chapter 4 this powerpoint presentation was created by holt

43
Chapter 4 This PowerPoint Presentation was created by HOLT

Upload: basil-gallagher

Post on 27-Dec-2015

223 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Chapter 4 This PowerPoint Presentation was created by HOLT

Chapter 4This PowerPoint Presentation was created by HOLT

Page 2: Chapter 4 This PowerPoint Presentation was created by HOLT

4.1: The Components of an Ecosystem In order to survive, ecosystems need five

basic components: energy, mineral nutrients, water, oxygen, and living organisms.

Plants and rocks are components of the land ecosystems, while most of the energy of an ecosystem comes from the sun.

If one part of the ecosystem is destroyed or changes, the entire system will be affected.

Page 3: Chapter 4 This PowerPoint Presentation was created by HOLT

Defining an Ecosystem Ecosystems are communities of organisms

and their abiotic environment. Examples are an oak forest or a coral reef. Ecosystems do not have clear boundaries. Things move from one ecosystem to

another. Pollen can blow from a forest into a field, soil can wash from a mountain into a lake, and birds migrate from state to state.

Page 4: Chapter 4 This PowerPoint Presentation was created by HOLT

Biotic and Abiotic Factors Biotic factors are environmental factors

that are associated with or results from the activities of living organisms which includes plants, animals, dead organisms, and the waste products of organisms.

Abiotic factors are environmental factors that are not associated with the activities of living organisms which includes air, water, rocks, and temperature.

Scientists can organize these living and nonliving things into various levels.

Page 5: Chapter 4 This PowerPoint Presentation was created by HOLT

Organisms Organisms are living things that can

carry out life processes independently. You are an organism, as is and ant, and

ivy plant, and each of the many bacteria living in your intestines.

Every organism is a member of a species.

Species are groups of organisms that are closely related can can mate to produce fertile offspring.

Page 6: Chapter 4 This PowerPoint Presentation was created by HOLT

Populations Members of a species may not all live in the

same place. Field mice in Maine will not interact with field mice in Texas. However, each organism lives as part of a population.

Populations are groups of organisms of the same species that live in a specific geographical area and interbreed.

For example, all the field mice in a corn field make up a population of field mice.

Page 7: Chapter 4 This PowerPoint Presentation was created by HOLT

Populations An important characteristic of a

population is that its members usually breed with one another rather than with members of other populations

For example, bison will usually mate with another member of the same herd, just as wildflowers will usually be pollinated by other flowers in the same field.

Page 8: Chapter 4 This PowerPoint Presentation was created by HOLT

Communities Communities are groups of various

species that live in the same habitat and interact with each other.

Every population is part of a community. The most obvious difference between

communities is the types of species they have.

Land communities are often dominated by a few species of plants. These plants then determine what other organisms can live in that community.

Page 9: Chapter 4 This PowerPoint Presentation was created by HOLT

Habitat Habitats are places where an organism

usually lives. Every habitat has specific characteristics

that the organisms that live there need to survive. If any of these factors change, the habitat changes.

Organisms tend to be very well suited to their natural habitats. If fact, animals and plants usually cannot survive for long periods of time away from their natural habitat.

Page 10: Chapter 4 This PowerPoint Presentation was created by HOLT

4.2: Evolution…Evolution by Natural Selection English naturalist Charles Darwin observed

that organisms in a population differ slightly from each other in form, function, and behavior.

Some of these differences are hereditary. Darwin proposed that the environment

exerts a strong influence over which individuals survive to produce offspring, and that some individuals, because of certain traits, are more likely to survive and reproduce than other individuals.

Page 11: Chapter 4 This PowerPoint Presentation was created by HOLT

Evolution by Natural Selection Natural selection is the process by which

individuals that have favorable variations and are better adapted to their environment survive and reproduce more successfully than less well adapted individuals do.

Darwin proposed that over many generations, natural selection causes the characteristics of populations to change.

Evolution is a change in the characteristics of a population from one generation to the next.

Page 12: Chapter 4 This PowerPoint Presentation was created by HOLT

Nature Selects Darwin thought that nature selects for

certain traits, such as sharper claws, because organisms with these traits are more likely to survive.

Over time, the population includes a greater and greater proportion of organisms with the beneficial trait.

As the populations of a given species change, so does the species.

Page 13: Chapter 4 This PowerPoint Presentation was created by HOLT

Evolution by Natural Evolution

Page 14: Chapter 4 This PowerPoint Presentation was created by HOLT

Nature Selects An example of evolution is a population of

deer that became isolated in a cold area. Some of the deer had genes for thicker,

warmer fur. These deer were more likely to survive, and their young with thick fur were more likely to survive to reproduce.

Adaptation is the process of becoming adapted to an environment. It is an anatomical, physiological, or behavioral change that improves a population’s ability to survive.

Page 15: Chapter 4 This PowerPoint Presentation was created by HOLT

Coevolution The process of two species evolving in

response to long-term interactions with each other is called coevolution.

An example is the Hawaiian honeycreeper, which has a long, curved beak to reach nectar at the base of a flower. The flower has structures that ensure that the bird gets some pollen on its head.

When the bird moves the next flower, some of the pollen will be transferred, helping it to reproduce.

Page 16: Chapter 4 This PowerPoint Presentation was created by HOLT

Coevolution The honeycreeper’s adaptation is along,

curved beak. The plant has two adaptations: The first is the sweet nectar, which

attracts the birds. The second is the flower structure that

forces pollen onto the bird’s head when the bird sips nectar.

Page 17: Chapter 4 This PowerPoint Presentation was created by HOLT

Evolution by Artificial Selection Artificial selection is the selective

breeding of organisms, by humans, for specific desirable characteristics.

Dogs have been bred for certain characteristics.

Fruits, grains, and vegetables are also produced by artificial selection. Humans save seeds from the largest, and sweetest fruits. By selecting for these traits, farmers direct the evolution of crop plants to produce larger, sweeter fruit.

Page 18: Chapter 4 This PowerPoint Presentation was created by HOLT

Evolution of Resistance Resistance is the ability of an organism to

tolerate a chemical or disease-causing agent.

An organism may be resistant to a chemical when it contains a gene that allows it to break down a chemical into harmless substances.

Humans promote the evolution of resistant populations by trying to control pests and bacteria with chemicals.

Page 19: Chapter 4 This PowerPoint Presentation was created by HOLT

Pesticide Resistance A pesticide sprayed on corn to kill

grasshoppers, for example, may kill most of the grasshoppers, but those that survive happen to have a gene that protects them from the pesticide. These surviving insects pass on this resistant gene to their offspring.

Each time the corn is sprayed, more resistant grasshoppers enter the population. Eventually the entire population will be resistant, making the pesticide useless.

Page 20: Chapter 4 This PowerPoint Presentation was created by HOLT

Pesticide Resistance

Page 21: Chapter 4 This PowerPoint Presentation was created by HOLT

4.3: The Diversity of Living Things Diversity of Living Things Most scientists classify organisms into six

kingdoms based on different characteristics. Members of the six kingdoms get their food

in different ways and are made up of different types of cells, the smallest unit of biological organization.

The cells of animals, plants, fungi, and protists all contain a nucleus. While cells of bacteria, fungi, and plants all have cell walls.

Page 22: Chapter 4 This PowerPoint Presentation was created by HOLT

The Kingdoms of Life

Page 23: Chapter 4 This PowerPoint Presentation was created by HOLT

Bacteria Bacteria are extremely small, single-celled

organisms that usually have a cell wall and reproduce by cell division.

Unlike all other organisms, bacteria lack nuclei.

There are two main kinds of bacteria, archaebacteria and eubacteria. Most bacteria is eubacteria.

Bacteria live in every habitat on Earth, from hot springs to the bodies of animals.

Page 24: Chapter 4 This PowerPoint Presentation was created by HOLT

Bacteria and the Environment Some kinds of bacteria break down the

remains and wastes of other organisms and return the nutrients to the soil.

Others recycle nutrients, such as nitrogen and phosphorus.

Certain bacteria can convert nitrogen from the air into a form that plants can use. This conversion is important because nitrogen is the main component of proteins and genetic material.

Page 25: Chapter 4 This PowerPoint Presentation was created by HOLT

Bacteria and the Environment Bacteria also allow many organisms,

including humans, to extract certain nutrients from their food.

The bacterium, Escherichia coli or E. coli, is found in the intestines of humans and other animals and helps digest food and release vitamins that humans need.

Page 26: Chapter 4 This PowerPoint Presentation was created by HOLT

Fungi A fungus is an organism whose cells have

nuclei, rigid cell walls, and no chlorophyll and that belongs to the kingdom Fungi.

Cell walls act like mini-skeletons that allow fungi to stand up right.

A mushroom is the reproductive structure of a fungus. The rest of the fungus is an underground network of fibers that absorb food from decaying organisms in the soil.

Page 27: Chapter 4 This PowerPoint Presentation was created by HOLT

Fungi Fungi get their food by releasing chemicals

that help break down organic matter, and then absorbing the nutrients.

The bodies of most fungi are huge networks of threads that grow through the soil dead wood, or other material on which the fungi is feeding.

Like bacteria, fungi play an important role in breaking down the bodies of dead organisms.

Page 28: Chapter 4 This PowerPoint Presentation was created by HOLT

Fungi Some fungi, like some bacteria, cause

disease. Athlete’s foot is an example of a condition caused by fungi.

Other fungi add flavor to food as in blue cheese. The fungus gives the cheese both its blue color and strong flavor.

Yeasts are fungi that produce the gas that makes bread rise.

Page 29: Chapter 4 This PowerPoint Presentation was created by HOLT

Protists Protists are diverse organisms that belong

to the kingdom Protista. Some, like amoebas, are animallike. Others

are plantlike, such as kelp, and some resemble fungi.

Most protists are one-celled microscopic organisms, including diatoms, which float on the ocean surface,

Another protist, Plasmodium, is the one-celled organism that causes the disease malaria.

Page 30: Chapter 4 This PowerPoint Presentation was created by HOLT

Protists From an environmental standpoint, the

most important protists are algae. Algae are plantlike protists that can

make their own food using the energy from the sun.

They range in size from the giant kelp to the one-celled phytoplankton, which are the initial source of food in most ocean and freshwater ecosystems.

Page 31: Chapter 4 This PowerPoint Presentation was created by HOLT

Plants Plants are many-celled organisms that make

their own food using the sun’s energy and have cell walls.

Most plants live on land where they use their leaves to get sunlight, oxygen, and carbon dioxide from the air. While absorbing nutrients and water from the soil using their roots.

Leaves and roots are connected by vascular tissue, which has thick cell walls and serves is system of tubes that carries water and food.

Page 32: Chapter 4 This PowerPoint Presentation was created by HOLT

Lower Plants The first land plants had no vascular

tissue, and swimming sperm. They therefore had to live in damp places and couldn’t grow very large.

Their descendents alive today are small plants such as mosses.

Ferns and club mosses were the first vascular plants, with some of the ferns being as large as small trees.

Page 33: Chapter 4 This PowerPoint Presentation was created by HOLT

Gymnosperms Gymnosperms are woody vascular see

plants whose seeds are not enclosed by an ovary or fruit.

Conifers, such as pine trees, are gymnosperms that bear cones.

Much or our lumber and paper comes form gymnosperms.

Page 34: Chapter 4 This PowerPoint Presentation was created by HOLT

Gymnosperms Gymnosperms have several adaptations

that allow them to live in drier conditions than lower plants.• They can produce pollen, which protects

and moves sperm between plants.• These plants also produce seeds, which

protect developing plants from drying out.• A conifer’s needle-like leaves also lose

little water.

Page 35: Chapter 4 This PowerPoint Presentation was created by HOLT

Angiosperms Angiosperms are flowering plants that

produce seeds within fruit. Most land plants are angiosperms.

The flower is the reproductive structure of the plant. Some angiosperms, like grasses, have small flowers, that use wind to disperse their pollen.

Other angiosperms have large flowers to attract insects and birds. Many flowering plants depend on animals to disperse their seeds and carry their pollen.

Page 36: Chapter 4 This PowerPoint Presentation was created by HOLT

Angiosperms Most land animals are dependent on

flowering plants. Most of the food we eat, such as wheat,

rice, beans, oranges, and lettuce comes from flowering plants.

Building materials and fibers, such as oak and cotton, also come from flowering plants.

Page 37: Chapter 4 This PowerPoint Presentation was created by HOLT

Animals Animals cannot make their own food. They

must take it in from the environment. Animal cells also have no cell walls, making

their bodies soft and flexible. Although, some animals have evolved hard exoskeletons.

As a result, animals are much more mobile than plants. All animals move around in their environment during at least one stage in their lives.

Page 38: Chapter 4 This PowerPoint Presentation was created by HOLT

Invertebrates Invertebrates are animals that do not

have backbones. Many live attached to hard surfaces in

the ocean and filter their food out of the water, such as corals, various worms, and mollusks.

These organisms are only mobile when they are larvae. At this early stage in their life they are part of the ocean’s plankton.

Page 39: Chapter 4 This PowerPoint Presentation was created by HOLT

Invertebrates Other invertebrates, including squid in the

ocean and insects on land, actively move in search of food.

More insects exist on Earth than any other type of animal.

Insects are successful for many reasons: they have a waterproof skeleton, can move and reproduce quickly, most insects can fly, and their small size allows them to live on little food and to hide from enemies in small places.

Page 40: Chapter 4 This PowerPoint Presentation was created by HOLT

Invertebrates Many insects and plants have evolved

together and depend on each other to survive.

Insects carry pollen from male fruit parts to fertilize a plant’s egg, which develops into fruits such as tomatoes, cucumbers, and apples.

Insects are also valuable because they eat other insects that we consider to be pests.

Page 41: Chapter 4 This PowerPoint Presentation was created by HOLT

Invertebrates However, insects and humans are often

enemies. Bloodsucking insects transmit human

diseases such as malaria, sleeping sickness, and West Nile virus.

Insects do most damage indirectly by eating our crops.

Page 42: Chapter 4 This PowerPoint Presentation was created by HOLT

Vertebrates Vertebrates are animals that have a

backbone, and includes mammals, birds, reptiles, amphibians, and fish.

The first vertebrates were fish, but today most vertebrates live on land.

The first land vertebrates were reptiles. These animals were successful because they have an almost waterproof egg which allows the egg to hatch on land, away from predators in the water.

Page 43: Chapter 4 This PowerPoint Presentation was created by HOLT

Vertebrates Birds are warm-blooded vertebrates with

feathers. They keep their hard shelled eggs and young warm until they have developed insulating layers of fat and feathers.

Mammals are warm-blooded vertebrates that have fur and feed their young milk.

Birds and mammals have the ability to maintain a high body temperature which allows them to live in cold areas, where other animals cannot live.