chapter 4 biophysical concepts s e c t i o n ii copyright 2008 by saunders/elsevier. all rights...

40
Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology, 2e Thomas D. Pollard William C. Earnshaw with Jennifer Lippincott- Schwartz José A. Cardé- Serrano, PhD Biol 4018 – Celular- Molecular UPR-Aguadilla

Upload: blas-balderas

Post on 22-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Chapter 4Biophysical Concepts

S E C T I O N II

Copyright 2008 by Saunders/Elsevier. All rights reserved.

Illustrations by Graham Johnson

Cell Biology, 2eThomas D. Pollard

William C. Earnshawwith Jennifer Lippincott-Schwartz

José A. Cardé- Serrano, PhDBiol 4018 – Celular-MolecularUPR-Aguadilla

Page 2: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Objetivos

• Definir terminología básica de termodinámica y biofísica.

• Reconocer el orden de las reacciones biológicas

• Describir las leyes de termodinámica y sus aplicaciones a las interacciones moleculares.

• Describir los enlaces químicos responsables de las estructuras orgánicas en las células.

Page 3: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Terminolgía:

• Constante de velocidad (k) = relaciona la concentración de los reactivos ([A] y [B]) a la velocidad o razón de la reacción

• Velocidad de la reacción = mide con que velocidad cambian las concentraciones de los reactivos [R] y de los productos [P].

• Constante de equilibrio (K) = es la razón o proporción entre la concentración de reactivos y la de productos en equilibrio. [R]/[P]– Esta relacionada directamente:

a las constantes de velocidad (kR y kP) para ambas reacciones (, ), y a las concentraciones de reactivos y productos en equilibrio.

Page 4: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

First order reactions: one reactant ( R P )

Rate = k [A], where k is the rate constant, units = s-1

Rate = k (AB)

k

k

Fig. 4-1

Copyright 2008 by Saunders/Elsevier. All rights reserved.

Page 5: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Reacciones de Primer Orden

• La velocidad (rate) de estas reacciones es α a la concentración de reactivos

• Se calcula: Rate = k [R] = M s-1

– Según se usan los reactivos (y baja su [ ]), la velocidad decae proporcionalmente

• k = probabilidad por unidad de tiempo.• Resúmen: La razón (velocidad) de la

reacción de primer orden es igual al producto de la constante, k, (que es característica de la reacción) y la concentración del reactivo

Page 6: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Second order reactions: two reactants – R1 + R2 P

Rate = k [A][B[, where k is the rate constant, units = M-1s-1

The value of k (a) depends on the sum of the diffusion coefficients of A and B; (b) is proportional to interaction

area; (c) is about 1-10 µM-1s-1 for proteins

k

k

k

Fig. 4-2

Copyright 2008 by Saunders/Elsevier. All rights reserved.

Page 7: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Reacciones de Segundo Orden

• k+ es determinado por la razón o velocidad de colisión de las moléculas.

• La velocidad dependerá a su vez de la razón de difusión de cada molécula, que dependerá de:– Tamaño y Forma – Temperatura – Orientación

- Viscosidad del medio

- D= Coeficiente de difusión

Page 8: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Reacciones de Segundo Orden - Resumen

• La razón de la reacción de segundo orden es el producto de la constante (k) (que es característica de la reacción) y la concentración de los reactivos (R1 y R2)

• Rate =k [R1] [R2]– En reacciones de asociación bimoleculares, la

velocidad es determinada por las velocidades de colisión y a su vez limitada por la velocidad de difusión

Page 9: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Reacciones reversibles

• La razón de la reacción es igual a la diferencia entre las razones de las reacciones forward () y reverse ().

• Combinación de Rxns de primer y segundo orden.

• Ejs:– Cambios conformacionales– Reacciones bimoleculares

• de asociación y disociación

Page 10: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Reversible conformational change

At equilibrium the rates in the two directions are equal

k+[A] = k-[A*]

The equilibrium constant, rate when the net concentrations

of A and A*, NO longer change,

Keq = k+/k- = [A*]/[A]

k+

k-

Fig. 4-1

Copyright 2008 by Saunders/Elsevier. All rights reserved.

Page 11: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Net rate =k+[A][B] – k-[AB]

At equilibrium the rates are the same in both directions, so

k+[A][B] = k-[AB]

The association equilibrium constant, Ka = k+/k- = [AB]/[A][B]

The dissociation equilibrium constant, Kd = k-/k+ = [A][B]/[AB]

k+

k-

Reversible binding reactionRate of association= k+ [A][B];Rate of dissociation= k- [AB]

Fig. 4-1

Copyright 2008 by Saunders/Elsevier. All rights reserved.

Page 12: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Termodinámica

• La fuerza motora de las rxns químicas es la disminución de la energía libre en el sistema.

• Potencial químico de X sustancia; μ = μ0 + RT ln C. En condiciones “standard”; C = 1 y PLT μ = μ0

• Condiciones “standard”; donde 1 mol de R es convertido a 1 mol de P;

• ΔG0 = μ0P – μ0R ; en condiciones estandar

Page 13: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Termodinámica• ΔG0 = μ0P – μ0R ; en condiciones estándar• La mayoría de las rxns no ocurren en condiciones

estandar asi que deben ser ajustadas para la concentración, incluyendo en ellas el término (RT ln C)

• ΔGo = µoP + RT ln [P] - µoR – RT ln [R]

• ΔG = ΔG0 + RT ln [P] / [R] (tomar en consideración las [ ]s)

• En equilibrio; cuando ΔG=0; • -ΔG0 = RT ln [Peq] / [Req]

• -ΔG0 = RT ln K

• K = e-ΔGº/RT = [Peq] / [Req]

Page 14: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

K = e-ΔGº/RT =K+/K-= [Peq] / [Req]• Si el ΔGº = 0, K=1, porque [P] = [R]• Si el ΔGº < 0, K>1, porque [P] ? [R] • Si el ΔGº > 0, K<1, porque [P] ? [R]

• ΔG =ΔH - TΔS• ΔH = cambio en entalpía. • Medida del cambio en energía de los enlaces en las

moléculas entre productos y reactivos (liberado o almacenado)

• ΔS = cambio en entropía.• Medida del cambio en el orden de los productos y reactivos. • Un aumento en la entropía provee el ΔG necesario para las

rxn biológicas. • Reacciones son favorecidas si este (ΔS) es +, o sea los

productos son menos ordenados que los reactivos y si el ΔG es como?

Page 15: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

2da ley de Termodinámica:

Entropía

Page 16: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Que determina el que una reacción ocurra?

Cambio en E libre ΔG

E reactivos > E prod PLT disminuye E libre

G negativo

E reactivos < E prod PLT aumenta E libre

G positivo

Es necesario acoplar reacciones

Page 17: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

“Linked Reactions” (Reacciones acopladas)

• Muchos de los procesos en la célula envuelven la mezcla de Rnxs.

• Ejemplo:

A + B AB

AB AB*

El ΔG total para todas las Rxns acopladas tiene que ser negativo.

Page 18: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Reversible binding reaction

coupled to a conformational change

Fig. 4-3

Copyright 2008 by Saunders/Elsevier. All rights reserved.

Page 19: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Reacciones acopladas

- Una reacción con G negativo acoplada a una de G positivo permitirá que esta última que aumenta el orden, ocurra.

Page 20: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Covalent bonds in macromolecules

Fig. 4-4

The amino acid cysteine

Hydrogen bond

Covalent bonds

Copyright 2008 by Saunders/Elsevier. All rights reserved.

Page 21: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Non-covalent bonds important for macromolecular structure

∆G = ∆H - T∆S

Fig. 4-5

increases ∆S

Copyright 2008 by Saunders/Elsevier. All rights reserved.

Page 22: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Enlaces químicos• Enlaces covalentes =responsables de las estructuras estables de las moléculas orgánicas en la célula.• C-C, C-H• El sistema utiliza enzimas para catalizar la formación o disociación de estos enlaces.

Page 23: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Enlaces químicos• Enlaces de hidrógeno

– Ocurren entre un átomo donador (O o N) de un H y un átomo aceptador (O o N).– Estabilizan estructuras secundarias de proteínas

• Enlaces electroestático– COO- y NH3

+

– Neutralizado por grupos inorgánicos– Estructuras no específicas.

Page 24: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

• Enlace hidrofóbico– Aumento del ΔS.

• Perdida del orden del agua que rodea la macromolécula• El agua no forma enlaces de hidrógenos con los lípidos y proteínas.

– No confiere especificidad en la interación intermolecular

Enlaces químicos

Page 25: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Enlaces químicos• Interacciones de van der Waals

– Interacción entre los electrones de átomos cercanos.– Dependientes de la distancia– Significante cuando muchas interacciones se combinan.– Evitan interacciones no específicas.

Page 26: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Ras GTPaseAsignado

Crystal structures of inactive (GDP) & active (GTP)

conformations

Enzyme mechanism determined by transient

kinetic analysis

G: Ras GTPaseT: GTPD: GDP

P: phosphateGAP: GTPase activating protein

GEF: GDP exchange factorGDI: GDP dissociation inhibitor

Fig. 4-6Copyright 2008 by Saunders/Elsevier. All rights reserved.

Page 27: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Dissection of the Ras enzyme mechanismAsignado

Transient kinetic experiments

Time course of each reaction gives one of the rate constantsFig. 4-7

Copyright 2008 by Saunders/Elsevier. All rights reserved.

Page 28: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Simple enzyme reaction

E = enzymeS = substrateP = product

E + S ES EP E + P

Copyright 2008 by Saunders/Elsevier. All rights reserved.

Page 29: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

03_27_Reaction rate data.jpg

Page 30: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

03_28_A stopped_flow appar.jpg

Page 31: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Inhibidores

• Inhibitors are compounds which interact with an enzyme to slow down its rate of reaction

• Many toxic compounds are enzyme inhibitors, being toxic because they inhibit enzymes responsible for vital reactions.

• Inhibitors can interact with an enzyme in different ways and enzyme kinetics is a major tool in distinguishing between these mechanisms.

Page 32: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Inhibicion Competitiva

• In the presence of a competitive inhibitor the enzyme can bind to the substrate:

• to form an enzyme-substrate complex, or the inhibitor: • to form an enzyme-inhibitor complex.

Page 33: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Inhibicion Competitiva

• Competitive inhibitors prevent the substrate from binding to the enzyme and thereby prevent the enzyme from converting it to product.

• They are mutually exclusive with the substrate so prior binding of the substrate prevents the inhibitor from binding.

• Consequently competitive inhibitors are inactive at very high substrate concentrations and do not therefore alter the maximal velocity.

• They are active at low substrate concentrations which is seen as an increase in the slope of the Lineweaver-Burk plot.

• They reduce the affinity of the enzyme for its substrate; seen as an increase in the Michaelis constant.

Page 34: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

03_29_competitive inhibitor.jpg

Page 35: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Inhibicion Competitiva• Effects on Km

• Km is an indication of enzyme-substrate affinity.

• In the presence of a competitive inhibitor some enzyme molecules will exist as free enzymes, others as enzyme-inhibitor complexes.

• So a competitive inhibitor reduces enzyme-substrate affinity, or increases Km.

• Effects on Vmax • Vmax is the velocity at very high

substrate concentration. • Under these conditions the

inhibitor is competed out by the substrate and does not inhibit the enzyme at all.

• So competitive inhibitors do not slow the reaction at high substrate concentrations and then is no change in Vmax.

Page 36: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Inhibicion NO-Competitiva

• A noncompetitive inhibitor binds to an inhibitor site on the enzyme which is remote from the active site and brings about a conformational change in the active site.

• In this sense it's very similar to one of the competitive inhibitor types.

• The difference is that this time the change in the active site is such that it does not prevent substrate binding but, rather, prevents the enzyme from converting the bound substrate to product.

Page 37: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Inhibicion NO-Competitiva

Effects on Km

A classical noncompetitive inhibitor has no effect whatsoever on substrate binding so the enzyme-substrate affinity, and hence the Km, are unchanged.

Effects on Vmax

Noncompetitive, of both the classical and mixed varieties, inhibit at high substrate concentrations so the Vmax is decreased.

Page 38: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Inhibicion

Page 39: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Modelo Michaelis-Menten

Page 40: Chapter 4 Biophysical Concepts S E C T I O N II Copyright 2008 by Saunders/Elsevier. All rights reserved. Illustrations by Graham Johnson Cell Biology,

Lineweaver Burke