1 + ๐‘›2๐‘‘2ฮ›

    ๐œ =๐‘›1๐‘‘1 โˆ’ ๐‘›2๐‘‘2๐‘›1๐‘‘1 + ๐‘›2๐‘‘2

    Bragg frequency

    ๐‘›1 ๐‘›2

    ฮ›

    ๐‘‘1 ๐‘‘2

  • ๐œ”

    2๐œ”๐ต

    ๐œ”๐ต

    โˆ’๐‘”

    2

    ๐‘”

    2๐‘˜

    ๐œ” โˆ ๐‘˜

    photonic bangap

    photonic bangap

    cos 2๐œ‹๐‘˜

    ๐‘”=

    1

    ๐‘ก12๐‘ก21cos ๐œ‹

    ๐œ”

    ๐œ”๐ตโˆ’ ๐‘Ÿ12

    2 cos ๐œ‹๐œ๐œ”

    ๐œ”๐ตBand structure:

  • Y. Akahane et. al. Nature 425, 944 (2003)

    Photonic Nanocavities

    Photonic cavities strongly confine light.

    Applications โ€ข Coherent electronโ€“photon

    interactions โ€ข Ultra-small optical filtersโ€ข Low-threshold lasers โ€ข Photonic chipsโ€ข Nonlinear optics and

    quantum information processing

  • PC Waveguide: High transmission through sharp bends

    A. Mekis et al, PRL, 77, 3786 (1996)

    Highly efficient transmission of light around sharp corners in photonic bandgap waveguides

  • Tunneling through localized resonant state

    S. Fan et. al., PRL 80, 960 (1998).

    Complete transfer can occur between the continuums by creating resonant states of different symmetry, and by forcing an accidental degeneracy between them.

  • 2. Surface Plasmons

    K. Yao and Y. Liu, Nanotech. Rev. 3, 177 (2014)

  • Recall the inhomogeneous wave equation:

    Electromagnetic Waves in Conductors

    ๐œ•2๐„

    ๐œ•๐‘ง2โˆ’1

    ๐‘2๐œ•2๐„

    ๐œ•๐‘ก2= ๐œ‡0

    ๐œ•2๐

    ๐œ•๐‘ก2

    The equation of motion based on the forced oscillator model is

    Polarization ๐ when there are free electrons:

    ๐‘‘2๐‘ฅ ๐‘ก

    ๐‘‘๐‘ก2= ๐›พ

    ๐‘‘๐‘ฅ ๐‘ก

    ๐‘‘๐‘ก+๐‘’๐ธ0๐‘š๐‘’

    ๐‘’๐‘–๐œ”๐‘ก

    resistive force by scattering

    force due to the incident light field

    From this, we found the polarization:

    ๐‘ƒ ๐‘ก = ๐‘๐‘’๐‘ฅ ๐‘ก = โˆ’๐‘๐‘’2/๐‘š๐‘’๐œ”2 + ๐‘–๐œ”๐›พ

    ๐ธ(๐‘ก)

  • We now plug this in for the polarization term in the wave equation.

    Plasma Frequency

    Polarization in conductor: ๐‘ƒ ๐‘ก = โˆ’๐‘๐‘’2/๐‘š๐‘’๐œ”2 + ๐‘–๐œ”๐›พ

    ๐ธ(๐‘ก)

    Define a new constant, the โ€œplasma frequencyโ€ ๐œ”๐‘:

    ๐œ”๐‘2 =

    ๐‘๐‘’2

    ๐œ€0๐‘š๐‘’

    Thus ๐‘ƒ ๐‘ก = โˆ’๐œ€0๐œ”๐‘2

    ๐œ”2 + ๐‘–๐œ”๐›พ๐ธ(๐‘ก)

  • So this must be the (complex) refractive index for a metal.

    Back to the wave equation

    ๐œ•2๐ธ

    ๐œ•๐‘ง2โˆ’1

    ๐‘2๐œ•2๐ธ

    ๐œ•๐‘ก2= ๐œ‡0

    ๐œ•2๐‘ƒ

    ๐œ•๐‘ก2= โˆ’๐œ‡0๐œ€0

    ๐œ”๐‘2

    ๐œ”2 + ๐‘–๐œ”๐›พ

    ๐œ•2๐ธ

    ๐œ•๐‘ก2

    ๐œ•2๐ธ

    ๐œ•๐‘ง2โˆ’1

    ๐‘21 โˆ’

    ๐œ”๐‘2

    ๐œ”2 + ๐‘–๐œ”๐›พ

    ๐œ•2๐ธ

    ๐œ•๐‘ก2= 0

    This is the wave equation for a wave propagating in a uniform medium, if we define the refractive index of the medium as:

    ๐‘›2 ๐œ” = ๐œ€๐‘Ÿ ๐œ” = 1 โˆ’๐œ”๐‘2

    ๐œ”2 + ๐‘–๐œ”๐›พ

    ๐œ•2๐ธ

    ๐œ•๐‘ง2โˆ’๐‘›2

    ๐‘2๐œ•2๐ธ

    ๐œ•๐‘ก2= 0

  • Optical properties in the low-frequency limit, ๐Ž โ‰ช ๐œธ

    ๐œ€ ๐œ” = ๐œ€0 1 โˆ’๐œ”๐‘2

    ๐œ”2 + ๐‘–๐œ”๐›พโ‰ˆ ๐œ€0 1 + ๐‘–

    ๐œ”๐‘2

    ๐œ”๐›พDielectric function:

    ๐œ€ ๐œ” = ๐œ€0 1 + ๐‘–๐œŽ0๐œ€0๐œ”

    In the Drude model, ๐ฝ = ๐œŽ0๐ธ ๐œŽ0 =๐‘๐‘’2๐œ

    ๐‘š๐‘’=๐‘๐‘’2

    ๐‘š๐‘’๐›พwhere

    From Drude theory, that ๐œ~10โˆ’14 sec, so ๐›พ = 1/๐œ ~1014 Hz.

    For a typical metal, ๐œ”๐‘ is 100 or even 1000 times larger.

    (corresponding to the frequency of infrared light)

    (corresponding to the frequency of ultraviolet light)

    In the high-frequency limit, ๐Ž โ‰ซ ๐œธ ๐œ€ ๐œ” โ‰ˆ ๐œ€0 1 โˆ’๐œ”๐‘2

    ๐œ”2

  • A plot of Re ๐œ€ and Im ๐œ€ for illustrative values:

    โ€ข Imaginary part gets very small for high frequenciesโ€ข Real part has a zero crossing at the plasma frequency

    0 2000 4000 6000 8000 10000

    0

    -1

    -2

    -3

    -4

    -5

    1

    2

    3

    4

    5

    Frequency (cm-1)

    ๐œ€๐œ”/๐œ€

    0

    Re ๐œ€Im ๐œ€

    linear scale

    ๐œ”๐‘ = 4000 cm-1

    ๐›พ = 40 cm-1

    ๐œ”๐‘

    10-3

    10-1

    101

    103

    105

    ๐œ€๐œ”/๐œ€

    0100 101 102 103 104

    Frequency (cm-1)

    log scale

    ๐œ”๐‘

    Re ๐œ€

    โˆ’Re ๐œ€

    Im ๐œ€

    10510-5

    ๐œ€ ๐œ” = ๐œ€0 1 โˆ’๐œ”๐‘2

    ๐œ”2 + ๐‘–๐œ”๐›พDielectric function of metals:

  • Drude theory at optical frequencies

    large and negative (below ๐œ”๐‘)

    small and positive

    Re{๐œ€}

    ๐œ€0

    Im{๐œ€}

    ๐œ€0

    ๐œ€ ๐œ”

    ๐œ€0= 1 โˆ’

    ๐œ”๐‘2

    ๐œ”2 + ๐‘–๐œ”๐›พ

    โ‰… 1 โˆ’๐œ”๐‘2

    ๐œ”2+ ๐‘–

    ๐›พ

    ๐œ”

    ๐œ”๐‘2

    ๐œ”2

    ๐œ”๐‘ > ๐œ” โ‰ซ ๐›พ

    IR visible

  • In the regime where ๐œ” > ๐›พ,

    โ€ข For frequencies below the plasma frequency, ๐‘› is complex, so the wave is attenuated and does not propagate very far into the metal.

    โ€ข For high frequencies above the plasma frequency, ๐‘› is real. The metal becomes transparent! It behaves like a non-absorbing dielectric medium.

    Reflectivity drops abruptly at the plasma frequency.

    This is why x-rays can pass through metal objects.

    ๐‘› ๐œ” =๐œ€ ๐œ”

    ๐œ€0= 1 โˆ’

    ๐œ”๐‘2

    ๐œ”2

    High frequency optical properties

  • The uppermost part of the atmosphere, where many of the atoms are ionized. There are a lot of free electrons floating around here.

    For ๐‘~1012 mโˆ’3, the plasma frequency is:

    Radiation above 9 MHz is transmitted, while radiation at lower frequencies is reflected back to earth.

    Thatโ€™s why AM radio broadcasts can be heard very far away.

    Radio Waves in Ionosphere

    ๐œ”๐‘ =๐‘๐‘’2

    ๐œ€0๐‘š๐‘’= 2๐œ‹ ร— 9 MHz

  • ๐œ”๐‘ = 15000 cmโˆ’1

    ๐›พ = 40 cmโˆ’1

    For real metals, there is a very broad range of frequencies for which Im ๐œ€ ~0 and Re ๐œ€ < 0.

    0 4000 8000 12000 16000 20000

    0

    -4-8

    -12

    -16

    -20

    4

    8

    12

    16

    20

    Frequency (cm-1)

    e(w

    )/e 0

    Re ๐œ€

    Im ๐œ€

    linear

    scale

    ๐œ”๐‘

    This has interesting implications!!!

    Dielectric Function of Real Metals

  • Consider a wave at the interface between two semi-infinite non-magnetic media (๐œ‡1 = ๐œ‡2 = ๐œ‡0).

    Is there a solution to Maxwellโ€™s equations describing a wave that propagates along the surface?

    ๐œบ๐Ÿ ๐œบ๐Ÿ

    ๐‘ง

    ๐‘ฅ

    ๐‘ง = 0

    This propagates along the interface, and decays exponentially into both media.

    (Note: this is not a transverse wave, but thatโ€™s OK.)

    Waves trapped at an interface

    We can guess a solution of the form for media 1 and 2:

    ๐„๐‘š = ๐ธ1๐‘ฅ , 0, ๐ธ1๐‘ง ๐‘’โˆ’๐œ…๐‘š ๐‘ง ๐‘’๐‘– ๐‘˜๐‘ฅโˆ’๐œ”๐‘ก

    ๐๐‘š = 0, ๐ต1๐‘ฆ , 0 ๐‘’โˆ’๐œ…๐‘š ๐‘ง ๐‘’๐‘– ๐‘˜๐‘ฅโˆ’๐œ”๐‘ก

    ๐‘š = 1,2

  • In order to exist, the wave must satisfy Maxwellโ€™s equations:

    Since ๐œ…1 and ๐œ…2 are always positive, this shows that interface waves only exist if ๐œ€1 and ๐œ€2 have opposite signs.

    In a metal, ๐œ€ < 0 for frequencies less than ๐œ”๐‘.

    ๐‘–๐œ…1๐ต1๐‘ฆ = ๐œ€1๐œ”

    ๐‘2๐ธ1๐‘ฅ

    ๐‘–๐œ…2๐ต2๐‘ฆ = โˆ’๐œ€2๐œ”

    ๐‘2๐ธ2๐‘ฅ

    and also the continuity boundary conditions at ๐‘ง = 0:

    ๐ต1๐‘ฆ ๐‘ง = 0 = ๐ต2๐‘ฆ ๐‘ง = 0 ๐ธ1๐‘ฅ ๐‘ง = 0 = ๐ธ2๐‘ฅ ๐‘ง = 0

    It is easy to show that these conditions can only be satisfied if:๐œ€1๐œ…1

    +๐œ€2๐œ…2

    = 0

    Interface Waves

    ๐›ป ร— ๐ = ๐œ‡๐œ€๐œ•๐„

    ๐œ•๐‘ก

  • Surface Plasmon Polariton (SPP) - a surface wave moving along the interface between a metal and a dielectric (e.g., air)

    The electrons in the metal oscillate in conjunction with the surface wave, at the same frequency. In fact, an SPP is both an electromagnetic wave and a collective oscillation of the electrons.

    Surface Plasmon Polaritons

  • SPP Dispersion Relation

    ๐œ…1๐œ€1+๐œ…2๐œ€2

    = 0

    ๐ธ = ๐ธ0๐‘’โˆ’๐œ… ๐‘ง ๐‘’๐‘– ๐‘˜๐‘ฅโˆ’๐œ”๐‘ก

    ๐‘˜2 + ๐œ…๐‘–2 = ๐œ€๐‘–

    ๐œ”

    ๐‘

    2

    SPP Electric field:

    and ๐‘– = 1,2

    Dispersion relation:

    ๐‘˜ =๐œ”

    ๐‘

    ๐œ€1๐œ€2๐œ€1 + ๐œ€2

    1/2

    ๐œ€1 ๐œ” = 1 โˆ’๐œ”๐‘2

    ๐œ”2For

    ๐œ”๐‘ ๐‘ =๐œ”๐‘

    1 + ๐œ€2

  • Surface plasmonsare very sensitive to molecules on the metal surface.

    Surface plasmon sensors

  • Instead of considering a semi-infinite piece of metal, what if the metal object is small?

    e.g., a metal nanosphere

    We can still excite a plasmon, but in this case it does not propagate! The electrons just collectively slosh back and forth.

    excess negative charge

    excess positive charge

    There is a restoring force on the electron cloud! Once again, we encounter something like a mass on a spring, with a resonanceโ€ฆ

    Surface plasmons on small objects

  • 2.8 nm copper nanoparticles

    Pedersen et al., J Phys Chem C (2007)

    The sloshing electrons interact with light most strongly at the resonant frequency of their oscillation.

    gold nanoparticles give rise to the red colors in stained glass

    windows

    Surface plasmon resonance

  • Controlling the surface plasmon resonance

    gold nano-shells

    The frequency of the plasmon resonance can be tuned by changing the geometry of the metal nano-object.

    Halas group, Rice U.

  • 3. Metamaterials

    L. Billings, Nature 500, 138 (2013)

    Negative refractive index

    K. Yao and Y. Liu, Nanotech. Rev. 3, 177 (2014)

    Metadevices

    N. I. Zheludev and Y. S. Kivshar, Nature Mat. 11, 917 (2012)

  • Is an invisibility cloak magic or reality?

  • Invisibility Skin Cloak for Visible Light

    Ni et. al. Science 349, 1310 (2015).

    AFM Cloak on Cloak off

  • ๐œ† โ‰ซ ๐‘Ž, ๐‘

    a b

    Electromagnetic Metamaterial

    Physics Today Jun 2004 Physics Today Feb 2007

    Negativerefraction

    Invisibility

    Meta-atom

  • Y. Liu and X. Zhang, Chem. Soc. Rev. 40, 2494 (2011)

    Material Parameter Space by ๐œบ and ๐

    ๐‘›2 = ๐œ€๐‘Ÿ๐œ‡๐‘Ÿ

    ๐‘› = ยฑ ๐œ€๐‘Ÿ ๐œ‡๐‘Ÿ

    ๐ค ร— ๐„ = ๐œ‡๐œ”๐‡

    ๐ค ร— ๐‡ = โˆ’๐œ€๐œ”๐„๐œ€ = ๐œ€0๐œ€๐‘Ÿ, ๐œ‡ = ๐œ‡0๐œ‡๐‘Ÿ ๐’ = ๐„ ร— ๐‡

    ๐’ โˆฅ ๐ค

    ๐’ โˆฅ โˆ’๐ค

  • Y. Liu and X. Zhang, Chem. Soc. Rev. 40, 2494 (2011)

    Basic metamaterial structures to implement artificial electric and magnetic Responses

    Periodic Wires

    Split RingResonators(SRR)

  • Smith et. al., PRL14, 234 (2000)

    First Negative Index Material

  • Negative Refraction and Perfect Focusing

    RHM LHM

    ๐œƒ ๐œƒ

    ๐œƒ๐‘Ÿ > 0

    ๐œƒ๐‘Ÿ < 0

    ๐‘› = 1 ๐‘› > 1 ๐‘› = 1 ๐‘› < 1

    sin ๐œƒ = ๐‘› sin ๐œƒ๐‘Ÿ

    pointsource

    imageInternalfocus

    evanescent waves

    ๐‘› = 1 ๐‘› = 1๐‘› = โˆ’1

    Fang et. al. Science 308, 534 (2005)

    FIB 40nm

    AFM with superlens

    AFM w/o superlens

    Shelby et. al. Science 292, 77 (2001)

  • Y. Liu and X. Zhang, Chem. Soc. Rev. 40, 2494 (2011)

    Invisibility Cloak