chapter 6 part i 1h

32
1 CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter 

Upload: skriikk

Post on 04-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 1/32

CHAPTER 6INTRODUCTION TO

SPECTROPHOTOMETRIC METHODS

Interaction of Radiation With

Matter 

Page 2: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 2/32

 Announcements

• Add to your notes of Chapter 1

• Analytical sensitivity

 –  γ=m/ss

• Homework

 – Problems 1-9, 1-10 – Challenge Problem (?)1-12

Page 3: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 3/32

TOPICS

• General Properties of Light

• Wave Properties of Electromagnetic

Radiation

• Quantum-Mechanical Properties of

Radiation

• Quantitative Aspects ofSpectrophotochemical Measurements

Page 4: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 4/32

Page 5: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 5/32

 A. GENERAL PROPERTIES OF ER

• ER can be transmitted through vacuum

• The behavior/ properties of

electromagnetic radiations can be fully

explained only by its dual nature as a

wave and a particle

Page 6: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 6/32

Page 7: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 7/32

Simplified Picture of a Beam of ER

-Plane polarized

-Monochromatic (Single Frequency)

-Zero phase angle at time = 0

Page 8: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 8/32

B-1 Wave Characteristics•  Amplitude (A): length of electric vector at the maximum in the wave

• Wavelength (λ): linear distance between any two equivalent pointson successive waves/ distance traveled in one cycle.

• Period (p): time in seconds required to complete one cycle (time forpassage of successive maxima or minima through a fixed point inspace)

• Frequency(ν) = 1/p: number of oscillations/cycles of the field persecond. (hertz, Hz = s-1)

• Velocity of propagation (v) = vi = λi x ν – In vacuum (independent of wavelength)

• c = λ x ν = 2.99792 x 108 ms-1~ 3.00 x 108 ms-1

 – In medium containing matter: slower due to interactions betweenelectromagnetic field and electrons in matter 

 – In Air (0.03 % less than in vaccum)

181000.3   −×=≅   mscvair 

Page 9: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 9/32

Effect of matter on Velocity and Wavelength

Page 10: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 10/32

• Wave number (cm-1

)

 – k depends on medium

• Power of radiation (P): Energy of beam persecond on given area.

• Intensity (I) is the power per unit solid angle.

• P and I are proportional to the square of the

amplitude of the electrical field.

 ν 

λ ν    k 

cm==

)(

1

Page 11: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 11/32

Page 12: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 12/32

Spectroscopic Method, Type of ER, and

Type of Transition

Page 13: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 13/32

B-3 Mathematical Description of a Wave

)2sin(

2

)sin(

φ πν 

πν ω 

φ 

ω 

φ ω 

+=

=

−=

−=

−−−−−−=

+=

t  A y

angle phase

velocityangular 

t timeat  field electricof magnitute y

t  A y

Page 14: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 14/32

B-4 Superposition of waves

• Effects of wavestraversing the

same space are

additive

)sin(   φ ω    +=   t  A y

 : y electric field

: A amplitude:φ   phase angle

:ω   angular velocity of the vector

πν ω    2=  

= y  

..)2sin()2sin( 222111   ++++=   φ πν φ πν    t  At  A y

Page 15: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 15/32

Page 16: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 16/32

Summing waves of same frequency

•  Resultant has same frequency

•  The larger the phase difference the smaller the amplitude ofthe resultant

•  Same phase i.e. oo 360/360/021   ×=−   nφ φ  )& same frequency 

maximum amplitude = maximum constructive interference

•  phase difference = 180°/ 180° + n x360° zero amplitude =

maximum destructive interference

Page 17: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 17/32

Summing waves of different frequencies

• Resultant is not a sinfunction

• Period of beat

( )12

11

ν ν ν    −=

∆=bP

Page 18: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 18/32

Superposition of Waves: Applications

• Any periodic function can be described by a sum of simple sine orcosine terms

• Applications

1) construction of waves of specific shapes

• Square wave

• Fig. 6-6 p.138

2) De-convoluting a complex periodic function

 – Complex periodic functionFourrier Transformsum of sin or cosfunctions

 )2sin

1....10sin

5

16sin

3

12(sin   t n

nt t t  A y   πν πν πν πν    ++++=

Page 19: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 19/32

B-5 Diffraction of Radiation

• Bending of a parallel beamradiation as it passes througha narrow opening (slit) orsharp barrier (an edge).

• The slits acts like secondarysources

• Diffraction is a consequenceof interference of light that isallowed through smallapertures or light that hitssharp edges.

• Slit width ≅ λ

Diffraction of monochromatic radiation

Young’s experiment (1800)

Page 20: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 20/322

The grating equation

θ λ 

θ λ 

θ 

θ λ 

sin

int:

sin

sin

d n

 BC d erferenceorderof n

 BC n

u

 BC CF 

=

=

=

=

==

•Constructive interference occurs when the difference in path

(CF) traveled is an integer multiple of λ.

Page 21: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 21/322

Determination of Wavelength

OE 

 DE  BC 

OD

 DE  BC n

insubstitute

OD DE 

==

−−

=

λ 

θ 

)2(

sin

)2(sinθ λ    BC CF n   ==

Page 22: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 22/322

B-6 Coherent Radiation

• Coherent radiation is produced by a set of radiationsources which have – identical frequencies

 – constant phase relationships

• Incoherent sources – Emission of radiation by individual atoms or molecules results in

incoherent light beam: beam of radiation is the sum of individualevents (10-8s) (series of wave trains,)

 – Because the motion of atoms and molecules is random, thusphase variation is also random.

• Coherent sources – Optical lasers

Page 23: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 23/322

B-7 Transmission of Radiation

• Propagation of E.R. through a transparent substance.

• The velocity of propagation

 – lower than its velocity in vacuum.

 – This observation led to the conclusion that E.R. interacts withmatter.

• The velocity of propagation depends on:

 – composition and structure of matter (atoms, ions, molecules)

 – concentration of substance

• No frequency change no permanent transfer or energy.

 – Instantaneous (10-14 to 10-15s) dipoles are generated in

substance. (temporary deformation of electron clouds/polarization)

 – Interaction leads to scattering in the case of large particle

• Measure of Interaction - Refractive index at a specifiedfrequency )

i

iv

cn   =

Page 24: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 24/322

Transmission of radiation (Contd)

• Refractive is wavelengthdependent!

• Dispersion: variation of

refractive index of a

substance with

wavelength

• Application: selection of

materials for opticalcomponents

 – Lenses (normal)

 – Prism (near anomalous)

Page 25: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 25/322

B-8 Refraction

• Change in direction ofpropagation when

radiation traverses at a

sharp angle two media of

different density, due to

difference in velocity in the

two media.

Page 26: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 26/322

Refraction

Snell's law

2

1

1

2

2

1

sin

sin

υ 

υ 

η 

η 

θ 

θ ==  

2

12

sin

)(sin)(

θ 

θ η    vac

vac  =  

2

12

sin

)(sin)(

θ 

θ η    air 

air   =  

air vac   η η  00027.1=  

Page 27: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 27/32

Page 28: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 28/322

B-9 Reflection

• Light/ER bounced off theinterface between two media

• When the angle of incidence (θi)

is close to 90° most of the E.R. is

reflected.

• Fraction of radiation reflected for

a beam entering at right angles

2

12

2

12

0   )(

)(

η η 

η η 

+

−=

 I 

 I r 

 

θI=1  θrefl 

 Air=1

Glass=2 θrefr=2 

refleci   θ θ    =

Page 29: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 29/322

B-10 Scattering

• Nature of interaction between radiation and matter  – Electromagnetic field "pushes" electrons around.

 – Polarization of electron densities, i.e. change in electron densitydistribution.

 – Deformation of electron clouds caused by the alternatingelectromagnetic field of radiation

 – Energy is momentarily retained 10-14 to 10-15 s and reemitted= scatteredin all direction.

• Raleigh Scattering – Size of particles much smaller than lambda

 – Intensity proportional to• 1/λ4

• Dimension of particle

• Square of the polarizability of particles

• Scattering by Large Molecules• Radiation scattered is broadened (doppler effect)

• Used to determine size and shape of colloidal particles

Quasi Elastic Light Scattering / Dynanmic Light Scattering / PhotonCorrelation Spectroscopy

Page 30: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 30/323

Scattering

• Raman Scattering:

 –  νscattered ≠νincident

 – Energy transferred is quantized and

corresponds to vibrational energy transitions

Page 31: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 31/323

B-11 Polarization of Radiation

• Polarization refers to theconfinement of the electrical vectorin one plane

• Direction of Polarization of a waveis defined by the direction of theelectrical vector (E)

• The plane of polarization: definedby the E vector and the direction ofpropagation of the wave.

• An unpolarized wave: can bethought of as a randomsuperposition of many polarizedwave.

• From non-polarized to polarized – Use medium that interacts

selectively with radiation in oneplane

Page 32: Chapter 6 Part i 1h

8/13/2019 Chapter 6 Part i 1h

http://slidepdf.com/reader/full/chapter-6-part-i-1h 32/32

Polarized and Unpolarized ER