chapter 20: the knee and related structures. complex joint that endures great amounts of trauma due...

85
Chapter 20: The Knee and Related Structures

Upload: izabella-miniard

Post on 14-Dec-2015

222 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Chapter 20: The Knee and Related Structures

Page 2: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Hinge joint w/ a rotational component

• Stability is due primarily to ligaments, joint capsule and muscles surrounding the joint

• Designed for stability w/ weight bearing and mobility in locomotion

Page 3: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Knee and Related Structures

1. Anatomy of the KneeA. Bones

i. Femur• Medial Condyle• Lateral Condyle• Medial Epicondyle• Lateral Epicondyle

ii. Tibia• Tibial Plateau• Tibial Tuberosity• Gerdy’s Tubercle• Intercondylar Eminence

iii. Fibula• Head

iv. Patella• Largest seasmoid bone• Located within the tendon of the quadriceps femoris

Page 4: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Knee and Related Structures

b. Articulationsi. Femur and tibiaii. Femur and patellaiii. Femur and fibulaiv. Tibia and fibula

c. Meniscii. Two oval fibrocartilages that deepen the articular

facets of the tibiaii. Cushioniii. Maintain spacing between femur and tibia

Page 5: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Knee and Related Structures

iv. Maintain stability1. Medial Meniscus

a. “C” shaped

2. Lateral Meniscusa. “O” shaped

v. Blood supplyi. Red-red zone = peripheral 1/3 edge = good blood supplyii. Red-white zone = middle 1/3 edge = minimal blood supplyiii. White-white zone = inner 1/3 edge = avascular = no blood

Page 6: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Knee and Related Structures

d. Ligamentsi. Anterior Cruciate Ligament (ACL)

1. Anterior medial tibia to Posterior lateral femur2. Prevents femur from moving posterior during wt

bearing3. Stabilizes tibial internal rotation4. Main knee ligament stabilizer

ii. Posterior Cruciate Ligament (PCL)1. Posterior lateral tibia to Anterior medial femur2. Prevents hyperextension3. Prevents femur from moving anterior during wt bering

Page 7: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Knee and Related Structures

iii. Medial Collateral Ligament (MCL)1. Medial femoral epicondyle to Medial tibial

epicondyle

2. Prevent valgus and external rotation forces

3. Has attachment to the medial meniscus

iv. Lateral Collateral Ligament (LCL)1. Lateral epicondyle of femur to Head of fibula

Page 8: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Knee and Related Structures

e. Joint Capsule Componentsi. Bursa – Synovial fluid filled pouches

1. Reduce friction

2. Two dozen in and around the kneea. Suprapatellar

b. Prepatellar

c. Infrapatellar

d. Deep infrapatellar

ii. Fat pad1. Cushions front of the knee

2. Separtates patellar tendon from joint capsule

Page 9: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Knee and Related Structures

f. Musculaturei. Knee flexion – hamstring group

1. Biceps femoris

2. Semitendinosus

3. Semimembranosus

4. Gracilis

5. Sartorius

6. Gastrocnemius

7. Popliteus

8. plantaris

Page 10: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Knee and Related Structures

ii. Knee Extension – Quadriceps Group1. Vastus Medialis

2. Vastus Lateralis

3. Vastus Intermedius

4. Rectus Femoris

Page 11: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Knee and Related Structures

g. Nerve Supplyi. Tibial nerve = hamstring and gastrocnemius

ii. Common peroneal nerve = proximal fibula head = contusion causes sensory and motor deficits distally

iii. Femoral nerve

h. Blood Supplyi. Popliteal artery = stem of femoral artery

Page 12: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Knee and Related Structures

2. Leg Alignment Deviationsa. Predispose to injury

i. Patellar malalignment

ii. Genu valgum

iii. Genu varum

iv. Genu recurvatum

b. Leg-Length and Patella Discrepanciesi. Anatomical leg length (true leg length)

1. ASIS to Lateral Malleolus

ii. Anatomical leg length (functional leg length)1. Umbilicus to Medial Malleolus

iii. Girth Measurement

iv. Q-Angle Measurement 1. ASIS to Mid-patella to Tibial Tuberosity

Page 13: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Knee and Related Structures

3. Special Tests for Knee Joint Stabilitya. Valgus Stress Testb. Varus Stress Testc. Anterior Drawerd. Lachman Drawer Teste. Pivot Shift Testf. Posterior Drawer Testg. Posterior Sag Testh. McMurray’s Testi. Apley Compression Testj. Apley Distraction Testk. Patellar Compression, Grinding, Apprehension,

Chandelier Tests

Page 14: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 15: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 16: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 17: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 18: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 19: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 20: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 21: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 22: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 23: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Functional Anatomy• Movement of the knee requires flexion,

extension, rotation and the arthrokinematic motions of rolling and gliding

• Rotational component involves the “screw home mechanism”– As the knee extends it externally rotates because the

medial femoral condyle is larger than the lateral– Provides increased stability to the knee– Popliteus “unlocks” knee allowing knee to flex

Page 24: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Capsular ligaments are taut during full extension and relaxed w/ flexion– Allows rotation to occur– Deeper capsular ligaments remain taut to

keep rotation in check

• PCL prevents excessive internal rotation, guides the knee in flexion, and acts as drag during initial glide phase of flexion

• ACL stops excessive internal rotation, stabilizes the knee in full extension and prevents hyperextension

Page 25: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Range of motion includes 140 degrees of motion– Limited by shortened position of hamstrings,

bulk of hamstrings and extensibility of quads

• Patella aids knee during extension, providing a mechanical advantage– Distributes compressive stress on the femur by

increasing contact between patellar tendon and femur

– Protects patellar tendon against friction– When moving from extension to flexion the

patella glides laterally and further into trochlear groove

Page 26: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Kinetic Chain– Directly affected by motions and forces

occurring at the foot, ankle, lower leg, thigh, hip, pelvis, and spine

– With the kinetic chain forces must be absorbed and distributed

– If body is unable to manage forces, breakdown to the system occurs

– Knee is very susceptible to injury resulting from absorption of forces

Page 27: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Assessing the Knee Joint

• Determining the mechanism of injury is critical• History- Current Injury

– Past history

– Mechanism- what position was your body in?

– Did the knee collapse?

– Did you hear or feel anything?

– Could you move your knee immediately after injury or was it locked?

– Did swelling occur?

– Where was the pain

Page 28: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• History - Recurrent or Chronic Injury– What is your major complaint?– When did you first notice the condition?– Is there recurrent swelling?– Does the knee lock or catch?– Is there severe pain?– Grinding or grating?– Does it ever feel like giving way?– What does it feel like when ascending and descending stairs?– What past treatment have you undergone?

Page 29: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Observation– Walking, half squatting, going up and down stairs

– Swelling, ecchymosis,

– Leg alignment• Genu valgum and genu varum

• Hyperextension and hyperflexion

• Patella alta and baja

• Patella rotated inward or outward– May cause a combination of problems

• Tibial torsion, femoral anteversion and retroversion

Page 30: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Tibial torsion– An angle that measures less

than 15 degrees is an indication of tibial torsion

• Femoral Anteversion and Retroversion– Total rotation of the hip equals

~100 degrees

– If the hip rotates >70 degrees internally, anteversion of the hip may exist

– INSERT 20-9

Page 31: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 32: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

– Knee Symmetry or Asymmetry• Do the knees look symmetrical? Is there obvious

swelling? Atrophy?

– Leg Length Discrepancy• Anatomical or functional

• Anatomical differences can potentially cause problems in all weight bearing joints

• Functional differences can be caused by pelvic rotations or mal-alignment of the spine

Page 33: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

•Palpation - Bony

• Medial tibial plateau• Medial femoral

condyle• Adductor tubercle• Gerdy’s tubercle• Lateral tibial plateau• Lateral femoral

condyle• Lateral epicondyle• Head of fibula

• Tibial tuberosity• Superior and inferior

patella borders (base and apex)

• Around the periphery of the knee relaxed, in full flexion and extension

Page 34: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

•Palpation - Soft Tissue

• Vastus medialis

• Vastus lateralis

• Vastus intermedius

• Rectus femoris

• Quadriceps and patellar tendon

• Sartorius

• Medial patellar plica

• Anterior joint capsule

• Iliotibial Band

• Arcuate complex

• Medial and lateral collateral ligaments

• Pes anserine• Medial/lateral joint

capsule• Semitendinosus• Semimembranosus• Gastrocnemius• Popliteus• Biceps Femoris

Page 35: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Palpation of Swelling– Intra vs. extracapsular swelling– Intracapsular may be referred to as joint

effusion– Swelling w/in the joint that is caused by

synovial fluid and blood is a hemarthrosis– Sweep maneuver– Ballotable patella - sign of joint effusion– Extracapsular swelling tends to localize over

the injured structure • May ultimately migrate down to foot and ankle

Page 36: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Special Tests for Knee Instability– Use endpoint feel to determine stability

– MRI may also be necessary for assessment

– Classification of Joint Instability• Knee laxity includes both straight and rotary instability

• Translation (tibial translation) refers to the glide of tibial plateau relative to the femoral condyles

• As the damage to stabilization structures increases, laxity and translation also increase

– Valgus and Varus Stress Tests• Used to assess the integrity of the MCL and LCL respectively

• Testing at 0 degrees incorporates capsular testing while testing at 30 degrees of flexion isolates the ligaments

Page 37: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 38: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

– Anterior Cruciate Ligament Tests• Drawer test at 90 degrees of flexion

– Tibia sliding forward from under the femur is considered a positive sign (ACL)

– Should be performed w/ knee internally and externally to test integrity of joint capsule

Page 39: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Lachman Drawer Test– Will not force knee

into painful flexion immediately after injury

– Reduces hamstring involvement

– At 30 degrees of flexion an attempt is made to translate the tibia anteriorly on the femur

– A positive test indicates damage to the ACL

Page 40: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Pivot Shift Test– Used to determine

anterolateral rotary instability– Position starts w/ knee

extended and leg internally rotated

– The thigh and knee are then flexed w/ a valgus stress applied to the knee

– Reduction of the tibial plateau (producing a clunk) is a positive sign

Page 41: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Posterior Cruciate Ligament Tests– Posterior Drawer Test

• Knee is flexed at 90 degrees and a posterior force is applied to determine translation posteriorly

• Positive sign indicates a PCL deficient knee

Page 42: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Posterior Sag Test (Godfrey’s test)– Athlete is supine

w/ both knees flexed to 90 degrees

– Lateral observation is required to determine extent of posterior sag while comparing bilaterally

Page 43: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

•Instrument Assessment of the Cruciate Ligaments• A number of devices are

available to quantify AP displacement of the knee

• KT-2000 arthrometer, Stryker knee laxity tester and Genucom can be used to assess the knee

• Test can be taken pre & post-operatively and through rehab

Page 44: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Meniscal Tests– McMurray’s Meniscal Test

• Used to determine displaceable meniscal tear

• Leg is moved into flexion and extension while knee is internally and externally rotated in conjunction w/ valgus and varus stressing

• A positive test is found w/ clicking and popping response

Page 45: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 46: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Apley’s Compression Test– Hard downward

pressure is applied w/ rotation

– Pain indicates a meniscal injury

• Apley’s Distraction Test– Traction is applied w/

rotation– Pain will occur if there

is damage to the capsule or ligaments

– No pain will occur if it is meniscal

Page 47: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Girth Measurements– Changes in girth can occur due to atrophy, swelling and

conditioning– Must use circumferential measures to determine deficits and

gains during the rehabilitation process– Measurements should be taken at the joint line, the level of the

tibial tubercle, belly of the gastrocnemius, 2 cm above the superior border of the patella, and 8-10 cm above the joint line

• Subjective Rating– Used to determine patient’s perception of pain, stability and

functional performance

Page 48: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Functional Examination– Must assess walking, running, turning and cutting– Co-contraction test, vertical jump, single leg hop tests and the

duck walk– Resistive strength testing

• Q-Angle– Lines which bisects the patella relative to the ASIS and the tibial

tubercle– Normal angle is 10 degrees for males and 15 degrees for females– Elevated angles often lead to pathological conditions associated

w/ improper patella tracking

Page 49: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Palpation of the Patella– Must palpate around and under patella to

determine points of pain

• Patella Grinding, Compression and Apprehension Tests– A series of glides and compressions are

performed w/ the patella to determine integrity of patellar cartilage

Page 50: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Prevention of Knee Injuries

• Physical Conditioning and Rehabilitation– Total body conditioning is required

• Strength, flexibility, cardiovascular and muscular endurance, agility, speed and balance

– Muscles around joint must be conditioned (flexibility and strength) to maximize stability

– Must avoid abnormal muscle action through flexibility– In an effort to prevent injury, extensibility of

hamstrings, erector spinae, groin, quadriceps and gastrocnemius is important

Page 51: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• ACL Prevention Programs– Focus on strength, neuromuscular control, balance

– Series of different programs which address balance board training, landing strategies, plyometric training, and single leg performance

– Can be implemented in rehabilitation and preventative training programs

• Shoe Type– Change in football footwear has drastically reduced the

incidence of knee injuries

– Shoes w/ more shorter cleats does not allow foot to become fixed while still allowing for control w/ running and cutting

Page 52: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Functional and Prophylactic Knee Braces– Used to prevent and reduce

severity of knee injuries– Used to protect MCL, or

prevent further damage to grade 1 & 2 sprains of the ACL or to protect the ACL following surgery

– Can be custom molded and designed to control rotational forces

Page 53: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Recognition and Management of Specific Injuries

• Medial Collateral Ligament Sprain– Etiology

• Result of severe blow or outward twist

– Signs and Symptoms - Grade I• Little fiber tearing or stretching

• Stable valgus test

• Little or no joint effusion

• Some joint stiffness and point tenderness on lateral aspect

• Relatively normal ROM

Page 54: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

– Management• RICE for at least 24

hours• Crutches if necessary• Follow-up care will

include cryokinetics w/ exercise

• Move from isometrics and STLR exercises to bicycle riding and isokinetics

• Return to play when all areas have returned to normal

• May require 3 weeks to recover

Page 55: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

– Signs and Symptoms (Grade II)• Complete tear of deep capsular ligament and partial

tear of superficial layer of MCL• No gross instability; laxity at 5-15 degrees of flexion• Slight swelling• Moderate to severe joint tightness w/ decreased ROM• Pain along medial aspect of knee

– Management• RICE for 48-72 hours; crutch use until acute phase has

resolved• Possibly a brace or casting prior to the initiation of

ROM activities• Modalities 2-3 times daily for pain• Gradual progression from isometrics (quad exercises)

to CKC exercises; functional progression activities

Page 56: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

– Signs and Symptoms (Grade III)• Complete tear of supporting ligaments• Complete loss of medial stability• Minimum to moderate swelling• Immediate pain followed by ache• Loss of motion due to effusion and hamstring guarding• Positive valgus stress test

– Management• RICE• Conservative non-operative versus surgical approach• Limited immobilization (w/ a brace); progressive weight bearing for • Rehab would be similar to Grade I & II injuries

Page 57: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Lateral Collateral Ligament Sprain– Etiology

• Result of a varus force, generally w/ the tibia internally rotated• Direct blow is rare• If severe enough damage can also occur to the cruciate ligaments, ITB,

and meniscus, producing bony fragments as well

– Signs and Symptoms• Pain and tenderness over LCL• Swelling and effusion around the LCL• Joint laxity w/ varus testing• May cause irritation of the peroneal nerve

– Management• Following management of MCL injuries depending on severity

Page 58: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Anterior Cruciate Ligament Sprain– Etiology

• MOI - tibia externally rotated and valgus force at the knee (occasionally the result of hyperextension from direct blow)

• May be linked to inability to decelerate valgus and rotational stresses - landing strategies

• Male versus female

• Research is quite extensive in regards to impact of femoral notch, ACL size and laxity, malalignments (Q-angle) faulty biomechanics

• Extrinsic factors may include, conditioning, skill acquisition, playing style, equipment, preparation time

• Also involves damage to other structures including meniscus, capsule, MCL

Page 59: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

– Signs and Symptoms• Experience pop w/ severe pain and disability• Rapid swelling at the joint line• Positive anterior drawer and Lachman’s • Other ACL tests may also be positive

– Management• RICE; use of crutches• Arthroscopy may be necessary to determine extent of injury• Could lead to major instability in incidence of high

performance• W/out surgery joint degeneration may result• Age and activity may factor into surgical option• Surgery may involve joint reconstruction w/ grafts (tendon),

transplantation of external structures– Will require brief hospital stay and 3-5 weeks of a brace– Also requires 4-6 months of rehab

Page 60: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Posterior Cruciate Ligament Sprain– Etiology

• Most at risk during 90 degrees of flexion• Fall on bent knee is most common mechanism• Can also be damaged as a result of a rotational force

– Signs and Symptoms• Feel a pop in the back of the knee• Tenderness and relatively little swelling in the popliteal fossa• Laxity w/ posterior sag test

– Management• RICE• Non-operative rehab of grade I and II injuries should focus on quad strength• Surgical versus non-operative

– Surgery will require 6 weeks of immobilization in extension w/ full weight bearing on crutches

– ROM after 6 weeks and PRE at 4 months

Page 61: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Meniscal Lesions– Etiology

• Medial meniscus is more commonly injured due to ligamentous attachments and decreased mobility

– Also more prone to disruption through torsional and valgus forces• Most common MOI is rotary force w/ knee flexed or extended• Can be longitudinal, oblique or transverse tears

– Signs and Symptoms• Effusion developing over 48-72 hour period• Joint line pain and loss of motion• Intermittent locking and giving way• Pain w/ squatting• Portions may become detached causing locking, giving way or catching

w/in the joint• If chronic, recurrent swelling or muscle atrophy may occur

Page 62: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 63: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

– Management• If the knee is not locked, but indications of a tear are

present further diagnostic testing may be required

• If locking occurs, anesthesia may be necessary to unlock the joint w/ possible arthroscopic surgery follow-up

• W/ surgery all efforts are made to preserve the meniscus -- will full healing being dependent on location

• Menisectomy rehab allows partial weight bearing and quick return to activity

• Repaired meniscus will require immobilization and a gradual return to activity over the course of 12 weeks

Page 64: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Osteochondral Knee Fractures– Etiology

• Same MOI as collateral/cruciate ligaments or meniscal injuries

• Twisting, sudden cutting or direct blow

– Signs and Symptoms• Hear a snap and feeling of giving way

• Immediate swelling and considerable pain

– Management• Diagnosis confirmed through arthroscopic exam, w/

surgery to replace fragment to avoid joint degeneration and arthritis

Page 65: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Osteochondritis Dissecans– Etiology

• Partial or complete separation of articular cartilage and subchondral bone

• Cause is unknown but may include blunt trauma, possible skeletal or endocrine abnormalities, prominent tibial spine impinging on medial femoral condyle, or impingement due to patellar facet

– Signs and Symptoms• Aching pain with recurrent swelling and possible locking

• Possible quadriceps atrophy and point tenderness

– Management• Rest and immobilization for children

• Surgery may be necessary in teenagers and adults (drilling to stimulate healing, pinning or bone grafts

Page 66: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Loose Bodies w/in the Knee– Etiology

• Result of repeated trauma

• Possibly stem from osteochondritis dissecans, meniscal fragments, synovial tissue or cruciate ligaments

– Signs and Symptoms• May become lodged, causing locking or popping

• Pain and sensation of instability

– Management• If not surgically removed it can lead to conditions

causing joint degeneration

Page 67: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Joint Contusions– Etiology

• Blow to the muscles crossing the joint (vastus medialis)

– Signs and Symptoms• Present as knee sprain, severe pain, loss of movement and

signs of acute inflammation• Swelling, discoloration• Possible capsular damage

– Management• RICE initially and continue if swelling persists• Gradual progression to normal activity following return of

ROM and padding for protection• If swelling does not resolve w/in a week a chronic condition

(synovitis or bursitis) may exist requiring more rest

Page 68: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Peroneal Nerve Contusion– Etiology

• Compression of peroneal nerve due to a direct blow

– Signs and Symptoms• Local pain and possible shooting nerve pain

• Numbness and paresthesia in cutaneous distribution of the nerve

• Added pressure may exacerbate condition

• Generally resolves quickly -- in the event it does not resolve, it could result in drop foot

– Management• RICE and return to play once symptoms resolve and no

weakness is present

• Padding for fibular head is necessary for a few weeks

Page 69: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Bursitis– Etiology

• Acute, chronic or recurrent swelling• Prepatellar = continued kneeling• Infrapatellar = overuse of patellar tendon

– Signs and Symptoms• Prepatellar bursitis may be localized swelling above knee that

is ballotable• Swelling in popliteal fossa may indicate a Baker’s cyst

– Associated w/ semimembranosus bursa or medial head of gastrocnemius

– Commonly painless and causing little disability– May progress and should be treated accordingly

– Management• Eliminate cause, RICE and NSAID’s• Aspiration and steroid injection if chronic

Page 70: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Patellar Fracture– Etiology

• Direct or indirect trauma (severe pull of tendon)

• Forcible contraction, falling, jumping or running

– Signs and Symptoms• Hemorrhaging and joint effusion w/ generalized swelling

• Indirect fractures may cause capsular tearing, separation of bone fragments and possible quadriceps tendon tearing

• Little bone separation w/ direct injury

– Management• X-ray necessary for confirmation of findings

• RICE and splinting if fracture suspected

• Refer and immobilize for 2-3 months

Page 71: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Acute Patella Subluxation or Dislocation– Etiology

• Deceleration w/ simultaneous cutting in opposite direction (valgus force at knee)

• Quad pulls the patella out of alignment

• Some athletes may be predisposed to injury

• Repetitive subluxation will impose stress to medial restraints

– Signs and Symptoms• W/ subluxation, pain and swelling, restricted ROM,

palpable tenderness over adductor tubercle

• Dislocations result in total loss of function

Page 72: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

– Management• Reduction is performed by flexing hip, moving

patella medially and slowly extending the knee

• Following reduction, immobilization for at least 4 weeks w/ use of crutches and isometric exercises during this period

• After immobilization period, horseshoe pad w/ elastic wrap should be used to support patella

• Muscle rehab focusing on muscle around the knee, thigh and hip are key (STLR’s are optimal for the knee)

• Possible surgery to release tight structures

• Improve postural and biomechanical factors

Page 73: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Chondromalacia patella– Etiology

• Softening and deterioration of the articular cartilage• Possible abnormal patellar tracking due to genu valgum,

external tibial torsion, foot pronation, femoral anteversion, patella alta, shallow femoral groove, increased Q angle, laxity of quad tendon

– Signs and Symptoms• Pain w/ walking, running, stairs and squatting• Possible recurrent swelling, grating sensation w/ flexion and

extension• Pain at inferior border during palpation

– Management• Conservative measures

– RICE, NSAID’s, isometrics, orthotics to correct dysfunction

• Surgical possibilities

Page 74: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Patellofemoral Stress Syndrome– Etiology

• Result of lateral deviation of patella while tracking in femoral groove

– Tight structures, pronation, increased Q angle, insufficient medial musculature

– Signs and Symptoms• Tenderness of lateral facet of patella and swelling associated

w/ irritation of synovium• Dull ache in center of knee• Patellar compression will elicit pain and crepitus• Apprehension when patella is forced laterally

– Management• Correct imbalances (strength and flexibility)• McConnell taping• Lateral retinacular release if conservative measures fail

Page 75: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Osgood-Schlatter Disease and Larsen-Johansson Disease– Etiology

• Osgood Schlatter’s is an apophysitis occurring at the tibial tubercle

– Begins cartilagenous and develops a bony callus, enlarging the tubercle

– Resolves w/ aging– Common cause = repeated avulsion of patellar tendon

• Larsen Johansson is the result of excessive pulling on the inferior pole of the patella

– Signs and Symptoms• Both elicit swelling, hemorrhaging and gradual

degeneration of the apophysis due to impaired circulation

Page 76: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 77: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

– Signs and Symptoms (continued)• Pain w/ kneeling, jumping and running

• Point tenderness

– Management• Conservative

– Reduce stressful activity until union occurs (6-12 months)

– Possible casting, ice before and after activity

– Isometerics

Page 78: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Patellar Tendinitis (Jumper’s or Kicker’s Knee)– Etiology

• Jumping or kicking - placing tremendous stress and strain on patellar or quadriceps tendon

• Sudden or repetitive extension

– Signs and Symptoms• Pain and tenderness at inferior pole of patella

– 3 phases - 1)pain after activity, 2)pain during and after, 3)pain during and after (possibly prolonged) and may become constant

– Management• Ice, phonophoresis, iontophoresis, ultrasound, heat

• Exercise

• Patellar tendon bracing

• Transverse friction massage

Page 79: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied
Page 80: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Patellar Tendon Rupture– Etiology

• Sudden, powerful quad contraction

• Generally does not occur unless a chronic inflammatory condition persist resulting in tissue degeneration

• Occur primarily at point of attachment

– Signs and Symptoms• Palpable defect, lack of knee extension

• Considerable swelling and pain (initially)

– Management• Surgical repair is needed

• Proper conservative care of jumper’s knee can minimize chances of occurring

• If steroids are being used, intense knee exercise should be avoided due to weakening of collagen

Page 81: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Runner’s Knee (Cyclist’s Knee)– Etiology

• General expression for repetitive/overuse conditions attributed to mal-alignment and structural asymmetries

– Signs and Symptoms• IT Band Friction Syndrome

– Irritation at band’s insertion - commonly seen in individual that have genu varum or pronated feet

• Pes Anserine Tendinitis or Bursitis– Result of excessive genu valgum and weak vastus medialis– Due to running w/ one leg higher than the other

– Management• Correction of mal-alignments• Ice before and after activity, proper warm-up and stretching• Avoidance of aggravating activities• NSAID’s and orthotics

Page 82: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

Knee Joint Rehabilitation• General Body Conditioning

– Must be maintained with non-weight bearing activities

• Weight Bearing– Initial crutch use, non-weight bearing

– Gradual progression to weight bearing while wearing rehabilitative brace

• Knee Joint Mobilization– Used to reduce arthrofibrosis

– Patellar mobilization is key following surgery

– CPM units

Page 83: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Flexibility– Must be regained, maintained and improved

• Muscular Strength– Progression of isometrics, isotonic training,

isokinetics and plyometrics– Incorporate eccentric muscle action– Open versus closed kinetic chain exercises

• Neuromuscular Control– Loss of control is generally the result of pain

and swelling– Through exercise and balance equipment

proprioception can be enhanced

Page 84: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Bracing– Variety of braces for a variety of injuries and

conditions

– Typically worn for 3-6 weeks after surgery --used to limit ranges for a period of time

– Some are used to control for specific injuries while others are designed for specific forces and stability

• Functional Progression– Gradual return to sports specific skills

– Progress w/ weight bearing, move into walking and running, and then onto sprinting and change of direction

Page 85: Chapter 20: The Knee and Related Structures. Complex joint that endures great amounts of trauma due to extreme amounts of stress that are regularly applied

• Return to Activity– Based on healing process - sufficient time for

healing must be allowed– Objective criteria include strength and ROM

measures as well as functional performance tests