chapter 6 · institute of structural engineering page 1 method of finite elements i chapter 6 2d...

53
Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slides are prepared in collaboration with Dr. S. Triantafyllou, Assistant Professor at the University of No?ingham

Upload: others

Post on 21-Jan-2020

11 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 1

Method of Finite Elements I

Chapter 6

2D Elements

*slides  are  prepared  in  collaboration  with  Dr.  S.  Triantafyllou,  Assistant  Professor  at  the  University  of  No?ingham

Page 2: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 2

Method of Finite Elements I 30-Apr-10

Today’s  Lecture  Contents

• Continuum  Elements –  Plane  Stress –  Plane  Strain

• Structural  Elements –  Plate  Elements

Page 3: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 3

Method of Finite Elements I 30-Apr-10

FE  Classification

` "

Page 4: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 4

Method of Finite Elements I 30-Apr-10

2D  vs.  3D  Formulations

Three-­‐‑dimensional  elasticity  problems  are  very  difficult  to  solve.  Thus  we  will  first  develop  governing  equations  for  two-­‐‑dimensional  problems,  and  will  explore  two  basic  theories:

-­‐‑  Plane  Strain -­‐‑  Plane  Stress

The  basic  theories  of  plane  strain  and  plane  stress  represent  the  fundamental  plane  problem  in  elasticity.    While  these  two  theories  apply  to  significantly  different   types   of   two-­‐‑dimensional   bodies,   their   formulations   yield   very  similar  field  equations.  

Since   all   real   elastic   structures   are   three-­‐‑dimensional,   theories   set   forth  here   will   be   approximate   models.   The   nature   and   accuracy   of   the  approximation  will  depend  on  problem  and  loading  geometry

Page 5: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 5

Method of Finite Elements I 30-Apr-10

Plane  Strain Consider  an  infinitely  long  cylindrical  (prismatic)  body  as  shown.    If  the  body  forces  and  tractions  on  lateral  boundaries  are  independent  of  the  z-­‐‑coordinate  and   have   no   z-­‐‑component,   then   the   deformation   field   can   be   taken   in   the  reduced  form    

x  

y  

z  R  

u = u(x, y) , v = v(x, y) , w = 0

Page 6: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 6

Method of Finite Elements I 30-Apr-10

Examples  of  Plane  Strain

x

y

z

x

y

z

P

Long  Cylinders  Under  Uniform  Loading

Semi-­‐‑Infinite  Regions  Under  Uniform  Loadings

Page 7: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 7

Method of Finite Elements I 30-Apr-10

Plane  Strain  Equations

0,2

)()(

2)(,2)(

=τ=τµ=τ

σ+σν=+λ=σ

µ++λ=σµ++λ=σ

yzxzxyxy

yxyxz

yyxyxyxx

eee

eeeeee

Equilibrium  Equations  

0

0

=+∂σ∂

+∂τ∂

=+∂τ∂

+∂σ∂

yyxy

xxyx

Fyx

Fyx

Strain  Compatibility  

yxe

xe

ye xyyx

∂∂∂

=∂∂

+∂∂ 2

2

2

2

2

2

Strain  Displacement  Relations

ex =∂u∂x

, ey =∂v∂y

, exy =12

∂u∂y

+ ∂v∂x

⎛⎝⎜

⎞⎠⎟

ez = exz = eyz = 0

Strains  vs.  Stresses

Page 8: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 8

Method of Finite Elements I 30-Apr-10

Plane  Stress Consider  a  where  one  dimension,  eg.  along  z,   is  small   in  comparison  to  the  other  dimensions  in  the  problem.    Since  the  region  is  thin  in  the  z-­‐‑direction,  there  can  be  liMle  variation  in  the  stress  components                                through  the  thickness,  and  thus  they  will  be  approximately  zero  throughout   the   entire   domain.   Finally,   since   the   region   is   thin   in   the   z-­‐‑direction   it   can   be   argued   that   the   other   non-­‐‑zero   stresses  will   have   liMle  variation  with  z.    Under  these  assumptions,  the  stress  field  can  be  taken  as

0

),(

),(),(

=τ=τ=σ

τ=τ

σ=σσ=σ

yzxzz

xyxy

yy

xx

yxyxyx

 

x  

y  

z  R  

2h  

yzxzz ττσ ,,

Page 9: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 9

Method of Finite Elements I 30-Apr-10

Examples  of  Plane  Stress  Problems

Thin  Plate  With  Central  Hole

Circular  Plate  Under  Edge  Loadings

Page 10: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 10

Method of Finite Elements I 30-Apr-10

Plane  Stress  Equations

Strain  Displacement  Relations

Equilibrium  Equations  

0

0

=+∂σ∂

+∂τ∂

=+∂τ∂

+∂σ∂

yyxy

xxyx

Fyx

Fyx

Strain  Compatibility  

yxe

xe

ye xyyx

∂∂∂

=∂∂

+∂∂ 2

2

2

2

2

2

0,1

)(1

)(

)(1,)(1

==τν+=

+ν−

ν−=σ+σν−=

νσ−σ=νσ−σ=

yzxzxyxy

yxyxz

xyyyxx

eeE

e

eeE

e

Ee

Ee

021,0

21

21,,,

=⎟⎠⎞⎜

⎝⎛

∂∂+

∂∂==⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂+

∂∂=

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂+

∂∂=

∂∂=

∂∂=

∂∂=

xw

zue

yw

zve

xv

yue

zwe

yve

xue

xzyz

xyzyx

Strains  vs.  Stresses

Page 11: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 11

Method of Finite Elements I 30-Apr-10

Plane  Stress/  Strain  Elasticity v  Plane  Strain

Premise 1:

Premise 2: Loads are applied only within the plane Premise 3: The applied loads are independent of z Premise 4: No load is applied on the boundary surfaces normal to the

Conclusion:

Premise 5: The edge surfaces are rigid

Stress Tensor

Strain Tensor

Constitutive Matrix

Page 12: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 12

Method of Finite Elements I 30-Apr-10

Plane  Stress/  Strain  Elasticity v  Plane  Stress

Premise  1:  

Premise  2:   Loads  are  applied  only  within  the              plane   Premise  3:   The  applied  loads  are  independent  of   Premise  4:   No  load  is  applied  on  the  boundary  surfaces  normal  to  the    

Conclusion:  

Stress Tensor

Strain Tensor

Constitutive Matrix

Page 13: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 13

Method of Finite Elements I

What are the types of Finite Elements used in plane stress/strain formulations?

Page 14: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 14

Method of Finite Elements I 30-Apr-10

Constant  Strain  Triangle The  Constant  Strain  Triangle  element  is  historically    the  first  finite  element  ever  used  in  engineering  practice  (Argyris,  1960,  Turner,  1956)  for  the  evaluation  of  stress  distribution  in  wing  panels.

The  CST  Element

v  Plane  Element i.  The  displacement  field  varies  within  the  x-­‐‑y  plane

v  Constant  strain  field

i.  The  strain  does  not  vary  within  the  element v  Elastic  Material  Behaviour

1 2

3

We  number  the  nodes  in  counter-­‐‑clockwise  order.  In  this  way,  the  normal  vector  to  the  123  surface  will  point  towards  the  positive  z    axis  and  the  resulting  area  of  the  triangle  will  be  a  positive  quantity.

Page 15: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 15

Method of Finite Elements I 30-Apr-10

The  CST  Element

Remember  that  the  deformation  is  the  first  derivative  of  the  displacement  field Compatibility  equations  in  

the  2D  plane

Therefore  if  we  ask  for  the  strain  field  to  be  constant

The  displacement  field  has  to  be  a  linear  function  of  

Page 16: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 16

Method of Finite Elements I 30-Apr-10

The  CST  Element

1 2

3

Therefore,  the  following  “candidate”  displacement  field  approximation  is  considered:

Page 17: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 17

Method of Finite Elements I 30-Apr-10

The  CST  Element Therefore  the  shape  functions  of  the  CST  element  are  readily  derived  as

where  the  shape  function  matrix  assumes  the  following  form

and

Page 18: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 18

Method of Finite Elements I 30-Apr-10

CST  Shape  Functions and  if  we  plot  these  shape  functions  over  the  surface  of  the  element:

1

2

3 1

3

2

1

2

3

Page 19: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 19

Method of Finite Elements I 30-Apr-10

v The  CST  element  is  fairly  accurate  within  zones  of  small  variation  of  stresses.    However  a  fine  mesh  is  required  in  every  other  case  in  order  for  FEA  to  converge  to  an  accurate  solution.

v As  already  discussed  during  the  Galerkin  lectures,  the  FEA  solution  is  refined  either  by  increasing  the  number  of  finite  elements  or  by  increasing  the  order  of  the  interpolating  (test)  functions  used  in  the  FE  formulation.  Thus,  there  is  a  trade-­‐‑off  between  required  mesh-­‐‑size  and  interpolation  complexity  for  the  same  degree  of  accuracy.

v Based  on  that  rationale,  the  Quadrilateral  4-­‐‑node  (Q4)  finite  element  

was  introduced  in  an  effort  to  effectively  model  the  stress  variations  of  plane  elasticity  problems.

The  Q4  Element

Page 20: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 20

Method of Finite Elements I 30-Apr-10

The  Q4  Element

1 2

3 4

v  Plane  Element i.  The  displacement  field  varies  only  within  the  x-­‐‑y  plane

v  Elastic  Material  Behaviour

v  Formulation  Assumptions

Page 21: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 21

Method of Finite Elements I 30-Apr-10

The  Q4  Element

We  number  the  nodes  in  counter-­‐‑clockwise  order.  In  this  way,  the  normal  vector  to  the  1234  surface  will  point  towards  the  positive        axis  and  the  resulting  area  of  the  triangle  will  be  a  positive  quantity.

1 2

3 4

v  Plane  Element i.  The  displacement  field  varies  only  within  the  x-­‐‑y  plane

v  Elastic  Material  Behaviour

v  Formulation  Assumptions

Page 22: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 22

Method of Finite Elements I 30-Apr-10

The  Q4  Element v  Formulation  Assumptions

The  following  bilinear  “candidate”  displacement  field  approximation  is  considered:

1 2

3 4

Page 23: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 23

Method of Finite Elements I 30-Apr-10

The  Q4  Element

The  following  bilinear  “candidate”  displacement  field  approximation  is  considered: 1 2

3 4

The  formulation  is  indifferent  to  the   coordinate  system.   So  why  not  make  things  easier?

Page 24: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 24

Method of Finite Elements I 30-Apr-10

The  Q4  Element

The  arbitrary  nodal  displacement  values    are  introduced  at  the  r.h.s.  of  the  interpolation  equation:

Exactly  the  same  procedure  as  in  the  CST  element!

Page 25: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 25

Method of Finite Elements I 30-Apr-10

The  Q4  Element Following  the  standard  procedure,  the  arbitrary  nodal  displacement  values    are  introduced  at  the  r.h.s.  of  the  interpolation  equation:

Therefore  the  Shape  Function  Matrix  is  derived  form  the  following:

Shape  Functions

Page 26: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 26

Method of Finite Elements I 30-Apr-10

The  Q4  Element

Page 27: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 27

Method of Finite Elements I 30-Apr-10

The  Q4  Element The  compatibility  relations  are  again  expressed  in  matrix  form

and  therefore  by  substituting  the  interpolation  equation  into  the  r.h.s.

where  now  

Page 28: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 28

Method of Finite Elements I 30-Apr-10

Q4  Stiffness  Matrix The  stiffness  matrix  is  derived  as

and  given  that  the  element  is  rectangular

and  if  the  thickness  is  constant

The  evaluation  of  the  stiffness  matrix  can  be  performed  analytically.  Integration  involves  only  linear  expressions  of            and    

Page 29: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 29

Method of Finite Elements I 30-Apr-10

Consistent  nodal  force  vector Consider  the  case  of  distributed  loading  along  the  element’s  12  side

1 2

3 4

Equivalent  nodal  vector  due  to  a  traction  load

In  this  case

For  example,  the          component  along  the  12  side  is

External  Work  due  to  surface  tractions

Page 30: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 30

Method of Finite Elements I 30-Apr-10

Consistent  nodal  force  vector Consider  the  case  of  distributed  loading  along  the  element’s  12  side

1 2

3 4

Equivalent  nodal  vector  due  to  a  traction  load

In  this  case

External  Work  due  to  surface  tractions

In  matrix  form

Page 31: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 31

Method of Finite Elements I 30-Apr-10

Consistent  nodal  force  vector Consider  the  case  of  distributed  loading  along  the  element’s  12  side

1 2

3 4

Equivalent  nodal  vector  due  to  a  traction  load

In  this  case

External  Work  due  to  surface  tractions

Consistent Load Vector

Page 32: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 32

Method of Finite Elements I 30-Apr-10

Taxonomy  of  Finite  Elements

Page 33: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 33

Method of Finite Elements I 30-Apr-10

The  Euler/Bernoulli  beam  theory

v  Uniaxial  Element i.  The  longitudinal  direction  is  sufficiently  larger  than  the  

other  two   v  Prismatic  Element

i.  The  cross-­‐‑section  of  the  element  does  not  change  along  the  element’s  length

v  Euler/  Bernoulli  assumption i.  Upon  deformation,  plane  sections  remain  plane  AND  

perpendicular  to  the  beam  axis

Assumptions

But  what  happens  if  two  dimensions  are  sufficiently  larger  that  the  third  one?

Page 34: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 34

Method of Finite Elements I 30-Apr-10

The  plate  problem

•  The  slab  thickness  is  sufficiently  smaller  that  the  two  leading  dimensions

•  Consequently,  the  three  

dimensional  problem  is  reduced  to  a  two-­‐‑dimensional  one  and  the  plate  problem  is  examined  at  the  mid-­‐‑surface.  

•  If  the  thickness  of  the  slab  is          then  the  mid-­‐‑surface  is  located  at  a  distance                from  each  lateral  surface

Page 35: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 35

Method of Finite Elements I 30-Apr-10

The  plate  problem Two  possible  loading  states

Case  1:  Loads  applied  within  the                plane Case  2:  Loads  applied  perpendicular  to  the  mid-­‐‑surface

Plane  stress  (or  membrane)  problem Bending

Page 36: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 36

Method of Finite Elements I 30-Apr-10

The  plate  problem Two  possible  loading  states

Case  1:  Loads  applied  within  the                plane Case  2:  Loads  applied  perpendicular  to  the  mid-­‐‑surface

Plane  stress  (or  membrane)  problem Bending

i.   Plate  theory  is  only  concerned  with  the  response  of  the  body  due  to  bending  loads

ii.   The  combined  response  under  membrane  and  bending  conditions  of  plane  (or  curved)  surfaces  is  treated  under  the  framework  of  shell  theory

Page 37: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 37

Method of Finite Elements I 30-Apr-10

Plate  Theories

thick thin very  thin

L/t 5-­‐‑10 5-­‐‑100 >100

characteristics transverese  shear  deformations

no  transverse  shear  deformations

Geometrically  nonlinear

Plate  theory Reissner,  Mindlin Kirchhoff Von  Karman

Beam  Theory Timoshenko Euler,  Bernoulli

Page 38: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 38

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory Assumptions •  The  plate  is  thin  in  the  sense  that  the  thickness            

is  small  compared  to  the  leading  dimensions,  but  not  so  thin  that  the  lateral  deflection    becomes  comparable  to            .

•  The  plate  thickness  is  either  uniform  or  varies  slowly  so  that  three-­‐‑dimensional  stress  effects  are  ignored.

•  The  plate  is  symmetric  in  fabrication  about  the  mid-­‐‑surface.

•  Applied  transverse  loads  are  distributed  over  plate  surface  areas  of  dimension            or  greater.

•  The  support  conditions  are  such  that  no  significant  extension  of  the  mid-­‐‑surface  develops. Augustus  Edward  Hough  Love

(1863-­‐‑1940)

Gustav  Robert  Kirchhoff (1824-­‐‑1887)

Page 39: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 39

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory Assumptions

From  (i),  since            is  very  small,  the  variation  of            with  respect  to  z  can  be  neglected.  Therefore:

Additionally,  the  following  kinematic  assumption  is  introduced: “Planes  perpendicular  to  the  mid-­‐‑surface  will  remain  plane  and  perpendicular  to  the  deformed  

mid-­‐‑surface”

This  is  the  two-­‐‑dimensional  equivalent  of  the  Euler-­‐‑Bernoulli  kinematic  

assumption  for  beams!!

Augustus  Edward  Hough  Love (1863-­‐‑1940)

Gustav  Robert  Kirchhoff (1824-­‐‑1887)

Page 40: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 40

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory Remember  in  the  one-­‐‑dimensional  beam  problem...

Point  A  displacement (that’s  because  the  section  remains  plane)

(that’s  because  the  plane  remains  perpendicular  to  the  neutral  axis)

Page 41: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 41

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory Similarly  in  the  two-­‐‑dimensional  plate  problem  –  Bending  with  respect  to            axis

Point  A  displacement (that’s  because  the  section  remains  plane)

(that’s  because  the  plane  remains  perpendicular  to  the  neutral  axis)

Positive  rotation  with  respect  to                results  in  positive  displacements  

along  

Page 42: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 42

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory Similarly  in  the  two-­‐‑dimensional  plate  problem  –  Bending  with  respect  to            axis

Point  A  displacement (that’s  because  the  section  remains  plane)

(that’s  because  the  plane  remains  perpendicular  to  the  neutral  axis)

Positive  rotation  with  respect  to                results  in  negative  displacements  

along  

Page 43: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 43

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory Compatibility  Relations  (Strain-­‐‑Displacement)

Page 44: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 44

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory Stress-­‐‑strain  relations  (Considering  elastic  isotropic  material)

and

1st  Remark The  constitutive  relation  results  when  we  substitute  the  zero  deformation  terms  (derived  in  the  previous  slide)  to  the  three-­‐‑dimensional  elastic  stress-­‐‑strain  relations.  The  derived  relation  is  identical  to  the  plane-­‐‑strain  case.  Thus,  according  to  the  Kirchhoff-­‐‑Love  assumptions,  every  infinitesimal  particle  within  the  plate  is  in  a  plane-­‐‑strain  condition

2nd  Remark An  immediate  consequence  is  that  the  shear  stress  components                and                vanish  

Page 45: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 45

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory Stress-­‐‑strain  relations  (Considering  elastic  isotropic  material)

and

Substituting  for  the  strain  components  with  respect  to  the  displacement  

As  expected,  all  the  stress  components  are  linear  functions  of  

(I)

Page 46: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 46

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory Stress  Resultants

Since  the  normal  stress  distribution  is  not  uniform  they  give  rise  to  a  moment  vector  (created  from  the  couple  of  tension  and  compression  forces.

Since  the  shear  stress  distribution  is  not  uniform  they  also  give  rise  to  a  moment  vector  (created  from  the  couple  of  tension  and  compression  forces.

Page 47: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 47

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory

Stress  Resultants However,                                                          are  not  the  only  stress-­‐‑resultants.  For  these  moments  to  be  in  equilibrium,  a  pair  of  shear  forces  must  exist.  Considering  an  infinitesimal  mid-­‐‑surface  element                      the  positive  moments  are  defined  as:

Page 48: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 48

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory Stress  Resultants If  a  distributed  load  is  applied  onto  the  element,  equilibrium  with  respect  to  the  vertical  axis  z  results  in:  

Page 49: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 49

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory Stress  Resultants Similarly,  the  following  equations  are  derived,  considering  moment  equilibrium  with  respect  to                            axes      

Page 50: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 50

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory Differential  Form  with  respect  to   Substituting  the  stress-­‐‑displacement  relations  (I)  into  the  definition  of  the  moment  components  the  following  relations  are  derived

the  bending  rigidity  of  the  plate

Page 51: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 51

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory

Square  simply  supported  plate  subject  to  uniform  distributed  loading

bending  in  both  directions

pay  a?ention  to  the  way  the  corner  regions  deform….

Page 52: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 52

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory This  is  the  effect  of  the  twisting  moment  

bending  in  both  directions

darker  areas  denote  larger  values  of  twisting  moments

and  this  is  why  specifications  make  sure  that  an  additional  amount  of  reinforcement  is  provided  for  corner  areas  of  slabs

Page 53: Chapter 6 · Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 6 2D Elements *slidesarepreparedincollaborationwithDr.S. Triantafyllou,Assistant

Institute of Structural Engineering Page 53

Method of Finite Elements I 30-Apr-10

Kirchhoff-­‐‑Love  Plate  Theory The  Kirchhoff-­‐‑Love  plate  theory   •  extends  the  Euler/Bernoulli  beam  assumptions  to  the  two-­‐‑dimensional  

case •  Based  on  that,  every  significant  measure  of  rotation,  force,  moment  is  

evaluated  with  respect  to  the  vertical  deflection Assumptions:   The  main  kinematic  assumption  is  that  “Plane  surfaces  remain  plane  and  perpendicular  to  the  mid-­‐‑surface  of  the  plate”. General  Remarks The  Kirchhoff-­‐‑Love  theory  predicts  a  zero  distribution  of  shear  stresses  along  the  z  direction.  Thus,  it  can  only  be  applied  in  problems  where  the  variation  of  such  stresses  is  expected  to  be  small  and  their  mean  value  does  not  deviate  from  0.    Such  can  be  considered  the  case  of  thin  plates.