chapter 14 analog filters - seoul national university · 2021. 2. 17. · 1 / 70 chapter 15 analog...

70
1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters 15.4 Active Filters 15.5 Approximation of Filter Response

Upload: others

Post on 20-Aug-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

1 / 70

Chapter 15 Analog Filters

15.1 General Considerations

15.2 First-Order Filters

15.3 Second-Order Filters

15.4 Active Filters

15.5 Approximation of Filter Response

Page 2: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

2 / 70

Outline of the Chapter

CH 15 Analog Filters

Page 3: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

3 / 70

Why We Need Filters

In order to eliminate the unwanted interference that

accompanies a signal, a filter is needed.

CH 15 Analog Filters

Page 4: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

4 / 70

Filter Characteristics

Ideally, a filter needs to have a flat pass band and a sharp roll-

off in its transition band.

Realistically, it has a rippling pass/stop band and a transition

band.

CH 15 Analog Filters

Page 5: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

5 / 70

Example 15.1: Filter I

Solution: A filter with stopband attenuation of 40 dB

Problem : Adjacent channel interference is 25 dB above the

signal. Determine the required stopband attenuation if Signal to

Interference ratio must exceed 15 dB.

CH 15 Analog Filters

Page 6: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

6 / 70

Example 15.2: Filter II

Problem: Adjacent 60-Hz channel interference is 40 dB above

the signal. Determine the required stopband attenuation

To ensure that the signal level remains 20dB above the

interferer level.

Solution: A high-pass filter with stopband attenuation of 60 dB

at 60Hz.

CH 15 Analog Filters

Page 7: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

7 / 70

Example 15.3: Filter III

A bandpass filter around 1.5 GHz is required to reject

the adjacent Cellular and PCS signals.

CH 15 Analog Filters

Page 8: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

8 / 70

Classification of Filters I

CH 15 Analog Filters

Page 9: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

9 / 70

Classification of Filters II

Continuous-time Discrete-time

CH 15 Analog Filters

Page 10: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

10 / 70

Classification of Filters III

Passive Active

CH 15 Analog Filters

Page 11: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

11 / 70

Summary of Filter Classifications

CH 15 Analog Filters

Page 12: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

12 / 70

Filter Transfer Function

Filter (a) has a transfer function with -20dB/dec roll-off.

Filter (b) has a transfer function with -40dB/dec roll-off and

provides a higher selectivity.

(a) (b)

CH 15 Analog Filters

Page 13: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

13 / 70

General Transfer Function

pk = pole frequencies

zk = zero frequencies

1 2

1 2

( )m

n

s z s z s zH s

s p s p s p

CH 15 Analog Filters

Page 14: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

14 / 70

Example 15.4 : Pole-Zero Diagram

1 1

1( )

1aH s

R C s

1 2

1 1 2

1( )

( ) 1b

R C sH s

R C C s

2

1 1 1

2

1 1 1 1 1

( )c

R L C sH s

R L C s L s R

CH 15 Analog Filters

Page 15: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

15 / 70

Impulse response contains

Example 15.5: Position of the poles

Poles on the RHP

Unstable

(no good)

Poles on the jω axis

Oscillatory

(no good)

Poles on the LHP

Decaying

(good)

exp( ) exp( )exp( )k k kp t t j t

CH 15 Analog Filters

Page 16: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

16 / 70

Transfer Function

The order of the numerator m ≤ The order of the denominator n

Otherwise, H(s)→ as s→.

For a physically-realizable transfer function, complex zeros or

poles occur in conjugate pairs.

If a zero is located on the jω axis, z1,2=± jω1 , H(s) drops to zero

at ω1.

1 2

1 2

( )m

n

s z s z s zH s

s p s p s p

CH 15 Analog Filters

Page 17: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

17 / 70

Imaginary Zeros

Imaginary zero is used to create a null at certain frequency.

For this reason, imaginary zeros are placed only in the stop band.

CH 15 Analog Filters

Page 18: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

18 / 70

Sensitivity

PC

dP dCS

P C

Sensitivity indicates the variation of a filter parameter due to

variation of a component value.

P=Filter Parameter

C=Component Value

CH 15 Analog Filters

Page 19: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

19 / 70

Example 15.6: Sensitivity

1

1

/1

0

1

1

1

0

0

1

2

11

0

110

RS

R

dRd

CRdR

d

CR

CH 15 Analog Filters

Problem: Determine the sensitivity of ω0 with respect to R1.

For example, a +5% change in R1 translates to a -5% error in ω0.

Page 20: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

20 / 70

First-Order Filters

1

1

( )s z

H ss p

First-order filters are represented by the transfer function

shown above.

Low/high pass filters can be realized by changing the relative

positions of poles and zeros.

CH 15 Analog Filters

Page 21: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

21 / 70

Example 15.8: First-Order Filter I

R2C2 < R1C1R2C2 > R1C1

CH 15 Analog Filters

2 1 1

1 2 1 2 1 2

( 1)( )

( )

out

in

V R R C ss

V R R C C s R R

1 1 11 ( ),z R C 1

1 1 2 1 2[( ) ]p C C R R

.

Page 22: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

22 / 70

Example 15.9: First-Order Filter II

R2C2 < R1C1 R2C2 > R1C1

2

2

1

1

2 1 1

1 2 2

1( )

( )1

1

1

out

in

RV C s

sV

RC s

R R C s

R R C s

CH 15 Analog Filters

Page 23: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

23 / 70

2

2 2

( )n

n

s sH s

s sQ

1,2 2

11

2 4

nnp j

Q Q

Second-Order Filters

Second-order filters are characterized by the “biquadratic” equation

with two complex poles shown above.

When Q increases, the real part decreases while the imaginary part

approaches ±ωn.

=> the poles look very imaginary thereby bringing the circuit closer to

instability.

CH 15 Analog Filters

Page 24: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

24 / 70

Second-Order Low-Pass Filter

22

22

2 2

( )

nn

H j

Q

α = β = 0

CH 15 Analog Filters

Peak magnitude normalized to the passband magnitude: 2 11 (4 )Q Q

.

Page 25: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

25 / 70

Example 15.10: Second-Order LPF

2

2

3

/ 1 1/(4 ) 3

1 1/(2 )n n

Q

Q Q

Q

CH 15 Analog Filters

Problem: Q of a second-order LPF = 3.

Estimate the magnitude and frequency of the peak in the frequency

response.

Page 26: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

26 / 70

Second-Order High-Pass Filter

2

2 2

( )n

n

sH s

s sQ

β = γ = 0

21 1 (2 )n Q Frequency of the peak:

Peak magnitude normalized to the passband magnitude: 2 11 (4 )Q Q

CH 15 Analog Filters

Page 27: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

27 / 70

Second-Order Band-Pass Filter

2 2

( )n

n

sH s

s sQ

α = γ = 0

CH 15 Analog Filters

Page 28: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

28 / 70

Example 15.2: -3-dB Bandwidth

CH 15 Analog Filters

Problem: Determine the -3dB bandwidth of a band-pass response.

2 2

( )

( )nn

sH s

s sQ

1,2 0 2

1 11

24 QQ

2 2 2 2

22 2 2 2 2( ) ( )n n

n

Q

Q

0BWQ

Page 29: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

29 / 70

LC Realization of Second-Order Filters

11 1 2

1 1 1

1( ) ||

1

L sZ L s

C s L C s

An LC tank realizes a second-order band-pass filter with two imaginary poles at ±j/(L1C1)

1/2 , which implies infinite impedance at ω=1/(L1C1)

1/2.

CH 15 Analog Filters

Page 30: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

30 / 70

Example 15.13: LC Tank

At ω=0, the inductor acts as a short.

At ω=, the capacitor acts as a short.

CH 15 Analog Filters

11 1 2

1 1 1

1( ) ||

1

L sZ L s

C s L C s

Page 31: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

31 / 70

RLC Realization of Second-Order Filters

1 1 12 1 2 2

1 1 1 1 1 1 1

1 1 1 1

2 2 21 1 1 1 1 1

1 1 1 1

||1

1 1( ) ( )n

n

L s R L sZ R

L C s R L C s L s R

R L s R L s

R L C s s R L C s sR C L C Q

1,2 2

12

1 1 1 11 1

11

2 4

1 11

2 4

nnp j

Q Q

Lj

R C R CL C

With a resistor, the poles are no longer pure imaginary which implies there will be no infinite impedance at any ω.

CH 15 Analog Filters

11

11 1

1,n

CQ R

LL C

Page 32: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

32 / 70

Voltage Divider Using General Impedances

( )out P

in S P

V Zs

V Z Z

Low-pass High-pass Band-pass

CH 15 Analog Filters

Page 33: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

33 / 70

Low-pass Filter Implementation with Voltage Divider

12

1 1 1 1 1

out

in

V Rs

V R C L s L s R

CH 15 Analog Filters

1 as SZ L s s

1

1

10 as PZ R s

C s

Page 34: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

34 / 70

Example 15.14: Frequency Peaking

12

1 1 1 1 1

out

in

V Rs

V R C L s L s R

22 2 2 2

1 1 1 1 1Let D R R C L L

CH 15 Analog Filters

Voltage gain greater than unity (peaking)

occurs when a solution exists for

2

2 21 1 1 1 1 1 1 12

2( )( )( )

0

d DR C L R R C L L

d

11

1

1Thus, when ,

2

peaking occurs.

CQ R

L

Page 35: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

35 / 70

Example 15.15: Low-pass Circuit Comparison

The circuit (a) has a -40dB/dec roll-off at high frequency.

However, the circuit (b) exhibits only a -20dB/dec roll-off since

the parallel combination of L1 and R1 is dominated by R1

because L1ω→, thereby reduces the circuit to R1 and C1.

Good Bad

CH 15 Analog Filters

(a) (b)

Page 36: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

36 / 70

High-pass Filter Implementation with Voltage Divider

2

1 1 1 1 12

1 1 1 1 11 1

1

( ) ||

1( ) ||

out

in

V L s R L C R ss

V R C L s L s RL s RC s

CH 15 Analog Filters

Page 37: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

37 / 70

Band-pass Filter Implementation with Voltage Divider

1

1 12

1 1 1 1 11 1

1

1( ) ||

1( ) ||

out

in

L sV C s L s

sV R C L s L s RL s R

C s

CH 15 Analog Filters

Page 38: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

38 / 70

Why Active Filter?

Passive filters constrain the type of transfer function.

They may require bulky inductors.

CH 15 Analog Filters

Page 39: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

39 / 70

Sallen and Key (SK) Filter: Low-Pass

2

1 2 1 2 1 2 2

1

1

out

in

Vs

V R R C C s R R C s

11 2

1 2 2

1 CQ R R

R R C

1 2 1 2

1n

R R C C

Sallen and Key filters are examples of active filters. This

particular filter implements a low-pass, second-order transfer

function.

CH 15 Analog Filters

Page 40: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

40 / 70

Example 15.16: SK Filter with Voltage Gain

3

4

2 31 2 1 2 1 2 2 2 1 1

4

1

1

out

in

R

V Rs

V RR R C C s R C R C R C s

R

CH 15 Analog Filters

Page 41: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

41 / 70

Example 15.17: SK Filter Poles

The poles begin with real, equal values for and

become complex for .

3

4

2 31 2 1 2 1 2 2 2 1 1

4

1

( )

( ) 1

out

in

R

V Rs

RVR R C C s R C R C R C s

R

31 2 2 2 1 1

2 1 1 1 2 2 4

1 RR C R C R C

Q R C R C R C R

3

4

1

2

QR

R

3 4 0R R

3 4 0R R

Problem: Assuming R1=R2, C1=C2, Does such a filter contain complex poles?

CH 15 Analog Filters

Page 42: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

42 / 70

Sensitivity in Low-Pass SK Filter

1 2 1 2

1

2n n n n

R R C CS S S S

1 2

2 2

1 1

1

2

Q QR R

R CS S Q

R C

1 2

2 2 1 2

1 1 2 1

1

2

Q QC C

R C R CS S Q

R C R C

1 1

2 2

QK

R CS QK

R C

CH 15 Analog Filters

3 41K R R

Page 43: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

43 / 70

Example 15.18: SK Filter Sensitivity I

1 2

1 2

1 1

2 3

1 2

2 3

3

Q QR R

Q QC C

QK

S SK

S SK

KS

K

CH 15 Analog Filters

Problem: Determine the Q sensitivities of the SK filter for the common

choice R1=R2=R, C1=C2=C.

1 2

1 2

With =1,

0

1

2

Q QR R

Q Q QKC C

K

S S

S S S

Page 44: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

44 / 70

Integrator-Based Biquads

2

2 2

out

ninn

V ss

Vs s

Q

2

2

1.n n

out in out outV s V s V s V sQ s s

It is possible to use integrators to implement biquadratictransfer functions.

CH 15 Analog Filters

Page 45: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

45 / 70

KHN (Kerwin, Huelsman, and Newcomb) Biquads

2

2

1Comparing with .n n

out in out outV s V s V s V sQ s s

5 6

4 5 3

1R R

R R R

64

4 5 1 1 3

1. . 1n RR

Q R R R C R

2 6

3 1 2 1 2

1.n

R

R R R C C

CH 15 Analog Filters

2

1 1 2 2 1 2 1 2

1 1 1, X out Y X outV V V V V

R C s R C s R R C C s 5 4 6 6

4 5 3 3

1in Xout Y

V R V R R RV V

R R R R

Page 46: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

46 / 70

Versatility of KHN Biquads

2

2 2

High-pass: out

ninn

V ss

Vs s

Q

2

2 2 1 1

1Band-pass: .X

ninn

V ss

V R C ss s

Q

2

22 2 1 2 1 2

1Low-pass: .Y

ninn

V ss

V R R C C ss sQ

CH 15 Analog Filters

Page 47: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

47 / 70

Sensitivity in KHN Biquads

1 2 1 2 3 6, , , , ,0.5n

R R C C R RS

1 2 1 2 4 5

3 6

5, , , ,

4 5

3 6 2 2,

5 3 6 1 1

4

0.5, 1,

21

Q QR R C C R R

QR R

RS S

R R

R R R CQS

R R R R C

R

CH 15 Analog Filters

Page 48: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

48 / 70

Tow-Thomas Biquad

32 2 4 1 1

1 1out inout

V VR V

R C s R R sC

CH 15 Analog Filters

Page 49: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

49 / 70

Tow-Thomas Biquad

2 3 4 22

1 2 3 4 1 2 2 4 2 3

Band-pass: .out

in

V R R R C s

V R R R R C C s R R C s R

CH 15 Analog Filters

3 4

21 2 3 4 1 2 2 4 2 3

1Low-pass: .Y

in

R RV

V R R R R C C s R R C s R

Page 50: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

50 / 70

Differential Tow-Thomas Biquads

An important advantage of this topology over the KHN biquad

is accrued in integrated circuit design, where differential

integrators obviate the need for the inverting stage in the loop.

CH 15 Analog Filters

Page 51: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

51 / 70

Example 15.20: Tow-Thomas Biquad

2 4 1 2

1n

R R C C

Adjusted by R2 or R4

1 2 4 2

3 1

1 R R CQ

R C

Adjusted by R3

Note that n and Q of the Tow-Thomas filter can be adjusted (tuned)

independently.

CH 15 Analog Filters

Page 52: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

52 / 70

Antoniou General Impedance Converter

1 35

2 4in

Z ZZ Z

Z Z

It is possible to simulate the behavior of an inductor by using active circuits in feedback with properly chosen passive elements.

CH 15 Analog Filters

1 3 5 XV V V V

4 4

5

XX

VV Z V

Z

4 33

3

Z

V VI

Z

4

5 3

XV Z

Z Z

2 3 2 3ZV V Z I

42

5 3

XX

V ZV Z

Z Z

2

1

XX

V VI

Z

2 4

1 3 5

X

Z ZV

Z Z Z

Page 53: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

53 / 70

Simulated Inductor

By proper choices of Z1-Z4, Zin has become an impedance that

increases with frequency, simulating inductive effect.

Thus,

in X Y

eq X Y

Z R R Cs

L R R C

CH 15 Analog Filters

Page 54: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

54 / 70

High-Pass Filter with SI

With the inductor simulated at the output, the transfer function

resembles a second-order high-pass filter.

2

12

1 1 1 1 1

out

in

V L ss

V R C L s L s R

CH 15 Analog Filters

Page 55: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

55 / 70

Example 15.22: High-Pass Filter with SI

4 1 Yout

X

RV V

R

Node 4 can also serve as an output.

CH 15 Analog Filters

V4 is better than Vout since the output impedance is lower.

Page 56: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

56 / 70

Low-Pass Filter with Super Capacitor

1

1in

X

ZCs R Cs

1

2 21 1

1

1

out in

in in

X

V Z

V Z R

R R C s R Cs

CH 15 Analog Filters

How to build a floating inductor to derive a low-pass filter?

Not possible. So use a super capacitor.

Page 57: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

57 / 70

Example 15.24: Poor Low-Pass Filter

4

12out X out out X

X

V V Cs R V V R CsR

Node 4 is no longer a scaled version of the Vout. Therefore the

output can only be sensed at node 1, suffering from a high

impedance.

CH 15 Analog Filters

Page 58: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

58 / 70

Frequency Response Template

With all the specifications on pass/stop band ripples and

transition band slope, one can create a filter template that will

lend itself to transfer function approximation.

CH 15 Analog Filters

Page 59: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

59 / 70

Butterworth Response

2

0

1( )

1

nH j

ω-3dB=ω0, for all n.

The Butterworth response completely avoids ripples in the

pass/stop bands at the expense of the transition band slope.

CH 15 Analog Filters

Page 60: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

60 / 70

Poles of the Butterworth Response

0

2 1exp exp , 1,2, ,

2 2k

j kp j k n

n

2nd-Order nth-OrderCH 15 Analog Filters

Page 61: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

61 / 70

Example 15.24: Order of Butterworth Filter

The minimum order of the Butterworth filter is three.

2

2

1

64.2

nf

f

2 12f f

CH 15 Analog Filters

Specification: passband flatness of

0.45 dB for f < f1=1 MHz, stopband

attenuation of 9 dB at f2=2 MHz.

1( 1MHz) 0 95H f .

2

2

1

0

10 95

21

n

f

.

03, 2 (1 45MHz)n .

2( 2MHz) 0 355H f .

2

2

2

0

10 355

21

n

f

.

Page 62: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

62 / 70

Example 15.25: Butterworth Response

1

2 22 *(1.45 )* cos sin

3 3p MHz j

3

2 22 *(1.45 )* cos sin

3 3p MHz j

2 2 *(1.45 )p MHz RC section

2nd-order SK

Using a Sallen and Key topology, design a Butterworth filter for the

response derived in Example 14.24.

CH 15 Analog Filters

Page 63: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

63 / 70

Example 15.25: Butterworth Response (cont’d)

2

1 3

2 2

1 3

( )( ) [2 (1 45MHz)]( )

( )( ) 4 (1 45MHz)cos(2 3) [2 (1 45MHz)]SK

p pH s

s p s p s s

.

. .

22 (1 45MHz) and 1/ 2cos 1

3n Q

.

1 2 2 1 21k , 54.9pF, and 4R R C C C

3 3

3 3

12 (1 45MHz) 1k and 109.8pFR C

R C .

CH 15 Analog Filters

Page 64: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

64 / 70

Chebyshev Response

2 2

0

1

1 n

H j

C

The Chebyshev response provides an “equiripple” pass/stop

band response.

Chebyshev Polynomial

CH 15 Analog Filters

Textbook error:

No ripple

Page 65: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

65 / 70

Chebyshev Polynomial

Chebyshev polynomial for

n=1,2,3

Resulting transfer function for

n=2,3

10

0 0

10

0

cos cos ,

cosh cosh ,

nC n

n

CH 15 Analog Filters

Page 66: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

66 / 70

Chebyshev Response

2 2 1

0

1( ) |

1 cos cos

PBH j

n

2 2 1

0

1( ) |

1 cosh cosh

SBH j

n

CH 15 Analog Filters

2

dBPeak-to-peak Ripple 20log 1

Textbook error:

No ripple

Page 67: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

67 / 70

Example 15.26: Chebyshev Response

2 (2MHz) 0.116 18.7dBH j

ω0=2π (1MHz)

A third-order Chebyshev response provides an attenuation of

-18.7 dB a 2MHz.

Suppose the filter required in

Example 14.24 is realized with third-

order Chebyshev response.

Determine the attenuation at 2MHz.

2

10 95 0 329

1

. .

2

3

2

0 0

1

1 4 3

H j

CH 15 Analog Filters

Page 68: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

68 / 70

Example 15.27: Order of Chebyshev Filter

Specification:

Passband ripple: 1 dB

Bandwidth: 5 MHz

Attenuation at 10 MHz: 30 dB

What’s the order?

CH 15 Analog Filters

21 dB 20log 1 0 509 .

0Attenuation at 2 10 MHz: 30 dB

2 2 1

10 0316

1 0 509 cosh ( cosh 2)n .

.

2cosh (1 317 ) 3862 3 66 4n n n. .

Page 69: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

69 / 70

Example 15.28: Chebyshev Filter Design

1 10 0

2 1 2 11 1 1 1sin sinh sinh cos cosh sinh

2 2k

k kp j

n n n n

2,3 0 00.337 0.407p j

SK2

1,4 0 00.140 0.983p j

SK1

Using two SK stages, design a filter that

satisfies the requirements in Example 14.27.

CH 15 Analog Filters

Page 70: Chapter 14 Analog Filters - Seoul National University · 2021. 2. 17. · 1 / 70 Chapter 15 Analog Filters 15.1 General Considerations 15.2 First-Order Filters 15.3 Second-Order Filters

70 / 70

Example 15.28: Chebyshev Filter Design (cont’d)

1 41

1 4

2

0

2 2

0 0

( )( )( )

( )( )

0 986

0 28 0 986

SK

p pH s

s p s p

s s

.

. .

1 00 993 2 (4 965MHz)n . .

1 3 55Q .

1 2 1 21 k , 50 4R R C C .

1 2

2 1

12 (4 965MHz)

50 4

4.52 pF, 227.8 pF

R C

C C

..

2 32

2 3

2

0

2 2

0 0

( )( )( )

( )( )

0 279

0 674 0 279

SK

p pH s

s p s p

s s

.

. .

2 00 528 2 (2 64MHz)n . .

2 0 783Q . .

1 2

2 1

12 (2 64 MHz)

2 45

38 5 pF, C 94.3 pF

R C

C

..

.

1 2 1 21 k , 2 45R R C C .

CH 15 Analog Filters