chapter 2 optical fiber (10!12!12)1

Upload: ho-hai-nam

Post on 14-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    1/101

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    2/101

    1/2/2013 2

    Chapter Goals

    Describe the details of Geometrical-Optics: Step-Index Fiber,

    Graded-Index Fibers

    Describe Refraction and Reflection rays

    Derive Total Internal Reflection Conditions

    Determine Numerical Aperture

    Describe propagation rays in Multi-Mode Step-Index Fiber and

    in Multi-Mode Graded-Index Fiber

    Determine BL product Limitation of Graded-Index Fiber

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    3/101

    1/2/2013 3

    Determine Dispersion in Single-Mode Fibers: Group-Velocity,

    Material, Waveguide, Higher-Order, Polarization-Mode

    Determine Fiber Losses: Attenuation Coefficient, Material

    Absorption, Rayleigh Scattering, Waveguide Imperfections.

    Describe Fiber Manufacturing: Design Issues, Fabrication

    Methods, Cables

    Investigate Dispersion Compensation in Fiber by OptiWave

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    4/101

    1/2/2013 4

    Geometrical-Optics Description

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    5/101

    1/2/2013 5

    Geometrical-Optics Description

    MM-SI Fiber

    n2

    n2

    n1

    1MM-GI Fiber

    1n2

    n2

    n1

    SM Fiber

    n2

    n2

    n1

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    6/101

    1/2/2013 6

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    7/101

    1/2/2013 7

    Refraction and Reflection

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    8/101

    1/2/2013 8

    Refraction and Reflection

    n1

    n2

    reflectedray

    refracted

    ray

    1

    2

    1

    incident

    ray

    2211 sin.sin. nn

    Assuming: 21 nn Laws Snell:

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    9/101

    1/2/2013 9

    Total Internal Reflection

    n1

    n2refracted

    ray

    reflected

    ray

    c 1 1

    22

    increasethenincrease 21

    anglecriticaln

    ncc :,sin

    1

    2

    221 thenc

    Total Internal Reflection conditions?

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    10/101

    1/2/2013 10

    Total Internal Reflection Conditions

    n1

    n2refracted

    ray

    reflected

    ray

    c 1 1

    22

    Conclusion: The total reflection occurs when:

    cwithraysall

    nn

    1

    21

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    11/101

    1/2/2013 11

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    12/101

    1/2/2013 12

    Numerical Aperture (NA) of the Fiber

    )(sin2

    2

    2

    10 nnnNA i

    In analogy with lenses, is known as

    the numerical aperture(NA) of the fiber. It represents

    the light-gathering capacity of an optical fiber.

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    13/101

    1/2/2013 13

    Numerical Aperture (NA) of the Fiber

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    14/101

    1/2/2013 14

    07.1146.1 22222

    1 nnNA

    0.209145.1465.1 22222

    1 nnNA

    Example 1

    Determine Numerical Aperture of the Fiber?

    (i) n1= 1.46 and n2= 1 (air)

    (ii) n1= 1.465 and n2 = 1.45.

    Application of Eq:

    (i)

    (ii)

    )(sin 222

    10 nnnNA i

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    15/101

    1/2/2013 15

    Numeric Aperture (NA) of the Fiber

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    16/101

    1/2/2013 16

    Numeric Aperture (NA) of the Fiber

    )(sin 222

    10 nnnNA i

    1

    21

    n

    nn

    ?21 nNA

    With

    Demonstrate:

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    17/101

    1/2/2013 17

    Typical Numerical Aperture values

    of the MM Fiber

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    18/101

    1/2/2013 18

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    19/101

    1/2/2013 19

    Example 2

    Determine BL of the MM-SI fiber which has these

    parameters as follows: n1 = 1.5 and n2 = 1?

    Determine Bit rate transferred through this fiber which

    has length of 10 km?

    BL < n2c/n12

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    20/101

    1/2/2013 20

    Answer 2

    This condition provides a rough estimate of a fundamental

    limitation of step-index fibers. Consider an unclad glass

    fiber with n1 = 1.5 and n2 = 1 BL < 400 (kb/s)-km.

    Rb40 kb/s over L 10 km. Considerable improvementoccurs for cladded fibers with a small index step.

    Most fibers for communication applications are designed with

    < 0.01. As an example,BL < 100 (Mb/s)-km for= 2

    103. Rb10 Mb/s over L 10 km and may be suitable for

    some local-area networks.

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    21/101

    1/2/2013 21

    Multimode Graded-Index Fiber

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    22/101

    1/2/2013 22

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    23/101

    1/2/2013 23

    The quantity T /L, where T is the maximum

    multipath delay in a fiber of length L, is found to vary

    considerably with .

    Figure 2.4 shows this variation for n1 = 1.5 and =

    0.01. The minimum dispersion occurs for

    = 2(1 ) and depends on as

    T/L = n12 /8c.

    Limitation BL

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    24/101

    1/2/2013 24

    The limiting bit ratedistance product is obtained by

    using the criterion T < 1/B and is given by

    BL < 8c/n12.

    The right scale in Fig. 2.4 shows theBLproduct as a

    function of . Graded-index fibers with a suitably

    optimized index profile can communicate data at a bit

    rate of 100 Mb/s over distances up to 100 km.

    Limitation BL

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    25/101

    1/2/2013 25

    Figure 2.4: Variation of intermodal dispersion T /L

    with the profile parameter for a GI fiber. The scale on

    the right shows the corresponding BL product.

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    26/101

    1/2/2013 26

    Example 3

    Determine BL of the MM-GI fiber which has these

    parameters as follows: n1 = 1.5 and = 0.01.

    Determine Bit rate is transferred through this MM-GI

    fiber which has length of 10 km?

    Compare this BL with that of MM-SI fiber which was

    investigated in example 2?

    BL < 8c/n12

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    27/101

    1/2/2013 27

    Single Mode Step-Index Fiber

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    28/101

    1/2/2013 28

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    29/101

    1/2/2013 29

    E & H: the electric & magnetic field vectors,

    D & B: the corresponding flux densities.

    The constitutive relations:

    D = 0

    E + P, (2.2.5)

    B = m0 H + M, (2.2.6)

    0 : the vacuum permittivity,

    m0 : the vacuum permeability,P & M: the induced electric & magnetic polarizations

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    30/101

    1/2/2013 30

    Review Related Equations

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    31/101

    1/2/2013 31

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    32/101

    1/2/2013 32

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    33/101

    -

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    34/101

    1/2/2013 34

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    35/101

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    36/101

    1/2/2013 36

    )(

    0 ),(ztj

    eHH

    )(

    0 ),(

    ztj

    eEE

    Analysis in Cylindral Coordinates

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    37/101

    1/2/2013 37

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    38/101

    1/2/2013 38

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    39/101

    1/2/2013 39

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    40/101

    1/2/2013 40

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    41/101

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    42/101

    1/2/2013 42

    SMF Condition

    2.405

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    43/101

    1/2/2013 43

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    44/101

    1/2/2013 44

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    45/101

    1/2/2013 45

    or

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    46/101

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    47/101

    1/2/2013 47

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    48/101

    1/2/2013 48

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    49/101

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    50/101

    1/2/2013 50

    The single-mode condition: V

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    51/101

    1/2/2013 51

    Example:

    One SMF has n1 = 1,505 and n2 = 1,502

    at = 1300 nm.

    + NA?

    + Determine core radius of the ?

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    52/101

    1/2/2013 52

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    53/101

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    54/101

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    55/101

    1/2/2013 55

    Kinds of Dispersion in Fiber

    Total Dispersion

    Mode Dispersion

    Material Dispersion Waveguide Dispersion

    SMF

    MMF

    Polarisation Mode

    Dispersion

    Chromatic Disp.or

    Group Velocity Disp

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    56/101

    1/2/2013 56

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    57/101

    1/2/2013 57

    P l Sh di t

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    58/101

    1/2/2013 58

    Pulse Shapes versus distance

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    59/101

    1/2/2013 59

    Fiber Dispersion

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    60/101

    1/2/2013 60

    Example 2

    Determine BL of the SM fiber which has these

    parameters as follows: Spectrum width of optical

    pulse: f = 12.5 GHz, =1.55 mm, and D =

    19ps/nm.km

    Determine Bit rate is transferred through this fiber

    which has length of 50 km?

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    61/101

    1/2/2013 61

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    62/101

    1/2/2013 62

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    63/101

    1/2/2013 63

    d

    ndnng

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    64/101

    1/2/2013 64

    For pure silica these parameters are found to beB1 =

    0.6961663,B2 = 0.4079426,B3 = 0.8974794, 1 = 0.0684043

    mm,2 = 0.1162414 mm, and 3 = 9.896161 mm, where j =

    2c/j with j = 13.

    The group index ng = n + (dn/d ) can be obtained by

    using these parameter values

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    65/101

    1/2/2013 65

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    66/101

    1/2/2013 66

    Index n1 shape of DCF

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    67/101

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    68/101

    1/2/2013 68

    d

    dn

    cd

    dnD

    gg

    M

    22

    2

    12

    dV

    Vbd

    d

    dn

    dV

    VbVd

    n

    nD

    gg

    W

    )()(2 22

    2

    2

    22

    2

    (2.100)

    Two parts of Chromatic Dispersion of SMF

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    69/101

    1/2/2013 69

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    70/101

    1/2/2013 70

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    71/101

    1/2/2013 71

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    72/101

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    73/101

    1/2/2013 73

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    74/101

    1/2/2013 74

    Attenuation versus Wavelength

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    75/101

    1/2/2013 75

    2000s

    Water

    spike

    Attenuation versus Wavelength

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    76/101

    1/2/2013 76

    Attenuation versus Wavelength

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    77/101

    1/2/2013 77

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    78/101

    Typical loss value of optical components

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    79/101

    1/2/2013 79

    Typical loss value of optical components

    Gain in the small signal regime of EDFAs

    Splice loss between two identical fibres

    Loss of a 10% tap coupler

    Isolator, 1480/1550 nm multiplexer

    Linear

    1000

    10

    0.977

    0.955

    0.90.5

    Decibel

    +30 dB

    +10 dB

    -0.1 dB

    -0.2 dB

    -0.5 dB-3.0 dB

    Ga

    in

    Loss

    Gain with saturating input signal

    Cable fiber loss per km

    Bulk optical filter

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    80/101

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    81/101

    Material Absorption

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    82/101

    1/2/2013 82

    Material absorption can be divided into two kinds:

    + Intrinsic absorption losses correspond to absorption by

    fused silica (material used to make fibers)

    + Extrinsic absorption is related to losses caused by

    impurities within silica.

    Any material absorbs at certain wavelengths

    corresponding to the electronic and vibrational resonances

    associated with specific molecules. For silica (SiO2) molecules, electronic resonances occur

    in the ultraviolet region (< 0.4 mm),

    Material Absorption

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    83/101

    1/2/2013 83

    whereas vibrational resonances occur in the infrared region

    (> 0.7mm).

    Because of the amorphous nature of fused silica, these

    resonances are in the form of absorption bands whose tails extend

    into the visible region.

    Extrinsic absorption results from the presence of impurities.

    Metal impurities such as Fe, Cu, Co, Ni, Mn, and Cr absorb

    strongly in the wavelength range 0.61.6 mm.

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    84/101

    1/2/2013 84

    Their amount should be reduced to below 1 part per billion

    to obtain a loss level below 1 dB/km. Such high-purity silica

    can be obtained by using modern techniques.

    The main source of extrinsic absorption in state-of-the-art

    silica fibers is the presence of water vapors.

    A vibrational resonance of the OH ion occurs near 1.4 mm

    Its harmonic and combination tones with silica produce

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    85/101

    1/2/2013 85

    Its harmonic and combination tones with silica produce

    absorption at the 1.39, 1.24, and 0.95 mm wavelengths. The three

    spectral peaks seen occur near these wavelengths and are due tothe presence of residual water vapor in silica.

    Even a concentration of 1 part per million can cause a loss of

    about 50 dB/km at 1.39 mm.

    The OH ion concentration is reduced to below 10 8 in

    modern fibers to lower the 1.39 mm peak below 1 dB. In a new

    kind of fiber, known as the dry fiber, the OH ion concentration is

    reduced to such low levels that the 1.39 mm peak almost

    disappears.

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    86/101

    1/2/2013 86

    Rayleigh Scattering

    Rayleigh scattering is a fundamental loss mechanism

    arising from local microscopic fluctuations in density.

    Silica molecules move randomly in the molten state and

    freeze in place during fiber fabrication.

    Density fluctuations lead to random fluctuations of the

    refractive index on a scale smaller than the optical

    wavelength .

    Light scattering in such a medium is known asRayleigh

    scattering.

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    87/101

    1/2/2013 87

    Cable Construction

    Cross Section of a Fiber Cable

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    88/101

    1/2/2013 88

    Cross Section of a Fiber Cable

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    89/101

    1/2/2013 89

    Cable Construction

    Inside Plant Ribbon-Cable System

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    90/101

    1/2/2013 90

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    91/101

    Cross Section of Armored Outside-Plant Cables

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    92/101

    1/2/2013 92

    Cross Section of Armored Outside Plant Cables

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    93/101

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    94/101

    1/2/2013 94

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    95/101

    Complete Compensation D1L1=D2L2, Rb=2.5 GB/s

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    96/101

    1/2/2013 96

    Complete Compensation D1L1=D2L2 Rb=5 GB/s

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    97/101

    1/2/2013 97

    Uncomplete Compensation D1L1D2L2 Rb=5 Gb/s

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    98/101

    1/2/2013 98

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    99/101

    1/2/2013 99

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    100/101

    1/2/2013 100

  • 7/27/2019 Chapter 2 Optical Fiber (10!12!12)1

    101/101