chapter 4 systematic analysis methods -...

32
電路學講義第44-1 Chapter 4 Systematic analysis methods 4.1 Node analysis node voltage, matrix node equation, floating voltage source, supernode 4.2 Mesh analysis mesh current, matrix mesh equation, interior current source, supermesh 4.3 Systematic analysis with controlled sources mesh analysis, node analysis 4.4 Applications of systematic analysis equivalent resistance, Thevenin parameters 4.5-4.6 (optional) node analysis with ideal op-amp, Δ-Y transformation

Upload: buicong

Post on 16-Jul-2019

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 44-1

    Chapter 4 Systematic analysis methods4.1 Node analysis

    node voltage, matrix node equation, floating voltage source, supernode

    4.2 Mesh analysismesh current, matrix mesh equation, interior current source, supermesh

    4.3 Systematic analysis with controlled sourcesmesh analysis, node analysis

    4.4 Applications of systematic analysisequivalent resistance, Thevenin parameters

    4.5-4.6 (optional)node analysis with ideal op-amp, -Y transformation

  • 4

    4.1 Node analysis Basics1. Node voltage: potential at nonreferenced node to a specified

    reference node Suppressing sources to identify node numbers, the number of

    unknown node voltages is one less than the node numbers. Select the node with its connection to the maximum voltage

    sources as the reference node. All branch voltages can be determined from the values of node

    voltages connected.

    4-2

    1 3 2

  • 4

    2. An example

    +=

    +++

    ++

    =++=++=++

    =

    s

    sas

    fee

    eedcc

    ccba

    sfe

    edc

    scbsa

    KCL

    i

    vGi

    vvv

    GGGGGGGG

    GGGG

    ivGvvGvvGvGvvG

    ivvGvGvvG

    i

    00

    0

    0)(:3 node0)()(:2 node

    0)()(:1 node

    0out flow analysis node

    3

    2

    1

    323

    32212

    2111

    node

    symmetricmatrix

    into node

    4-3

  • 44-4

    3. Floating voltage source Floating voltage source with series resistance convert to current

    source voltagenodet independenan not is xnsx vvvv +=

    3 nodes

    x m s n m s n mx

    s s s s

    v v v v v v v viR R R R +

    = = = +

    xi

  • 4

    Floating ideal voltage source use supernode

    3 nodes

    (1) v2 or v3 is not an independent unknown, and is difficult to write node equation on iy

    (2) Enclose both terminals of the floating ideal source within asupernode easy to write node equations with 2 unknowns

    4-5

  • 4

    4. Matrix node equationsStep 1: identify reference node, and identify known node voltages by fixed voltage sourcesStep 2: perform floating voltage source conversionStep 3: apply KCL to write the matrix node equation

    4-6

    [ ][ ] [ ]

    [ ]

    11 12 1 1 1

    21 22 2 2 2

    1 12

    :

    : conductance matrix,

    : sum of conductances connected to node i: sum of conductan

    s

    N s

    N s

    N NN N sN

    ij ji

    ii

    ij

    KCL G v i

    G G G v iG G G v i

    G G G v i

    G G G

    GG

    =

    =

    =

    ces directly connected to nodes i and j

    : source-current vector sum of current sources into node isii

  • 4

    1. Ex.4.1

    1

    1

    1 1 1 18 60one-node equation: ( )6 12 4 6 4

    node voltage 2418 ( 24) 7

    624 24 ( 60)2, 9

    12 4

    a

    b c

    v

    v

    i

    i i

    + + =

    =

    = =

    = = = =

    Discussion

    4-7

  • 4

    2. Ex.4.2 3 nodes2 node voltages

    =

    =

    =

    =

    ==

    =

    +

    +=

    +++

    ++++

    25

    4050

    06

    3030

    4030

    96

    103

    101

    101

    31

    55016

    301

    601

    121

    51)

    601

    121(

    )601

    121(

    601

    121

    151

    61

    2

    1

    2

    1

    2

    1

    b

    a

    i

    i

    vv

    vv

    vv

    4-8

  • 4

    3. Ex.4.3

    ==

    =

    +

    =

    +

    +

    ++

    2010

    20

    31

    32

    30

    10001

    201

    51

    510

    51

    101

    51

    101

    0101

    101

    41

    21

    10001

    3

    2

    1

    3

    2

    1

    vvv

    vvv

    Note: Inserting a R in series with 3mA current source does not change the results.

    4-9

    1 1 2 1

    3 2 3

    -30 -node 1: 3 02 10 4-node 3: 3 05 20

    v v v v

    v v v

    + + =

    + + =

  • 4

    4. Ex. 4.4 find ia, ib

    3 nodes

    no need for source conversionfor a non-floating voltage source

    ==

    =

    =

    ==

    +

    =

    ++

    ++

    mAi

    mAi

    vv

    vv

    b

    a

    02000

    0

    33000

    615

    60

    624

    315

    648

    424

    10001

    61

    31

    11

    11

    11

    41

    21

    11

    10001

    2

    1

    2

    1

    4-10

  • 4

    5. Ex. 4.5 find v1, v2

    supernode

    1 2 1 2 11 2

    2 1 2 2 11 2

    ( 30) 50 1 1 1 1 1 30 50supernode 1: 1 0 ( ) ( ) 12 10 5 10 2 5 10 2 2 5

    ( 30) 1 1 1 1 1 30( ) ( ) 7node 2 7 010 2 1 10 2 22 1 10

    v v v v v v v

    v v v v v v v

    + + = + + + = + +

    + + + = + + =

    1 21 1

    2 21 2

    1 1 1 1 1 4 330 50( ) 261 4010 2 5 10 2 5 52 5101 1 1 1 1 3 830( ) 87

    10 2 1 10 2 5 52

    v vv vv vv v

    + + + =+ + = = = + + + + =

    4-11

  • 4

    2 1 1 2 11 2

    2 1 2 2 11 2

    30 30 50 1 1 1 1 1 30 50 30supernode 1: 1 0 ( ) ( ) 12 10 5 10 2 5 10 2 10 5

    ( 30) 1 1 1 1 1 30( ) ( ) 7node 2 7 010 2 1 10 2 102 1 10

    v v v v v v v

    v v v v v v v

    + + + + = + + + = + +

    +

    + + + = + + + =

    (alternate)

    1 21 1

    2 21 2

    1 1 1 1 1 30 50 30 4 3( ) 1 2 1010 2 5 10 2 10 5 5 5101 1 1 1 1 30 3 8( ) 7 10

    10 2 1 10 2 10 5 5

    v vv vv vv v

    + + + + + = = = = + + + + + =

    4-11

  • 4

    4.2 Mesh analysis Basics1. Dual relation

    2. mesh: a closed current path containing no closed paths within it,a special loop

    node voltage mesh currentmatrix node equation matrix mesh equation (for planar

    circuit only)KCL KVLfloating voltage source conversion interior current source conversion

    4-12non-planar circuit

    planar circuit

  • 44-13

    3. The minimum number of meshes is determined by suppressing all sources.

    4. An example

    mesh

    1 1 1 2

    2 1 2 2 3

    3 2 3

    1

    2

    3

    mesh analysis voltage drop in mesh 0

    mesh 1: ( ) ( ) 0mesh 2 : ( ) ( ) 0node 3 : ( ) 0

    0

    0

    KVL

    a s b c s

    c d e

    e f s

    a b c c

    c c d e e

    e e f

    i

    R i i R i R i i vR i i R i R i iR i i R i v

    R R R R iR R R R R i

    R R R i

    =

    + + = + + = + + =

    + + + + +

    0s a s

    s

    v R i

    v

    + =

    same directionof mesh current

    +_a s

    R i

  • 4

    5. Interior current source Interior current sources with parallel resistance convert to

    voltage source

    is not an independent mesh currents x n xx n s x x s n s s s

    i i i ii i i v i R i R i R=

    = + = = +

    +xv

    4-14

  • 4

    Interior ideal current source use supermesh

    2 2 1

    2 1 2

    2 2 1 2 1 2

    ( ) 0( ) ( ) 0

    ( ) ( ) ( ) 0

    d b y

    y c y e y

    d b c y e y

    R i R i i vv R i i i R i i

    R i R i i R i i i R i i

    + = + + + + = + + + + + =

    2 2 1 2 1 2( ) ( ) ( ) 0d b c y e yR i R i i R i i i R i i+ + + + + =

    (1) Two meshes exist with source compressed.(2) i2 or i3 is not an independent unknown.(3) Use supermesh to enclose both meshes of the interior ideal source write mesh equation with unknown mesh currents

    4-15

  • 4

    6. Matrix mesh equationsStep 1: identify known mesh currents fixed by current sourceStep 2: label the remaining unknown mesh currentsStep 3: apply KVL to write the matrix mesh equation

    4-16

    [ ][ ] [ ]

    [ ]

    11 12 1 1 1

    21 22 2 2 2

    1 12

    :

    : resistance matrix,

    : sum of resistances connected to mesh : sum of resistances

    s

    N s

    N s

    N NN N sN

    ij ji

    ii

    ij

    KVL R i v

    R R R i vR R R i v

    R R R i v

    R R R

    R iR

    =

    =

    =

    shared by meshes and

    : source-voltage vector sum of voltage sources in mesh to give current in the same direction of mesh current

    si

    i j

    vi

  • 44-17-10W12)]-(1[(60//12):3 source

    0W10)(50:2 source0,30:1 source2

    012//60150

    30512//601515

    156150505)1)(12//60()15(:2mesh

    0306)15(:1mesh

    0analysismesh

    21

    2

    1

    2

    1

    2212

    121

    ===

    ==

    =

    ++

    +

    =++++=+

    =

    iiii

    ii

    iiiiiii

    vmesh

    KVL

    Discussion1. Ex.4.6 (Ex.4.2) find i1, i2

    same direction as mesh

    +

    _1 60//12

  • 4

    2. Ex.4.7 find i1, i2, i3

    ===

    +=

    ++

    ++

    mAimAimAi

    iii

    213

    2012

    41020

    16606633

    033810

    3

    2

    1

    3

    2

    1

    Note: Inserting a R in parallel with 20V voltage source does notchange the results.

    4-18

  • 4

    3. Ex.4.8 (interior current source) to find va, ib

    interior mesh

    =+=+===

    ==

    ++

    =

    ++

    ++

    63,7

    8)7(8

    46

    76187820

    102622824

    2

    1

    2

    1

    2

    1

    b

    xxb

    a

    iiiii

    iv

    ii

    ii

    3 node eqs, 2 mesh eqsmesh analysis easier4-19

  • 4

    4. Ex4.9 (interior ideal current source) to find i1

    2 nodes, 1 mesh supermesh

    interior current source

    220)4(310)5(6 1111 ==+++ iiii

    4-20

  • 4

    4.3 Systematic analysis with controlled sourcesBasics1. An example on mesh analysis

    1 1

    1

    1

    ( - ) 0mesh equation ( )

    ( - ) : constraint equation

    a s b a

    a b s a a

    a a s

    KVL R i i R i vR R i i R v

    v R i i

    + + =

    + =

    =

    1 1

    1 1

    1

    11 11 1 11 11

    ( ) ( - )( )( ) (1 )

    ( ) , , , (1 )

    a b s a a s a a s

    a b a s a a s

    a b a a s

    s a b a s a s

    R R i i R v i R R i iR R i R i i R R iR R R i R i

    R R i v R R R R R v R i

    + = =

    + = + =

    = = + = =

    1

    11 1( )

    1 1

    11 1 11 1 11

    11 11 1

    reformulate as the usual mesh eq.

    ( ) (1 )

    , (1 ) ,

    ( )

    a a s

    sv R i i

    s s a a s a a s a s a

    s s a s a

    s

    R i v

    v i R v i R R i i R i R i

    R i v R i v R i R R

    R R i v

    =

    =

    = = = +

    = + = =

    =

    4-21

  • 44-22

    2. Mesh analysis

    [ ]

    [ ] [ ] [ ][ ] [ ][ ][ ] [ ] [ ][ ] [ ] ~~R :4 step

    termssourcet independen:~ ,~~

    equations constraintth vector wivoltage-source write:3 step equation constraintsource controlledeach for :2 step

    matrix resistancecurrentsmesh unknown identify :1 step

    ss

    sss

    viRRvi

    viRvv

    R

    ==

    +=

    3. Node analysis[ ]

    [ ] [ ] [ ][ ] [ ][ ][ ] [ ] [ ][ ] [ ]

    ~~G :4 step

    termssourcet independen:~ ,~~

    equations constraintctor with current ve-source write:3 step equation constraintsource controlledeach for :2 step

    matrix econductanc voltagesnodeunknown identify :1 step

    ss

    sss

    ivGGiv

    ivGii

    G

    ==

    +=

  • 4

    Discussion1. Ex.4.10 find i1, i2

    1 1 2 1 2

    2 1 2 2 1 2

    2 1 2 2 1 2 1 2

    11 2

    2

    mesh 1 6 10 4( ) 14 4 6mesh 2 4( ) 7 3( 8 ) 0,

    4 4 7 3 24 24 0 20 10 014 4 6

    1, 220 10 0

    a a

    i i i i ii i i i i i i i

    i i i i i i i ii

    i ii

    = + = + + + = =

    + + + = =

    = = =

    4-23

  • 4

    2. Ex.4.10 find i1, i2

    vc=24ia

    3

    [ ]

    [ ] [ ] [ ][ ]

    [ ] [ ][ ] [ ] 2,106

    1020414

    ,~~1020414~

    ~~242400

    06

    24246

    836

    vector voltage-source

    equation constraint,144

    4143744

    4410

    212

    1

    2

    1

    21

    21

    ==

    =

    =

    =

    +=

    +

    =

    +

    =

    =

    =

    =

    ++

    +=

    iiii

    viRRRR

    iRvii

    iiiv

    iiiR

    s

    sa

    s

    a

    4-24

  • 4

    3. Ex.4.11 find the current gain using mesh analysis

    [ ]

    [ ] [ ] [ ][ ]

    [ ] [ ][ ] [ ] 10110

    105.11

    5.0~~

    1051000441863

    0137~

    ~~

    9696000864000

    00

    30

    )(42126436

    30

    212436

    30

    )(46

    equation constraint,1940

    44110137

    3

    2

    1

    1 if

    3

    2

    1

    23

    1

    23

    1

    =

    ==

    ===

    =

    =

    +=

    +

    =

    =

    =

    ==

    =

    =s

    outimAis

    s

    ss

    b

    a

    s

    s

    b

    a

    iiA

    mAimAi

    mAiviRRRR

    iRviiii

    iii

    i

    vv

    iv

    iiviv

    R

    s

    4-25

  • 44-26

    4. Ex.4.12 find the voltage gain using node analysis

    [ ]

    [ ] [ ] [ ][ ]

    [ ] [ ][ ] [ ]

    AA

    vvA

    vvv

    AivGG

    AGG

    vGivv

    A

    v

    Av

    v

    Av

    v

    i

    vvG

    inv

    ins

    s

    inin

    d

    in

    s

    d

    02.055.105.0

    05.0

    01.301.0201.0515.0

    ,~~01.301.0201.0515.0~

    ~~0200

    02

    5.0

    2

    5.0

    2ctor current ve-source

    equation constraint,01.301.001.0515.0

    15.0

    1100

    1100

    1100

    12001

    1001

    21

    2

    2

    1

    2

    1

    1

    1

    +

    ==

    =

    =

    =

    +=

    +

    =

    =

    =

    =

    =

    ++

    ++=

  • 44-27

    4.4 Applications of systematic analysisDiscussion1. Examples of determining equivalent resistance or Thevenin

    parameters are given to use systematic analysis methods.2. Ex. 4.13 find the equivalent resistance of a resistive bridge

    662835

    312

    243444812

    analysismesh

    66235

    8

    12

    21

    81

    41

    41

    41

    31

    41

    121

    analysis node

    2121

    2

    1

    2121

    2

    1

    ==+===

    =

    ++

    ++

    ==+===

    =

    ++

    ++

    eq

    eq

    Riiiviii

    ii

    ii

    Rvvvivvv

    v

    v

    vv

    4 010 //15 6eq

    iR

    = = =

  • 44-28

    3. Ex. 4.14 find the Thevenin parameters of a current amplifier

    [ ]

    [ ]

    [ ]

    1

    1

    1

    node analysis with current source: 3 nodesmesh analysis: 2 meshes

    21 3,constraint equation

    3 7

    8 10 2 8 20 20

    12 20 00 0

    x in

    in x in ins

    ins

    R i i i

    i i i i iv

    v v

    i iv R

    v i

    = =

    + = = = + = +

    [ ]

    1

    1 3,

    3 7

    1 3 12 36 183 7 2 2

    Norton model

    18 , 2 , 36

    in inin

    sct

    sc in t oc sc t in

    i

    R R

    i i v i vi ii v

    vi iR

    i i R k v i R k i

    =

    = = = +

    =

    = = = =

  • 4

    4.5-4.6Optional1. Ex. 4.15 find Av of an op-amp circuit

    21

    21

    2122212

    11111

    122

    12

    )1(0)11()11(0)(1)1 (1)1(

    0, :short virtual

    )1...(0)(1) (1:analysis node

    KKKK

    vvv

    KKv

    Kvv

    RKv

    Kv

    R

    Kvv

    RKv

    Rvvv

    vvRK

    vvR

    in

    outoutinoutinoutin

    outx

    outxin

    outx

    +

    ==++=++

    ==+=

    =+

    4-29

  • 44-30

    2. Y- (T-) transformation equivalent circuit

    ( )

    mesh analysis:( )

    1 1 1

    node analysis:1 1 1

    b c in c outin

    a b b c c aa c c in in

    c b c out out c in a c outout

    a b b c c a

    ca ab ab in

    out

    ab ca ab

    R R v R viR R R R R RR R R i v

    R R R i v R v R R viR R R R R R

    R R R vv

    R R R

    + =

    + ++ = + + =

    + +

    + +

    2 2 2

    2

    ( )

    ( )

    , , , ,

    ab ca ca bc in ca bc outin

    ab bc cain

    out ca bc in bc ab ca bc outout

    ab bc ca

    ab ca bc ab ca bca b c ab bc ca

    c a b

    ab bc ca a b b c c

    R R R R i R R ivR R Ri

    i R R i R R R R ivR R R

    R R R R R R R R RR R R R R RR R R R R RR R R R R R R R R R R

    + =

    + + = + =

    + +

    = = = = = =

    + + + + a

  • 4

    3. Ex.4.16 (Ex.4.13)

    6)6.14.6//(24

    8,32,24

    96222

    2

    =+=

    ======

    =++

    eq

    bca

    abc

    cab

    accbba

    RRRR

    RRR

    RRR

    RRRRRRR

    4-31