chapter 13 states of matter. kinetic theory as applied to gases 1.the particles in a gas are...

225
Chapter 13 States of Matter

Upload: tabitha-wiggins

Post on 26-Dec-2015

232 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Chapter 13States of Matter

Page 2: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Kinetic Theory as Applied to Gases

1. The particles in a gas are considered to be small, hard spheres with an insignificant volume.

• Between particles in a gas there is empty space. • No attractive or repulsive forces exist between the

particles.

Fundamental assumptions about gases:

Page 3: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Kinetic Theory as Applied to Gases

2. The motion of the particles in a gas is rapid, constant, and random.

• Gases fill their container regardless of the shape and

volume of the container. • Particles travel in straight-line paths until they collide

with another particle or another object such as the wall of their container.

Fundamental assumptions about gases:

Page 4: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Kinetic Theory as Applied to Gases

3. All collisions between particles in a gas are perfectly elastic.

• during a perfectly elastic collision, kinetic energy is

transferred from one particle to another and • the total kinetic energy remains constant.

Fundamental assumptions about gases:

Page 5: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Gas Pressure

Gas pressure is the result of simultaneous collisions of billions of rapidly moving particles in a gas with an object.

• Ex – a helium-filled balloon maintains its shape

because of the pressure of the gas within it. • VacuumVacuum – an empty space with no particles and no

pressure. (no particles, no collisions)

Page 6: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Atmospheric Pressure

Atmospheric pressureAtmospheric pressure results from the collisions of atoms and molecules in air with objects.

• Atmospheric pressure decreases as you climb a

mountain because the density of Earth’s atmosphere decreases as elevation increases.

• less particles, less pressure

Page 7: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Atmospheric Pressure

BarometerBarometer a device that is used to measure atmospheric pressure.

• Atmospheric pressure depends on weather and on

altitude. • At sea level and with fair weather, the atmospheric

pressure is sufficient to support a mercury column about 760 mm Hg high

• On Mount Everest the air exerts only enough pressure to support 253mm Hg

Page 8: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Gas Pressure

1 atm = 760 mm Hg = 101.3kPa1 atm = 760 mm Hg = 101.3kPa

Page 9: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Average Kinetic Energy & Temperature

At any given temperature the particles of all substances, regardless of physical At any given temperature the particles of all substances, regardless of physical state, have the same average kinetic energy.state, have the same average kinetic energy.

• Ions in table salt (s), molecules in water (l) and atoms

in helium (g) all have the same average kinetic energy at room temperature even though the three substances are in different physical states.

Page 10: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Average Kinetic Energy & Temperature

An increase in the average kinetic energy of the particles causes the temperature of An increase in the average kinetic energy of the particles causes the temperature of a substance to rise. a substance to rise.

• As a substance cools, the particles tend to move

more slowly and their average kinetic energy declines.

• Absolute zeroAbsolute zero (0K or -273.15 ºC or -459ºF) is the temperature at which the motion of particles theoretically ceases.

Page 11: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Average Kinetic Energy & Kelvin Temperature

The Kelvin temperature of a substance is directly proportional to the average The Kelvin temperature of a substance is directly proportional to the average kinetic energy of the particles of the substance.kinetic energy of the particles of the substance.

• Particles in helium gas at 200K have twice the

average kinetic energy as the particles in helium gas at 100K

Page 12: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

The Nature of Liquids

Kinetic Theory says both the particles in gases and liquids have kinetic energy Kinetic Theory says both the particles in gases and liquids have kinetic energy allowing them to flow past one another.allowing them to flow past one another.

• Substances that flow are referred to as liquidsliquids

• Ability of gases and liquids to flow allows them to conform to the shape of their containers.

Page 13: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

The Nature of Liquids

Key difference between gases and liquidsKey difference between gases and liquids

• kinetic theory says there are no attractions between the particles in a gas

• particles in a liquid are attracted to each other

• intermolecular attractions keep the particles in a liquid close together

Page 14: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Properties of Liquids

• Intermolecular attractions reduce the amount of space between particles in a liquid.

• liquids are much more dense than gases

• Increasing the pressure on a liquid has hardly any effect on its volume.

• Known as a condensed state of matter

Page 15: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Evaporation

• VaporizationVaporization – conversion of a liquid to a gas or vapor

• EvaporationEvaporation – when conversion from a liquid to a gas or vapor occurs at the surface of a liquid that is not boiling.

• Most molecules in a liquid don’t have enough KE to overcome the attractive forces and escape into the gaseous state.

Page 16: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Evaporation• During evaporation, only those molecules with a certain minimum KE can

escape from the surface of the liquid.

• Liquid evaporates faster when heated because heating increases the average KE

• Added energy of heating enables more particles to overcome the attractive forces keeping them in the liquid state.

• Particles with the highest KE tend to escape first.

Page 17: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Evaporation• Particles left in the liquid have a lower average KE than the particles that

escaped

• As evaporation takes place, temperature decreases

• Added energy of heating enables more particles to overcome the attractive forces keeping them in the liquid state.

Page 18: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Vapor PressureVapor PressureVapor Pressure – is a measure of the force exerted by a gas above a liquid.

• Over time, the number of particles entering the vapor increases and some of the particles condense and return to the liquid state.

Page 19: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Vapor Pressure & Temperature

• Increase in temperature of a contained liquid increases the vapor pressure.

• Particles in the warmed liquid have increased KE.

• More particles will have the minimum KE necessary to escape the surface of the liquid.

• Vapor pressure of substances indicates how easily it evaporates and also how volatile it is

Page 20: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

When a liquid is heated to a temperature at which particles throughout the liquid have enough kinetic energy to vaporize, the liquid begins to boil

• Bubbles of vapor form, rise to the surface, and escape into the air.

Boiling PointBoiling Point – the temperature at which the vapor pressure of the liquid is just equal to the external pressure on the liquid

Boiling Point

Page 21: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Liquids don’t always boil at the same temperature

• atmospheric pressure is lower at higher altitudes, boiling points decrease at higher altitudes.

Boiling Point & Pressure Changes

Page 22: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Boiling point is a cooling process similar to evaporation.

• During boiling, particles with highest KE escape first.

• Temperature of the boiling liquid never rises above its boiling point

• Vapor produced is at the same temperature as that of the boiling liquid.

Boiling Point

Page 23: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

The general properties of solids reflect theirorderly arrangement of their particles fixed locations of their particles.

• Atoms, ions, or molecules are packed tightly together

• Dense, not easy to compress

• Do not flow

Nature of Solids

Page 24: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

When you heat a solid, particles vibrate more rapidly as their KE increases. • Organization of particles within breaks down • Eventually it melts Melting Point (mp) – temperature at which a solid changes into a liquid.

• At mp temperature, disruptive vibrations of particles is strong enough to overcome the attractions that hold them in fixed positions.

Nature of Solids

Page 25: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Most solid substances are crystalline.

In a crystal, particles are arranges in an orderly, repeating, three-dimensional In a crystal, particles are arranges in an orderly, repeating, three-dimensional pattern called pattern called crystal lattice..

Crystal Structure and Unit Cells

Sodium chlorideCrystal lattice

Shape of a crystal reflects the arrangement of the particles within the solidShape of a crystal reflects the arrangement of the particles within the solid

Page 26: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Type of bonding that exists between particles in crystals determines their melting points.

In general, In general, ionic solids have high melting pointsionic solids have high melting points because relatively strong forces because relatively strong forces hold them together. hold them together.

Crystal Structure and Unit Cells

Calcium Fluoride ionic solid

Ions usually formed from a metal and a

nonmetal

Page 27: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Molecular Solids have relatively low melting points

Crystal Structure and Unit Cells

Molecular SolidIce

molecules held together by relatively weak intermolecular

forces

Nonmetallic elements

Page 28: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

A crystal has sides, or faces.

The angles at which the faces of a crystal intersect are always the same for a given The angles at which the faces of a crystal intersect are always the same for a given substance and are characteristic of that substance. substance and are characteristic of that substance.

Crystals are classified into seven groups or crystal systems.Crystals are classified into seven groups or crystal systems.

The crystal systems differ in terms of the angles between the faces and the The crystal systems differ in terms of the angles between the faces and the number of edges of equal length on each face.number of edges of equal length on each face.

Crystal Systems

Page 29: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Shape of the crystal depends on the arrangement of the particles within it.

Unit CellUnit Cell – the smallest group of particles within a crystal that retains the – the smallest group of particles within a crystal that retains the geometric shape of the crystalgeometric shape of the crystal

Crystal Systems

A crystal lattice is a repeating array of unit cells. Ex: wallpaper

Page 30: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

AllotropesAllotropes – two or more different molecular forms of the same element in the same physical state.

Diamond and graphite are allotropes of carbonDiamond and graphite are allotropes of carbon

Even though allotropes are composed of atoms of the same element, they have Even though allotropes are composed of atoms of the same element, they have different properties because their structures are different. different properties because their structures are different.

Only a few elements have allotropesOnly a few elements have allotropes

• phosphorus phosphorus sulfur sulfur oxygen oxygen

Allotropes

Page 31: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Not all solids are crystalline in form, some are amorphous.

Amorphous SolidAmorphous Solid – lacks an ordered internal structure. – lacks an ordered internal structure.

• Rubber Rubber plastic plastic asphalt asphalt

Atoms of amorphous solids are arranged randomly. Atoms of amorphous solids are arranged randomly.

Non-Crystalline Solids

Page 32: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

SublimationSublimation – the change of a substance from a solid to a vapor without passing through the liquid state.

Sublimation can occur because solids, like liquids, have vapor pressure.Sublimation can occur because solids, like liquids, have vapor pressure.

Sublimation occurs in solids with vapor pressures that exceed atmospheric pressure at or near room temperature.

Sublimation

Page 33: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

• Solid carbon dioxide (dry ice) sublimes at atmospheric pressure. (dry ice) sublimes at atmospheric pressure. • Used as a coolant. It does not produce a liquid as ordinary ice does when it Used as a coolant. It does not produce a liquid as ordinary ice does when it

melts. melts.

Sublimation Applications

Page 34: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Relationships among the solid, liquid, and vapor phases of a substance in a sealed Relationships among the solid, liquid, and vapor phases of a substance in a sealed container can be represented in a single graph.container can be represented in a single graph.

Phase diagram – gives the conditions of temperature and pressure at which a – gives the conditions of temperature and pressure at which a substance exists as solid, liquid and gas. substance exists as solid, liquid and gas.

Phase Diagram

Page 35: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Triple point – point in the phase diagram where all three lines separating the – point in the phase diagram where all three lines separating the phases meet.phases meet.

• Describes the only set of conditions at which all three phases can exist in equilibrium with one another.

The conditions of pressure and temperature at which two phases exist in equilibrium are indicated by a line separating the phases.

Phase Diagram

Page 36: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Chapter 14Properties of Gases

Page 37: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

The Properties of Gases

• Gas can expand to fill its container

• Gases are easily compressed, or squeezed into a smaller volume.

• Gases occupy far more space than a liquid or a solid

CompressibilityCompressibility – measure of how much the volume of matter decreases under pressure.

Page 38: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Kinetic Theory & Gases

What is kinetic energy

The energy of motion

How are temperature and kinetic energy related?

Temperature is a measure of average kinetic energy.

Page 39: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Factors Affecting Gas PressurePressure (P) - kPa

Volume (V) - liters

Temperature (T) - Kelvin

Number of moles (n)

The amount of gas, volume, and temperature are factors that affect gas pressure

Page 40: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Amount of Gas and Gas Pressure

When you inflate an air raft, the pressure inside the raft will increase. (this is a container with a volume that can vary. A balloon is another example)

Collisions of particles with the inside walls of the raft result in the pressure that is exerted by the gas.

By adding gas, you increase the number of particles.

Increasing the number of particles increases the number of collisions, which is why the gas pressure increases.

Page 41: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Cause and Effect

If the pressure of the gas in a sealed container is lower than the outside air pressure, air will rush into the container when the container is opened.

When the pressure of the gas in a sealed container is higher than the outside air pressure, the gas will flow out of the container when the container is unsealed.

Page 42: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Volume & Gas Pressure

When cylinder has a volume of 1 L, the pressure is 100 kPa

If volume is halved to 0.5 L, the pressure doubles to 200kPa

If volume is doubled to 2.0 L, the pressure of the volume is cut in half to 50 kPa.

Page 43: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Boyle’s Law (Pressure & Volume)

Boyle’s LawBoyle’s Law – states that for a given mass of gas at constant temperature, the volume of the gas varies inversely with pressure.

P1V1 = P2V2

Page 44: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample Problem UsingBoyle’s Law

Nitrous oxide (N2O) is used as an anesthetic. The pressure on 2.50 L of N2O changes from 105 KPa to 40.5 KPa. It the temperature does not change, what will the new volume be?

P1 = 105 kPa P2 = 40.5 kPaV1 = 2.50 L V2 = ? L

P1V1 = P2V2 or P1V1 / P2 = V2

V2 = (2.50 L) (105 kPa) 40.5 KPa

V2 = 6.48 L (3 sig figs)

Page 45: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample Problem UsingBoyle’s Law

The volume of a gas at 99.6 KPa and 24ºC is 4.23L. What volume will it occupy at 93.3 KPa and 24ºC?

P1 = 99.6 kPa P2 = 93.3 kPa T1 = 24ºCV1 = 4.23 L V2 = ? L T2 = 24ºC

P1V1 = P2V2 or P1V1 / P2 = V2

V2 = (4.23 L) (99.6 kPa) 93.3 kPa

V2 = 4.52 L (3 sig figs)

Page 46: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Charles’s Law Temperature and Volume

As the temperature of an enclosed gas increases, the volume increases, if the pressure is constant.

In 1787, French physicist Jacques Charles studies the effect of temperature on the volume of a gas at constant pressure.

Charles’s LawCharles’s Law – states that the volume of a fixed mass of gas is directly proportional to its Kelvin temperature if the pressure is kept constant.

V1 = V2

T1 T2

Page 47: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample Problem UsingCharles’s Law

A balloon inflated in a room at 24ºC has a volume of 4.00 L. The balloon is then heated to a temperature of 58ºC. What is the new volume if the pressure remains constant?

T1 = 24ºC or 297 K V1 = 4.00 L

T2 = 58ºC or 331 K V2 = ? L

V1 = V2 or V1T2 = V2

T1 T2 T1

V2 = (4.00 L) (331 K) = 4.46 L297 K

Page 48: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Gay-Lussac’s LawPressure and Temperature

As the temperature of an enclosed gas increases, the pressure increases, if the volume is constant.

Joseph Gay-Lussac discovered the relationship between the pressure and the temperature of gas in 1802.

Gay-Lussac’s Law – states that the pressure of a gas is directly proportional to the Kelvin temperature if the pressure if the volume remains constant.

P1 = P2

T1 T2

Page 49: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample Problem UsingGay-Lusaac’s Law

A sample of nitrogen gas has a pressure of 6.58 kPa at 539 K. If the volume does not change, what will the pressure be at 211 K?

P1 = 6.58 kPa T1 = 539 K

P2 = ? kPa T2 = 211 K

P1 = P2 or P1T2 = P2

T1 T2 T1

P2 = (6.58 K) (211 K) = 2.58kPa539 K

Page 50: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Combined Gas Law

There is a single expression that combines Boyle’s, Charles’s and Gay-Lusaac’s Law.

The combined gas law describes the relationship among the pressure, temperature, and volume of an enclosed gas.

The combined gas law allows you to do calculation for situations in which only the amount of gas is constant

P1V1 = P2 V2

T1 T2

Page 51: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample Problem UsingCombined Gas Law

A gas at 155 kPa and 25º C has an initial volume of 1.00 L. The pressure of the gas increases to 605 kPa as the temperature is raised to 125º C. What is the new volume?

P1 = 155 kPa T1 = 298 K V1 = 1.00 L

P2 = 605 kPa T2 = 398 K V2 = ?

P1V1 = P2 V2 or P1V1 T2 = V2

T1 T2 T1 P2

V2 = (155kPa)(1.00 L)(398 K) = 0.342 L(298 K)(605 kPa)

Page 52: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Ideal Gas Law

PV = nRT

pressure volume moles constant temperature(K) 8.31L · kPa / mole · K

Page 53: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample Problem Using Ideal Gas Law

When the temperature of a rigid hollow sphere containing 685 L of helium gas is held at 621 K, the pressure of the gas is 1.89 x 103 kPa. How many moles of helium does the sphere contain?

P = 1.89 x 103 V = 685 L T = 621 K

PV = nRT or PV / RT = n

n = (1.89 x 103 kPa) (685 L) mol · K(8.31L · kPa) (621K)

n = 251 mol He

Page 54: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample Problem Using Ideal Gas Law

A child’s lungs can hold 2.20 L. How many grams of air do her lungs hold at a pressure of 102 kPa and a body temperature of 37ºC? Use a molar mass of 29 g for air.

P = 102 kPa V = 2.20 L T = 310 K

PV = nRT or PV / RT = n

n = (102 kPa) (2.20 L) mol · K(8.31L · kPa) (310K)

n = 0.087 mol air 0.087 mol air x 29g air / mol air = 2.5 g air

Page 55: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Ideal Gases & Real Gases

Ideal gasIdeal gas – one that follows the gas laws at all conditions of pressure and temperature.

Such a gas would have to conform precisely to the assumptions of kinetic theory.

Its particles could have no volume, and there could be no attraction between particles in the gas.

There is no gas for which these assumptions are true.

Page 56: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Ideal Gases & Real Gases

At many conditions of temperature and pressure, real gases behave very much like an ideal gas.

Particles of a real gas do have volume and there are attractions between the particles.

Because of these attractions, a gas can condense or solidify when it is compressed or cooled.

Example – if water vapor is cooled below 100ºC at standard atmospheric pressure, it condenses to a liquid.

Page 57: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Ideal Gases & Real Gases

Real gases differ most from an ideal gas at low temperatures and high pressures.

For real gases at high pressures (thus high densities), attractive forces reduce the distance between particles.

As pressures and density increase, the volume of the molecules themselves becomes significant relative to the size of the container.

For real gases below a critical temperature, the attractive forces cause the particles to “stick” together and the gas condenses to become a liquid.

Page 58: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Gases: Mixtures & Movements

Gas pressure depends on the number of particles in a given volume and on their average kinetic energy.

Particles in a mixture of gases at the same temperature have the same average kinetic energy.

The kind of gas particle is not important.

Partial pressurePartial pressure – the contribution each gas in a mixture makes to the total pressure

Page 59: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Dalton’s Law of Partial PressuresIn a mixture of gases, the total pressure is the sum of the partial pressures of the gases.

Ptotal = P1 + P2 + P3 + …..

Partial pressurePartial pressure – the contribution each gas in a mixture makes to the total pressure

Dalton’s law of partial pressuresDalton’s law of partial pressures – states that, at constant volume and temperature, the total pressure exerted by a mixture of gases is equal to the sum of the partial pressures of the component gases.

Page 60: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample Problem Using Dalton’s Law of Partial Pressures

Air contains O, N, CO2, and trace amounts of other gases. What is the partial pressure of O (PO) at 101.30 kPa of total pressure if the partial pressures of N, CO2 and other gases are 79.10 kPa, 0.040 kPa, and 0.94 kPa respectively?

Ptotal = PN2 + PCO2 + PTrace + PO2

101.30kPa = 79.10kPa + 0.040kPa + 0.94kPa + PO

101.30kPa = 80.08 kPa + PO

101.3 kPa – 80.08 kPa = PO

21.22 kPa = PO

Page 61: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Diffusion

DiffusionDiffusion – is the tendency of molecules to move toward areas of lower concentration until the concentration is uniform throughout.

Example - if you spray perfume or have an open bottle of perfume at one corner of a room, at some point you could smell the perfume in the opposite corner of the room.

Page 62: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Effusion

EffusionEffusion – during effusion, a gas escapes through a tiny hole in its container.

With effusion and diffusion, the type of particle is important.

Gases of lower molar mass diffuse and effuse faster than gases of higher molar mass.

Page 63: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Graham’s Law

Scottish chemist Thomas Graham studied rates of effusion during the 1840’s.

Graham’s Law of EffusionGraham’s Law of Effusion – states that the rate of effusion of a gas is inversely proportional to the square root of the gas’s molar mass.

This law can also be applied to the diffusion of gas.

Page 64: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Graham’s Law

Use Grahams’ Law to compare the effusion rates of nitrogen (molar mass = 28.0g) and helium (molar mass = 4.0g)

Rate He = 28.0g = 7 = 2.7 Rate N2 4.0g

Helium effuses and diffuses nearly three times faster than nitrogen at the same temperature

Page 65: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Chapter 15Water and Aqueous Systems

Page 66: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Water’s Properties

H2O – the oxygen atom forms a covalent bond to each of the hydrogen atoms

Because of its greater electronegativity, oxygen attracts the electron pair of the covalent O – H bond to a greater extend than hydrogen.

As a result, the Oxygen atom acquires a partial negative charge (δ-)

The less electronegative hydrogen atoms acquire partial positive charges (δ+)

Page 67: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Water’s Properties

The O – H bonds are highly polar.

Polar bondPolar bond – a covalent bond between atoms in which the electrons are shared unequally.

How do the polarities of the two O – H bonds affect the polarity of the molecule?

The shape of the molecule is the determining factor.

Page 68: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Water’s Properties

The bond angle of water is approximately 105 which give it a bent shape.

Polar moleculePolar molecule – a molecule in which one side of the molecule is slightly negative and the opposite side is slightly positive.

The water molecule as a whole is polar. The water molecule as a whole is polar.

PolarityPolarity – refers to the net molecular dipole resulting from electronegativity differences between covalently bonded atoms

Page 69: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Water’s Properties

In general, polar molecules are attracted to one another by dipole interactions.

Dipole interactionsDipole interactions – intermolecular forces resulting from the attraction of oppositely charged regions of polar molecules.

The negative end of one molecule attracts the positive end of another molecule

Page 70: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Water’s Properties The intermolecular attractions among water molecules result in the formation of

hydrogen bonds.

Hydrogen bondsHydrogen bonds – attractive forces in which a hydrogen covalently bonded to a very electronegative atom is also weakly bonded to an unshared electron pair of another electronegative atom.

Many unique and important properties of water, including its high surface tension and low vapor pressure, result from hydrogen bonding.

Page 71: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Surface Tension Water molecules at the surface of the liquid experience an unbalanced attraction.

Water molecules are hydrogen-bonded on only one side of the drop.

As a result, water molecules at the surface tend to be drawn inward.

Surface tensionSurface tension – the inward force, or pull that tends to minimize the surface area of a liquid

Page 72: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Surfactants It is possible to decrease the surface tension of water by adding a surfactant.

SurfactantSurfactant – any substance that interferes with the hydrogen bonding between water molecules and thereby reduces the surface tension.

Examples of surfactants are soaps and detergents.

Adding a detergent to beads of water on a greasy surface reduces the surface tension causing the beads of water to collapse and spread out.

Page 73: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Vapor Pressure Hydrogen bonding also explains water’s unusually low vapor pressure.

Vapor pressure is the result of molecules escaping the surface of the liquid & entering the vapor phase.

Hydrogen bonds hold water molecules to one another. The tendency to escape is low, thus evaporation is slow.

It is a good thing because all the lakes and oceans would tend to evaporate.

Page 74: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Water in the Solid State When the temperature of water falls below 4º C, the density of water actually starts to

decrease.

Below 4º C, water no longer behaves like a typical liquid.

Hydrogen bonds hold the water molecules in place in the solid phase.

The structure of ice is a regular open framework of water molecules arranges like a honeycomb.

Page 75: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Water in the Solid State Extensive hydrogen bonding in ice holds the water molecules farther apart in a more ordered arrangement than in liquid water.

When ice melts, the framework collapses and the water molecules pack closer together, making liquid water more dense than ice.

Page 76: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Solvents and Solutes Water dissolves so many of the substances that it comes in contact with that you won’t find

chemically pure water in nature.

Even the tap water you drink is a solution that contains varying amounts of dissolved minerals and gases.

Aqueous solutionAqueous solution – water that contains dissolved substances.

Solvent Solvent – the dissolving medium

SoluteSolute – the dissolved particles

Page 77: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Solvents and Solutes Solutions are homogeneous mixtures. They are also stable mixtures.

Example: salt (NaCl) does not settle out of the solution when allowed to stand. (provided other conditions, like temperature remain constant)

Solute particles can be atoms, ions, or molecules and their average diameter are usually less than 1nm.

If you filter a solution through filter paper, both the solute and the solvent pass through the filter.

Page 78: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Solvents and Solutes Ionic compounds and polar covalent molecules dissolve most readily in water.

Ionic compoundsIonic compounds – composed of a positive and negative ion (ex: metal and non metal)

Polar covalent moleculesPolar covalent molecules – electrons are shared equally between atoms (covalent) and one side of the molecule is slightly negative and the opposite side is slightly positive.

Nonpolar covalent molecules, such as methane and compounds found in oil, grease & gasoline, do not dissolve in water.

Page 79: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

The Solution Process

Water molecules are in constant motion because of their kinetic energy.

When a crystal of NaCl is place in water, the water molecules collide with it.

Since the water molecule is polar, the partial positive charge on the H+ attracts the negative solute ion Cl-

The partial negative charge on the O2- attracts the positive solute ion Na+

Page 80: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Solvation

As individual solute ions break away from the crystal, the negatively (Cl-) and positively (Na+) charged ions become surrounded by solvent molecules and the ionic crystal dissolves.

SolvationSolvation – the process by which the positive and negative ions on an ionic solid become surrounded by solvent molecules.

Page 81: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Insoluble Ionic Compounds

In some ionic compounds, the attractions among the ions in the crystals are stronger than the attractions exerted by water.

These compounds cannot be solvated to any significant extent and are therefore nearly insoluble.

Barium sulfate (BaSO4) and calcium carbonate (CaCO3) – nearly insoluble ionic compounds

Page 82: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

The Solution Process

As a rule, polar solvents such as water dissolve ionic compounds and polar compounds.

Nonpolar solvents such as gasoline dissolve nonpolar compounds.

Like dissolves likeLike dissolves like

Page 83: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Electrolytes & Nonelectrolytes ElectrolyteElectrolyte – compound that conducts electric current when it is in an aqueous solution or in

the molten state.

All ionic compounds are electrolytes because they dissociate into ions.

NaCl Na+ + Cl-

Nonelectrolyte Nonelectrolyte – compound that does not conduct electric current in aqueous solutions or in the molten state

Many molecular compounds are nonelectrolyes because they are not composed of ions.

Page 84: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Electrolytes & Nonelectrolytes Some polar molecular compounds are nonelectrolytes in the pure state, but become

electrolytes when they dissolve in water.

This occurs because they ionize in solution.

Ex: neither ammonia or hydrogen chloride is an electrolyte in the pure state.

NH3 + H2O NH4+ + OH-

HCl + HHCl + H22O HO H33OO++ + Cl + Cl--

Both conduct electricity in aqueous solutions because ions form.

Page 85: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Strong Electrolytes Not all electrolytes conduct an electric current to the same degree.

Strong ElectrolyteStrong Electrolyte – a solution that is a good conductor of electricity because a large portion of the solute exists as ions.

Strong AcidsHCl, HBr, HI, HNO3, HClO3, HClO4, and H2SO4

Strong BasesNaOH, KOH, LiOH, Ba(OH)2, and Ca(OH)2

Salts NaCl, KBr, MgCl2 …

Page 86: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Electrolytes & Nonelectrolytes Weak electrolyteWeak electrolyte – solution that conducts electricity poorly because only a fraction of

the solute exists as ions.

Weak AcidsHF, HC2H3O2 (acetic acid), H2CO3 (carbonic acid), H3PO4 (phosphoric acid) …..

Weak BasesNH3 (ammonia), C5H5N (pyridine), and several more, all containing "N"

Page 87: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Electrolytes & Nonelectrolytes

A solution conducts electricity if it contain ions.A solution conducts electricity if it contain ions.

Electrolytes are excreted through the skin via sweat, and they must be replenished or cramps and heat stroke may occur.

Sports drinks are a good source of electrolytes; they contain Na+, K+ and Ca+

Page 88: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Hydrates

When an aqueous solution of copper(II) sulfate (CuSO4) is allowed to evaporate, deep blue crystals of copper(II) sulfate pentahydrate are deposited.

The chemical formula for this compound is CuSO4 · 5H5H22OO

Water of Hydration or Water of CrystallizationWater of Hydration or Water of Crystallization – the water contained in a crystal.

Page 89: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Hydrates

HydrateHydrate – a compound that contains water of hydration

When writing the formula of a hydrate, use a dot to connect the formula of the compound and the number of water molecules per formula unit.

CuSO4 · 5H5H22OO

Crystals of copper(II) sulfate pentahydrate always contain five molecules of water for each copper and sulfate ion pair.

Page 90: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Efflorescent Hydrates

The forces holding the water molecules in hydrates are not very strong, so the water is easily lost and regained.

Because the water molecules are held by weak forces, it is often possible to estimate the vapor pressure of the hydrates.

If a hydrate has a vapor pressure higher than the pressure of water vapor in the air, the hydrate will lose its water of hydration – effloresceeffloresce.

Page 91: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Hygroscopic Hydrates

Hydrated salts that have a low vapor pressure remove water from moist air to form higher hydrates.

These hydrates and other compounds that remove moisture from air are called hygroscopichygroscopic.

CaCl2 · H2O CaCl2 · 2H2O

Calcium chloride monohydrate spontaneously absorbs a second molecule of water when exposed to moist air.

Page 92: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Hygroscopic Hydrates CaCl2 · H2O is used a a desiccant in the laboratory.

DesiccantDesiccant – a substance used to absorb moisture from the air and create a dry atmosphere.

Desiccants can be added to a sealed container to keep substances inside the container dry.

Desiccants can be added to liquid solvents to keep them dry.

When a desiccant has absorbed all the water it can hold, it can be returned to its anhydrous state by heating.

Page 93: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Heterogeneous Aqueous SystemsHeterogeneous mixtures are not solutions.

If you shake a piece of clay with water, the clay breaks into fine particles.

The water becomes cloudy because the clay particles are suspended in the water.

If you stop shaking, the particles begin to settle out.

SuspensionSuspension – a mixture from which particles settle out upon standing.

Page 94: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Suspensions

A suspension differs from a solution because the particles of a suspension are much larger and do not stay suspended indefinitely.

The larger size of suspended particles means that gravity plays a larger role in causing them to settle out of the mixture.

Cooks use suspensions of flour or cornstarch in water to thicken sauces and gravies.

Page 95: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

ColloidsColloid – a heterogeneous mixture containing particles that range in size from 1nm to 1000

nm.

The particles are spread throughout the dispersion medium, which can be a solid, liquid or gas.

glues gelatin paint milksmog smoke cream asphalt

Ink sea foam aerosols

Page 96: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Colloids

A colloid is a type of mixture that appears to be a solution but it is actually a mechanical mixture.

A colloidal system consists of two separate phases: a dispersed phase (internal phase) and a continuous phase (dispersion medium).

In a colloid, the dispersed phase is made of tiny particles or droplets that are distributed evenly throughout the continuous phase.

Page 97: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

The Tyndall Effect

Ordinarily you can’t see a beam of sunlight unless the light passes through particles of water or dust in the air.

A beam of light is visible as it passes through a colloid.

Tyndall effectTyndall effect – the scattering of visible light by colloidal particles

Suspensions also exhibit the Tyndall effect, but solutions do not. (particles are too small to scatter light)

Page 98: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Brownian Motion

Brownian MotionBrownian Motion – The chaotic movement of colloidal particles (first observed by Robert Brown 1773 – 1858)

Brownian motion is caused bycollisions of the molecules of the dispersion medium with the small, dispersed colloidal particles.

These collisions help prevent the colloidal particles from settling.

Digital video microscopy

Page 99: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Coagulation

Colloidal particles also tend to stay suspended because they become charged by adsorbing ions from the dispersing medium onto their surface.

AdsorptionAdsorption is a process that occurs when a gas or liquid solute accumulates on the surface of a solid or a liquid (adsorbent), forming a molecular or atomic film (the adsorbate).

It is different from absorptionabsorption, in which a substance diffuses into a liquid or solid to form a solution

Digital video microscopy

Page 100: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Quick Review

Main difference between solutions, suspensions, and colloids is particle size.

Solution particles – typically less than 1 nm diameter

Colloid particles – between 1 nm and 1000 nm

Suspension particles - typically larger than 1000nm

Digital video microscopy

Page 101: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Emulsions

EmulsionEmulsion – a colloidal dispersion of a liquid in a liquid.

An emulsifying agent is essential for the formation of an emulsion and for maintaining the emulsion’s stability.

Ex. Oils and greases are not soluble in water.

However, the readily form a colloidal dispersion if soap or detergent is added to the water.

Digital video microscopy

Page 102: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Emulsions

An example of an emulsion ismayonnaise

Mayonnaise is a heterogeneous mixture of oil and vinegar, which would quickly separate without the presence of egg yolk (the emulsifying agent.)

Milk, margarine and butter are also emulsions.

Cosmetics, shampoos, and lotions are formulated with emulsifiers to maintain consistent quality.

Digital video microscopy

Page 103: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

ReviewProperties of Solutions

SolutionsSolutions• Particle type – ions, atoms, small molecules• Particle size – 0.1 – 1 nm• Effect of light – no scattering• Effect of gravity – stable, does not separate• Filtration – particles not retained on filter• Uniformity - homogeneous

Digital video microscopy

Page 104: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

ReviewProperties of Colloids

ColloidsColloids• Particle type – large molecules or particles• Particle size – 1 – 1000 nm• Effect of light – exhibits Tyndall effect• Effect of gravity – stable, does not separate• Filtration – particles not retained on filter• Uniformity - borderline

Digital video microscopy

Page 105: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

ReviewProperties of Suspensions

SuspensionSuspension• Particle type – large particles or aggregates• Particle size – 1000nm and larger• Effect of light – exhibits Tyndall effect• Effect of gravity - unstable, sediment forms• Filtration – particles retained on filter• Uniformity – heterogeneous

Digital video microscopy

Page 106: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Chapter 16Properties of Solutions

Page 107: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Stirring & Solution FormationStirring speeds up the process of dissolving because fresh solvent is continually brought

into contact with the surface of the solute

Stirring affects only the rate at which a solid solute dissolves. It does not influence the amount of solute that will dissolve.

An insoluble substance remains undissolved regardless of how vigorously or for how long the solvent/solute system is agitated.

Page 108: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Temperature & Solution Formation

At higher temperatures, the kinetic energy of the solvent molecules is greater than at lower temperatures so they move faster.

The more rapid motion of the solvent molecules leads to an increase in the frequency and the force of the collisions between the solvent molecules and the surfaces of the solute molecules.

Page 109: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Particle Size & Solution FormationA spoonful of granulated sugar dissolves more quickly than a sugar cube because

the smaller particles in granulated sugar expose a much greater surface area to the colliding solvent molecules.

The more surface of the solute that is exposed, the faster the rate of dissolving.

Page 110: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

SolubilityIn a saturated solution, a state of dynamic equilibrium exists between the solution and the

excess solute.

The rate of solvation (dissolving) equals the rate of crystallization, so the total amount of dissolved solute remains constant.

The system will remain the same as long as the temperature remains constant.

Saturated solutionSaturated solution – contains the maximum amount of solute for a given quantity of solvent at a constant temperature and pressure.

Page 111: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

SolubilityExample: 36.2 g of salt dissolved in 100 g of water is a saturated solution at 25ºC.

If additional solute is added to this solution, it will not dissolve.

SolubilitySolubility of a substance is the amount of solute that dissolves in a given quantity of a solvent at a specified temperature and pressure to produce a saturated solution.

Solubility is often expressed in grams of solute per 100 g solvent. (gas sometimes g/L)

Page 112: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

SolubilityUnsaturated solutionUnsaturated solution – a solution that contains less solute than a saturated solution at a

given temperature and pressure.

If additional solute is added to an unsaturated solution, it will dissolve until the solution is saturated.

Some liquids are infinitely soluble in each other. Any amount will dissolve in a given volume.

Two liquids are misciblemiscible if they dissolve in each other in all proportions (water and ethanol)

Page 113: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Factors Affecting SolubilityTemperature affects the solubility of a solid, liquid and gaseous solutes in a solvent.

Both temperature and pressure affect the solubility of gaseous solutes.

The solubility of most solid substances increases as the temperature of the solvent increases.

Mineral deposits form around the edges of hot springs because the hot water is saturated with minerals. As the water cools, some of the minerals crystallize because they are less soluble at the lower temperature.

Page 114: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Factors Affecting SolubilityFor a few substances, solubility decreases with temperature.

Supersaturated solutionSupersaturated solution – contains more solute than it can theoretically hold at a given temperature.

Make a saturated solution of sodium acetate at 30·C and let the solution stand undisturbed as it cools to 25ºC.

You would expect that solid sodium acetate will crystallize from the solution as the temperature drops. But no crystals form.

Page 115: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Temperature and Gas SolubilityThe solubilities of most gases are greater in cold water than in hot.

Thermal pollution happens when an industrial plant takes water from a lake for cooling and then dumps the heated water back into the lake.

The temperature of the lake increases which lowers the concentration of dissolved oxygen in the lake water affecting aquatic animal and plant life.

Page 116: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Pressure and SolubilityChanges in pressure have little affect on the solubility of solids and liquids, but pressure

strongly influences the solubility of gases.

Carbonated beverages contain large amounts of carbon dioxide dissolved in water. Dissolved CO2 makes the drink fizz.

The drinks are bottle under higher pressure of CO2 gas, which forces large amounts of the gas into solution.

When opened, the partial pressure of CO2 above the liquid decreases.

Page 117: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Pressure and SolubilityImmediately, bubbles of CO2 form in the liquid and escape from the bottle and the

concentration of dissolved CO2 decrease.

If the drink is left open, it becomes “flat” as it loses its CO2.

Henry’s LawHenry’s Law – sated that at a given temperature, the solubility (S) of a gas in a liquid is directly proportional to the pressure (P) of the gas above the liquid.

As the pressure of the gas above the liquid increases, the solubility of the gas increases.

Page 118: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Pressure and SolubilityHenry’s Law

S1 = S2

P1 P2

Page 119: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

QuestionThe solubility of a gas in water is 0.16 g/L at 104 kPa. What is the solubility when the

pressure of the gas ins increased to 288 kPa. Assume the temperature remains constant.

S1 = S2

P1 P2

(288 kPa) ( 0.16g/L) = 4.4 x 10-1 g/L

(104 kPa)

Page 120: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

ConcentrationConcentrationConcentration of a solution is a measure of the amount of solute that is dissolved in a

given quantity of solvent.

Dilute solutionDilute solution is one that contains a small amount of solute.

Concentrated solutionConcentrated solution – contains a large amount of solute.

In chemistry the most important unit of concentration is molarity.

Page 121: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

MolarityMolarityMolarity (M) is the number of moles of solute dissolved in one liter of solution

Molarity (M) = moles of solute / liters of solution.

Note that the volume involved is the total volume of the resulting solution, not the volume of the solvent alone.

3 M NaCl is read as “three molar sodium chloride”

Page 122: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Molarity QuestionsA solution has a volume of 2.0 L and contains 36.0 g of glucose (C6H12O6). If the molar mass

of glucose is 180 g/mol, what is the molarity of the solution?

M = moles of solute / L of solution

M = 36.0 g glucose 1 mol glucose 180 g glucose 2.0 L

M = 0.1mol/L or 0.1M C6H12O6

Page 123: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Making DilutionsDilutingDiluting - To make less concentrated by adding solvent.

Diluting a solution reduces the number of moles of solute per unit volume, but the total number of moles of solute in solution does not change.

Moles of solute before dilution = moles of solute after dilution

moles of solute = M x L of solution and total number of moles of solute remains unchanged upon dilution.

M1V1 = M2V2

Page 124: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Making DilutionsM1V1 = M2V2

molarity & volume molarity and volume of original solution of diluted solution

Volumes can be L or mL as long as the same units are used for both V1 and V2

Page 125: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

QuestionsHow many milliliters of a solution of 4.0 M KI are needed to prepare a 250.0 mL of 0.760 M

KI?

V1 = (0.760M)(250.0 mL) / (4.0 M) = 47.5 mL

How could you prepare 250 mL of 0.20M NaCl using on a solution of 1.0M NaCl and water?

V1 = (0.20M) ( 250 mL) / ( 1.0 M) = 50 mL

Use a pipet to transfer 50 mL of the 1.0M solution to a 250 mL flask. Then add distilled water up to the mark.

Page 126: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Percent Solutions (v / v)The concentration of a solution in percent can be expressed in two ways:

As the ratio of the volume of the solute to the volume of the solution or as the ratio of the mass of the solute to the mass of the solution

Percent by volume (% (v/v)) = volume of solute x 100% volume of solution

How many milliliters of isopropyl alcohol are in 100 mL of 91% alcohol?

Page 127: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

QuestionA bottle of the antiseptic hydrogen peroxide is labeled 3.0% (v/v). How many mL hydrogen

peroxide are in a 400.0 mL bottle of this solution?

Percent by volume (% (v/v)) = volume of solute x 100% volume of solution

0.03 = x mL / 400.0 mL

(0.03) (400.0 mL) = x

12 mL = x

Page 128: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Percent Solutions (mass/mass)Another way to express the concentration of a solution is as a percent (mass/mass), which

is the number of grams of solute in 100 g of solution.

A solution containing 7 g of NaCl in 100 g of solution is 7% (m/m)

Percent by mass (% (m/m) = mass of solute x 100% mass of solution

Page 129: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Percent Solutions (mass/mass)You want to make 2000g of a solution of glucose in water that has a 2.8% (m/m)

concentration of glucose. How much glucose should you use?

Percent by mass (% (m/m) = mass of solute x 100% mass of solution

2000 g solution=(2.8g glucose/100 g solution) = 56 g glucose

How much solvent should be used? The mass of the solvent equals the mass of the solution minus the mass of the solute.

(2000 g – 56 g ) = 1944 g of solvent

Thus a 2.8% (m/m) glucose solution contains 56 g of glucose dissolved in 1944 g of water.

Page 130: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Colligative Properties of Solutions

The physical properties of a solution differ from those of the pure solvent used to make the solution.

Some of these differences in properties have little to do with the specific identity of the solute.

They depend upon the number of solute particles in the solution.

Colligative PropertyColligative Property – a property that depends only upon the number of solute particles, and not upon their identity.

Page 131: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Colligative Properties of Solutions

The decrease in a solution’s vapor pressure is proportional to the number of particles the solute makes in solution.

3 moles of NaCl dissolved in H2O produce 6 mol of particles - each formula unit dissociates into 2 ions

3 moles of CaCl2 dissolved in H2O produce 9 mol of particles - each formula unit dissociated into 3 ions

3 moles of glucose dissolved in water produce 3 mol of particles – glucose does not dissociate.

Page 132: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Colligative Properties of Solutions

The vapor pressure lowering caused by 0.1 mol of NaCl in 1000 g of water is twice that caused by 0.1 mol of glucose in the same quantity of water.

The vapor pressure lowering caused by 0.1 mol of CaCl2 in 1000 g of water is three times that caused by 0.1 mol of glucose in the same quantity of water.

The decrease in a solution’s vapor pressure is proportional to the number of particles the solute

Page 133: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Freezing-Point Depression

When a substance freezes, the particles of the solid take on an orderly pattern.

The presence of a solute in water disrupts the formation of this pattern because of the shells of water of solvation. (water molecules surround the ions of the solute)

As a result, more KE must be withdrawn from a solution than from the pure solvent to cause the solution to solidify.

The freezing point of a solution is lower than the freezing point of the pure solvent.

Page 134: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Freezing-Point Depression

Freezing-Point DepressionFreezing-Point Depression – the difference in temperature between the freezing point of a solution and the freezing point of the pure solvent.

Freezing-point depression is another colligative property.

The magnitude of the freezing-point depression is proportional to the number of solute particles dissolved in the solvent and does not depend upon their identity.

The addition of 1 mol of solute particles to 1000 g of water lowers the freezing point by lowers the freezing point by 1.861.86ººC.C.

Page 135: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Freezing-Point DepressionIf you add 1 mole (180g) of glucose to 1000 g of water, the

solution freezes at -1.86ºC.

If you add 1 mol (58.5g) of NaCl to 1000 g of water, the solution freezes at -3.72ºC, double the change for glucose.

This is because 1 mol NaCl produces 2 mol particles and doubles the freezing point depression.

Salting icy surfaces forms a solution with the melted ice that has a lower freezing point than water. (antifreeze also)

Page 136: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

RemindersIonic compounds and certain molecular compounds, such as

HCl, produce two or more particles when they dissolve in water.

Most molecular compounds, such as glucose, do not dissociate when they dissolve in water.

Colligative properties do not depend on the kind of particles, but on their concentration.

Which produces a greater change in colligative properties – an ionic solid or a molecular solid?

An ionic solid produces a greater change because it will produce 2 or more mole of ions for every mol of solid that dissolves.

Page 137: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Boiling-Point ElevationBoiling PointBoiling Point – of a substance is the temperature at which the

vapor pressure of the liquid phase equals atmospheric pressure.

Adding a nonvolatile solute to a liquid solvent decreases the vapor pressure of the solvent.

Because of the decrease in vapor pressure, additional KE must be added to raise the vapor pressure of the liquid phase of the solution to atmospheric pressure and initiate boiling.

Thus the boiling point of a solution is higher than the boiling point of the pure solvent.

Page 138: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Boiling-Point ElevationBoiling Point ElevationBoiling Point Elevation – The difference in temperature

between the boiling point of a solution and the boiling point of the pure solvent.

The same antifreeze, added to automobile engines to prevent freeze-ups in winter, protects the engine from boiling over in summer.

Boiling-point elevation is a colligative property, it depends on the concentration of particles, not on their identity.

It takes additional KE for the solvent particles to overcome the attractive forces that keep them in the liquid.

Page 139: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Boiling-Point ElevationThe magnitude of the boiling-point elevation is proportional to

the number of solute particles dissolved in the solvent.

The boiling point of water increases by 0.512increases by 0.512ººCC for every mole of particles that the solute forms when dissolved in 1000g of water.

To make fudge, a lot of sugar and some flavoring are mixed with water and the solution is boiled. As the water slowly boils away, the concentration of sugar in the solution increases.

As the concentration increases, the boiling point steadily rises.

Page 140: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Molality and Mole Fraction

Unit molality and mole fractions are two additional ways in which chemists express the concentration of a solution.

Molality (m) is the number of moles of solute dissolved in 1 kg of solvent.

Molality (m) = moles of solute / kg of solvent

Molarity = moles of solute / L of solution

In the case of water as the solvent, 1 kg = 1000 mL, 1000 g = 1 L

Page 141: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Molality

To prepare a solution that is 1.00 molal (1m) in glucose, you add 1 mol (180g) of glucose to 1000g of water.

0.500 molal solution in sodium chloride is prepared by 0.500 molal solution in sodium chloride is prepared by dissolving 0.50 mol (29.3 g) of NaCl in 1.0 kg of waterdissolving 0.50 mol (29.3 g) of NaCl in 1.0 kg of water

Molality (m) = moles of solute / kg of solvent

The molality of a solution does not wary with temperature because the mass of the solvent does not change.

Molarity = moles of solute / L of solution

The molarity of a solution does vary with temperature because the liquid can expand and contract.

Page 142: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Molality Questions

How many grams of NF are need to prepare a 0.400m NaF solution that contains 750g water?

750 g H2O 0.400 mol NaF 42g NaF = 13g NaF 1000 g H2O mol NaF

Calculate the molality of a solution prepared by dissolving 10.0g of NaCl in 600 g of water.

10.0 g NaCl 1 mol NaCl 1000 g H2O = 2.85 x 10-1m 600 g H2O 58.5 g NaCl 1 kg H2O

Page 143: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Mole Fraction

The concentration of a solution also can be expressed as a mole fraction.

Mole fractionMole fraction of a solute in a solution is the ratio of the moles of the solute to the total number o moles of solvent and solute.

In a solution containing nA mole of solute A and nB mole of solvent B, the mole fraction of solute A and the mole fraction of solvent B can be expressed as follows.

XA = nA XB = nB

nA + nB nA + nB

Page 144: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Mole Fraction Questions

Calculate the mole fraction of each component in a solution of 42g CH3OH, 35g C2H5OH, and 50 g C3H7OH

XA = nA

nA + nB + nC

42 g CH3OH 1 mol CH3OH = 1.3 mol CH3OH

32 g CH3OH

35 g C2H5OH 1 mol C2H5OH = 0.76 mol C2H5OH

46 g C2H5OH

50 g C3H7OH 1 mol C3H7OH = 0.83 mol C3H7OH 60 g C3H7OH

Page 145: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Mole Fraction Questions

X CH3OH = 1.3 mol 1.3 mol + 0.76 mol + 0.83 mol

X CH3OH = 1.3 mol = 0.45 2.89 mol

X CH3OH = 0.76 mol 1.3 mol + 0.76 mol + 0.83 mol

X CH3OH = 0.76 mol = 0.26 2.89 mol

X CH3OH = 0.83 mol 1.3 mol + 0.76 mol + 0.83 mol

X CH3OH = 0.83mol = 0.29 2.89 mol

Page 146: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Molal Freezing Point Depression Constant

With the addition of a constant, the proportionality between the ΔTf and the molality (m) can be expressed in an equation

ΔTf = Kf x m

The constant, KKff,, is the molal freezing-point depression constantmolal freezing-point depression constant, which is equal to the change in freezing point for a 1 molal solution of a nonvolatile molecular solute.

The value of Kf depends upon the solvent. Its units are ºC/m.

Page 147: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Molal Boiling Point Elevation Constant

The boiling-point elevation of a solution can also be expressed as an equation

ΔTb = Kb x m

The constant, KKbb,, is the molal boiling-point elevation constantmolal boiling-point elevation constant, which is equal to the change in boiling point for a 1 molal solution of a nonvolatile molecular solute.

The value of Kb depends upon the solvent. Its units are ºC/m.

For ionic compounds, both the freezing point depression and the boiling point elevation depend upon the number of ions produced by each formula unit

Page 148: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

ProblemsWhat is the freezing point depression (and boiling point elevation) of an aqueous solution of 10.0 g of glucose (C6H12O6) in 50.0 g H2O?

10.0 g C6H12O6 1 mol = 0.0555 mol C6H12O6

180 g

m = mol solute = 0.055 mol = 1.11 m kg solvent .0500 kg

ΔTf = Kf x m = (1.86 ºC/m) (1.11m) = 2.06 ºC

ΔTb = Kb x m = (0.512 ºC/m) (1.11 m) = 0.568 ºC

Page 149: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

ProblemsCalculate the freezing point depression of a benzene solution containing 400 g of benzene and 200 g of the molecular compound acetone (C3H6O). Kf for benzene is 5.12 ºC/m

200 g C3H6O 1 mol = 3.45 mol C3H6O 58 g

m = mol solute = 3.45 mol = 8.63 m kg solvent .400 kg

ΔTf = Kf x m = (5.12 ºC/m) (8.63m) = 44.2 ºC

Page 150: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Calculating the Boiling Point of an Ionic Solution

What is the boiling point of a 1.5m NaCl solution?

Each formula unit of NaCl dissociates into two particles, Na+ and Cl-, the effective molality is 2 x 1.5m = 3.00m. Calculate the boiling point elevation and then add it to 100ºC.

ΔTb = Kb x m = (0.512 ºC/m) (3.00m) = 1.54 ºC

Boiling Point = 100ºC + 1.54ºC = 101.54ºC

Page 151: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Ionic SolutionsWhat is the boiling point of a solution that contains 1.25 mol CaCl2 in 1400 g of water.

ΔTb = Kb x m = (0.512 ºC/m) (2.68m) = 1.37 ºC

Boiling Point = 100ºC + 1.37ºC = 101.37ºC

What mass of NaCl would have to be dissolved in 1.000 kg of water to raise the boiling point by 2.00ºC

ΔTb = Kb x m = (0.512 ºC/m) (?m) = 2.00 ºC

m = 3.91 / 2 = 1.96 (Na+ and Cl-)

1.96 mol NaCl 58.5 g = 115 g NaCl 1 kg solution 1 mol

Page 152: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

QuestionsWhat is the freezing point of a solution of 12.0 g of CCl4 dissolved in 750.0 g of benzene? The freezing point of benzene is 5.48 ºC; Kf is 5.12 ºC/m

m = 12.0 g CCl4 1 mol = 0.104 m 154 g 0.7500kg

ΔKf = m x Kf = (0.104m) ( 5.12 ºC/m) = 0.53ºC

Freezing point = 5.48ºC – 0.53ºC = 4.95ºC

Page 153: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Energy TransformationsEnergyEnergy is the capacity for doing work or supplying heat.

Unlike matter, energy has neither mass nor volume

Energy is detected only because of its effects – ex: the motion of a race car.

ThermochemistryThermochemistry is the study of energy changes that occur during chemical reactions and changes in state.

Every substance has a certain amount of energy stored inside it. The energy stored in the chemical bonds of a substance is called chemical potential energy.

Page 154: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Energy TransformationsAt the same time, heat is also produced, making the car’s

engine extremely hot.

Energy changes occur as either heat transfer or work, or a combination of both.

HeatHeat (q) is energy that transfer from one object to another because of a temperature difference between them.

Heat always flows from a warmer object to a cooler object.

If two objects remain in contact, heat will flow from the warmer object to the cooler object until the temperature of both objects is the same.

Page 155: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

The UniverseChemical reactions and changes in physical state generally

involve either the release or the absorption of heat.

System System is the part of the universe on which you focus your attention.

SurroundingsSurroundings include everything else in the universe.

Together the system and its surroundings make up the universe.

Thermochemistry examines the flow of heat between the system and its surroundings.

Page 156: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Law of Conservation of EnergyThe law of conservation of energy law of conservation of energy states that in any chemical

or physical process, energy is neither created nor destroyed.

If the energy of the system decreases during a process, the energy of the surroundings must increase by the same amount so that the total energy of the universe remains unchanged.

In thermochemical calculations, the direction of the heat flow is given from the point of view of the system.

Page 157: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Endothermic ProcessAn endothermic process endothermic process is one that absorbs heat from the

surroundings.

In an endothermic process, the system gains heat as the surroundings cool down.

Heat flowing into a system from its surrounding is defined as positive (+ q value)

Page 158: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Exothermic ProcessAn exothermic process exothermic process is one that releases heat into its

surroundings.

In an exothermic process, the system loses heat as the surroundings heat up.

Heat flowing out of a system into its surroundings is defined as negative (- q value)

Page 159: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Units for Measuring Heat FlowHeat flow is measured in two common units, the calorie and

the joule.

A caloriecalorie (cal) is the quantity of heat needed to raise the temperature of 1 g of pure water 1ºC.

The word caloriecalorie is written with a small csmall c except when referring to the energy contained in food.

The dietary Caloriedietary Calorie, written with a capital Ccapital C, always refers to the energy in food.

1 Calorie (dietary) = 1 kilocalorie = 1000 calories (heat flow)

Page 160: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Units for Measuring Heat Flow

The statement “10 g of sugar has 41 Calories” means that 10 g of sugar releases 41 kilocalories of heat when completely burned.

The joule (J) is the SI unit of energy. One joule of heat raises the temperature of 1 g of pure water 0.2390ºC.

1 J = 0.2390 cal 4.164 J = 1 cal

Page 161: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Conceptual ProblemA container of melted paraffin wax is allowed to stand at room

temperature until the wax solidifies. What is the direction of heat flow as the liquid wax solidifies. Is the process exothermic or endothermic?

Heat flows from the system (paraffin wax) to the surroundings (air). The process is exothermic.

When solid barium hydroxide octahydrate is mixed in a beaker with solid ammonium thiocynanate, a reaction occurs. The beaker quickly becomes very cold. Is the reaction exothermic or endothermic?

Since the beaker becomes cold, heat is absorbed by the system (chemical within the beaker) from the surroundings (the beaker and surrounding air). The process is endothermic.

Page 162: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Heat CapacityThe amount of heat needed to increase the temperature of an

object exactly 1ºC is the heat capacity heat capacity of that object.

The heat capacity of an object depends on both its mass and its chemical composition.

The greater the mass of the object, the greater its heat capacity.

Page 163: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Specific HeatAssuming that both the water and the sewer cover absorb the

same amount of radiant energy from the sun, the temperature of the water changes less than the temperature of the cover because the specific heat capacity of water is larger.

The specific heatspecific heat (C) of a substance is the amount of heat it takes to raise the temperature of 1 g1 g of the substance 1ºC. 1ºC.

Water has a very high specific heat (it takes more energy to raise the temperature)

Metals have low specific heats (it takes less energy to raise the temperature)

Page 164: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Specific HeatHeat affects the temperature of objects with a high specific

heat much less than the temperature of those with a low specific heat.

It takes a lot of heat to raise the temperature of water, water also releases a lot of heat as it cools.

Water in lakes and oceans absorbs heat from the air on hot days and releases it back into the air on cool days.

This property of water is responsible for moderate climates in coastal areas.

Page 165: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Calculating Specific Heat C = q = heat (joules or calories)

m x T = mass (g) x change in temperature (ºC)

T = Tfinal - Tinitial

Specific heat may be expressed in terms of joules or calories.

Therefore, the units of specific heat are either J / g J / g ºC ºC or cal / g cal / g ºC ºC

What factors do you think affect the specific heat of a substance?

Amount of heat and the change in temperature.

Page 166: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

QuestionsWhen 435 J of heat is added to 3.4g of olive oil at 21ºC, the

temperature increases to 85ºC. What is the specific heat of the olive oil?

C = q = 435 J = 2.0 J / g ºC m x T (3.4g) (64ºC)

How much heat is required to raise the temperature of 250.0g of mercury 52ºC?

C x m x T = q (0.14J/gºC)(250.0g)(52ºC) = 1.8kJ

Page 167: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

CalorimetryHeat that is released or absorbed during many chemical

reactions can be measured by a technique called calorimetry.

CalorimetryCalorimetry is the precise measurement of the heat flow into or out of a system for chemical and physical processes.

In calorimetry, the heat released by the system is equal to the heat absorbed by its surroundings

Conversely, the heat absorbed by a system is equal to the heat released by its surroundings.

The insulated device used to measure the absorption or release of heat is called a calorimeter.calorimeter.

Page 168: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

EnthalpyHeat flows for many chemical reactions can be measured in a

constant pressure calorimeter .

Because most chemical reactions and physical changes carried out in the laboratory are open to the atmosphere, these changes occur at constant pressure.

The heat content of a system at constant pressure is the same as a property called enthalpy (H) of the system.enthalpy (H) of the system.

The heat released or absorbed by a reaction at constant pressure is the same as the change in enthalpy (H)

The terms heat and enthalpy change are used interchangeably when reaction occur under constant pressure. ( q = H)

Page 169: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Measuring Enthalpy(heat absorbed by surroundings) qsurr = H = m x C x T

Because the heat absorbed by the surroundings is equal to (but has the opposite sign of) the heat released by the system, the enthalpy change (H) for the reaction can be written as follows.

(heat released by the system) qsys = H = -qsurr = - (m x C x T)

The sign of H is negative for an exothermic reaction and positive for an endothermic reaction.

Page 170: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

QuestionsWhen 25.0 mL of water containing 0.025 mol HCl at 25.0ºC is

added to 25.0 mL of water containing 0.025 mol NaOH at 25ºC in a foam cup calorimeter, a reaction occurs. Calculate the enthalpy change in kJ during this reaction if the highest temperature observed is 32.0ºC. Assume the densities of the solutions are 1.00g/mL

H = - (m x C x T) this is an exothermic reaction

The total volume is 25.0 mL + 25.0 mL = 50.0mL

You need the mass of water, so use the densities given to calculate. 50.0mL (1.00 g/mL) = 50.0g

Page 171: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

QuestionsH = - (m x C x T)

You know the specific heat of water is 4.18 J/gºC

T = Tf – Ti = 32.0ºC – 25.0ºC = 7.0ºC

H = - (50.0g) (4.18 J/g ºC) (7.0ºC) = -1463J = 1.46 x 103 kJ

Page 172: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

QuestionsWhen 50.0 mL of water containing 0.050 mol HCl at 22.5ºC is

added to 50.0 mL of water containing 0.50 mol NaOH at 22.5ºC in calorimeter the temperature of the solution increases to 26.0ºC. How much heat in kJ was released by this reaction?

q = (m x C x T)

The total volume is 50.0 mL + 50.0 mL = 100.0mL

You need the mass of water, so use the densities given to calculate. 100.0mL (1.00 g/mL) = 100.0g

You know the specific heat of water is 4.18 J/gºC

T = Tf – Ti = 26.0ºC – 22.5ºC = 3.5ºC

q = (100.0g) (4.18 J/g ºC) (3.5ºC) = 1463J = 1.5 x 103 kJ

Page 173: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

QuestionsA small pebble is heated and placed in a foam cup calorimeter

containing 25.0 mL of water at 25.0ºC. The water reaches a maximum temperature of 26.4ºC. How many joules of heat were released by the pebble?

q = m x C x T

You need the mass of water, so use known 1L = 1kg to calculate. .0250L (1000 g/L) = 25.0g

You know the specific heat of water is 4.18 J/gºC

T = Tf – Ti = 26.4ºC – 25.0ºC = 1.4ºC

q = (25.0g) (4.18 J/g ºC) (1.4ºC) = 146J

Page 174: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Thermochemical EquationsWhen you mix calcium oxide with water, 1 mole of calcium

hydroxide forms and 65.2 kJ of heat is released.

In a chemical equation, the enthalpy change for the reaction can be written as either a reactant or a product.

In the equation describing the exothermic reaction of CaO and H2O, the enthalpy change can be considered a product.

CaO (s) + H2O (l) Ca(OH)2 (s) + 65.2 kJ

A chemical equation that includes the enthalpy change is called a thermochemical equationthermochemical equation.

CaO (s) + H2O (l) Ca(OH)2 (s) H= -65.2 kJ

Page 175: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Thermochemical EquationsThe heat of reaction heat of reaction is the enthalpy change for the chemical

equation exactly as it is written. You will see heats of reaction reported as H, which is equal to the heat flow at constant pressure.

The physical state of the reactants and products must also be given.

The standard conditions are that the reaction is carried out at 101.3 kPa (1atm) and that the reactants and products are in their usual physical states at 25ºC.

The heat or reaction, or H, in the CaO reaction example is -65.2kJ.

Each mole of CaO and H2O that react to form Ca(OH)2 produces 65.2 kJ of heat.

Page 176: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Thermochemical EquationsOther reactions absorb heat from the surroundings. Baking

soda decomposes when heated. The carbon dioxide released in the reaction causes a cake to rise while baking. This process in endothermic.

2NaHCO3 (s) + 129kJ Na2CO3 (s) + H2O (g) + CO2 (g)

Remember that H is positive for endothermic reactions. Therefore, you can write the reactions as follows:

2NaHCO3 (s) Na2CO3 (s) + H2O (g) + CO2 (g) H=129kJ

Page 177: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Thermochemical EquationsChemistry problems involving enthalpy changes are similar to

stoichiometry problems.

The amount of heat released or absorbed during a reaction depends on the number of moles of the reactants involved.

The decomposition of 2 mol of sodium bicarbonate requires 129kJ of heat.

22NaHCO3 (s) Na2CO3 (s) + H2O (g) + CO2 (g) H=1H=129kJ29kJ

Therefore, the decomposition of 4 mol of the same substance would require twice as much heat or 258 kJ.

Page 178: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Thermochemical EquationsIn endothermic processes, the potential energy of the

products(s) is higher than the potential energy of the reactants.

The physical state of the reactants and products must also be given.

H2O (l) H2 (g) + 1/2O2 (g) H = 285.8 kJ

H2O (g) H2 (g) + 1/2O2 (g) H = 241.8 kJ

Although the two equations are very similar, the different physical states of H2O result in different H values.

Page 179: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

QuestionsCalculate the amount of heat (in kJ) required to decompose

2.24 mol NaHCO3 (s)

2NaHCO3(s) Na2CO3(s) + H2O(g) + CO2(g) H=129kJ

The thermochemical equation indicates that 129 kJ of heat are needed to decompose 2 mole of NaHCO3 (s)

H = 2.24 mole NaHCO3 (s) | 129 kJ = 144kJ | 2 mol NaHCO3 (s)

Think Logically: Because the decomposition of 2 mol of NaHCO3 requires 129kJ, then the decomposition of 2.24 mol should absorb about 10% more heat than 129kJ.

Page 180: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

QuestionsWhen carbon disulfide is formed from its elements, heat is

absorbed. Calculate the amount of heat (in kJ) absorbed when 5.66 g of carbon disulfide is formed.

C(s) + 2S(s) CS2(l) H= 89.3kJ

The thermochemical equation indicates that 89.3 kJ of heat are needed to form 1 mole of CS2 (l)

H = 5.66 g CS2 (l) | 1 mol CS2 (l) | 89.3 kJ = 6.64kJ | 76.1g CS2 (l) | 1mol CS2 (l)

Page 181: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

QuestionsThe production of iron and carbon dioxide from Iron(III) oxide

and carbon monoxide is an exothermic reaction. How many kJ of heat are produced when 3.40 mol Fe2O3 reacts with an excess of CO?

Fe2O3(s) + 3CO(g) 2Fe(s) +3CO2(g) + 26.3kJ

H = 3.40 mol Fe2O3(s) | 26.3 kJ = -89.4kJ | mol Fe2O3(s)

Page 182: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Heats of Fusion and SolidificationAll solids absorb heat as they melt to become liquids.

The gain of heat causes a change of state instead of a change in temperature.

Whenever a change of state occurs by a gain or loss of heat, the temperature of the substance remains constant.

The heat absorbed by one mole of a solid substance as it melts to a liquid at constant temperature is the molar heat of fusion. (Hfus)

The molar heat of solidification (Hsolid) is the heat lost when one mole of a liquid solidifies at constant temperature.

Page 183: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Heats of Fusion and SolidificationMelting 1 mol of ice at 0ºC to 1 mol of water at 0ºC requires

the absorption of 6.01kJ of heat. (this quantity of heat is the molar fusion of water)

The conversion of 1 mol of water at 0ºC to 1 mol of ice at 0ºC releases 6.01kJ of heat. (this quantity of heat is the molar heat of solidification of water)

H2O (s) H2O (l) (Hfus)= 6.01 kJ/mol

H2O (l) H2O (s) (Hsolid)= 6.01 kJ/mol

Page 184: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample Problem

How many grams of ice at 0ºC will melt is 2.25kJ of heat are added?

2.25 kJ 1 mol ice 18.0 g ice = 6.74 g ice 6.01 kJ 1 mol ice

Use your common sense to check. 6.01 kJ of heat is required to melt 1 mol of ice. You are only adding about 1/3 of that heat, so only about 1/3 of the ice should melt.

Page 185: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Heats of Vaporization and CondensationWhen liquids absorb heat at their boiling points, they become

vapors. The amount of heat necessary to vaporize one mole of a given liquid is called its molar heat of vaporization (Hvap)

The molar heat of vaporization of water is 40.7 kJ /mol It takes 40.7 of energy to convert 1 mol of water to 1 mole of water vapor at the normal boiling point of water.

H2O (l) H2O (g) Hvap = 40.7 kJ/mol

Condensation is the exact opposite of vaporization

Page 186: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Heats of Vaporization and CondensationWhen a vapor condenses, heat is released. The amount of

heat released when 1 mol of vapor condenses at the normal boiling point is called its molar heat of condensation. (Hcond)

The value is numerically the same as the molar heat of vaporization, however, the value has the opposite sign.

Hvap = -Hcond

Heat is released during condensation, thus the negative sign.

Condensation is the exact opposite of vaporization

Page 187: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample Problem

How much heat (in kJ) is absorbed when 24.8 g H20 (l) at 100ºC and 101.3 kPa is coverted to steam at 100ºC?

24.8g H2O 1 mol H2O 40.7 kJ = 56.1 kJ 18 g H2O 1 mol H2O

How much heat is absorbed when 63.7 g H2O at 100ºC and 101.3 kPa is converted to steam at 100ºC?

63.78g H2O 1 mol H2O 40.7 kJ = 144 kJ 18 g H2O 1 mol H2O

Page 188: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Heat of SolutionDuring the formation of a solution, heat is either released or

absorbed.

The enthalpy change caused by dissolution of one mole of substance is the molar heat of solution (Hsoln)

Hot packs are an example. When CaCl2 and H2O are mixed, heat is produced. (solution releases heat and the reaction is exothermic)

A cold pack is an example of an endothermic reaction, where the solution absorbs heat.

Page 189: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample Problem

How much heat is released when 0.677 mol NaOH is dissolved in water.

0.677 mol NaOH -445.1 kJ = -301 kJ 1 mol NaOH

How many moles of NH4NO3 must be dissolved in water so that 88.0 kJ of heat is absorbed from the water?(Hsoln for NH4NO3 = 25.4 kJ/mol)

88.0 kJ 1 mol NH4NO3 = 3.42 mol NH4NO3

25.4 kJ

Page 190: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Calculating Heats of ReactionHess’s law of heat summation states that if you add two or

more thermochemical equations to give a final equation, then you can also add the heats of reaction to give the final heat of reaction.

Use Hess’s law to find the enthalpy change for the conversion of diamond to graphite as follows:

C(s,graphite) + O2 CO2(g) H = -393.5 kJ

C(s, diamond) + O2 CO2(g) H = -395.4 kJ

Write the first equation in reverse because you want graphite on the product side. When you reverse the equation, the sign of H is also reversed.

Page 191: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Calculating Heats of ReactionCO2(g) C(s,graphite) + O2(g) H = 393.5 kJ (in reverse)

Add both equations to get:

CO2(g) C(s,graphite) + O2 H = 393.5 kJ

C(s, diamond) + O2 CO2(g) H = -395.4 kJ

C(s, diamond) C(s,graphite) H = -1.9 kJ

The conversion of diamond to graphite is an exothermic process, so its heat of reaction has a negative sign.

Conversely, the change of graphite to diamond is an endothermic process.

Page 192: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Calculating Heats of ReactionFind the enthalpy change of the change of graphite to CO

C(s,graphite) + O2(g) CO2(g) H = -393.5 kJ

CO(g) + 1/2O2(g) CO2(g) H = -283.0 kJ

Write the second equation in reverse to get CO on the product side. (don’t forget to change the sign)

C(s,graphite) + O2(g) CO2(g) H = -393.5 kJ

CO2(g) CO(g) + 1/2O2(g) H = 283.0 kJ

C(s,graphite) + 1/2O2(g) CO(g) H = -110.5 kJ

Page 193: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Standard Heats of FormationEnthalpy changes generally depend on conditions of the

process. In order to compare enthalpy changes, scientists specify a common set of conditions as a reference point.

These conditions, called the standard state, refer to the stable form of a substance at 25ºC and 101.3 kPa.

The standard heat of formation (Hf0) of a compound is the

change in enthalpy that accompanies the formation of one mole of a compound from its elements with all substances in their standard states.

The Hf0 of a free element is arbitrarily set at zero.

Page 194: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Standard Heats of FormationStandard heats of formation provide an alternative to Hess’s

law in determining heats of reaction indirectly.

For a reaction that occurs at standard conditions, you can calculate the heat of reaction by suing standard heats of formation.

This enthalpy change is called the standard heats of reaction (H0)

The standard heat of reaction is the difference between the standard heats of formation of all the reactants and products.

H0 = Hf0

(products) - Hf

0 (reactants)

Page 195: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample ProblemWhat is the standard heat of reaction for the reaction of CO(g)

with O2 (g) to form CO2 (g)

Hf0 O2 = 0kJ/mol (free element)

Hf0 CO2 = -393.5kJ/mol Hf

0 CO = -110.5kJ/mol

First write a balanced equation:2CO (g) + O2 (g) 2CO2 (g)

Next find and add the Hf0 of all of the reactants, taking into

account the number of moles of each.

Hf0

(reactants) = (2 mol CO)(-110.5kJ/mol) + 0kJ = -221.0kJ

Page 196: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample ProblemHf

0 (products) = (2 mol CO2) (-393.5kJ/mol) = -787 kJ

Lastly, plug your values calculated for Hf0

(products) and Hf0

(reactants) into the equation.

H0 = Hf0

(products) - Hf

0 (reactants)

H0 = (-787.0kJ) – (-221.0kJ) = -566.0 kJ

Page 197: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample ProblemWhat is the standard heat of reaction for the reaction Br2(g)

Br2 (l)

Hf0 Br2 (g) = 0kJ/mol (free element)

Hf0 Br2 (l) = -393.5kJ/mol

The equation is already balanced

Next find and add the Hf0 of all of the reactants, taking into

account the number of moles of each.

Hf0

(reactants) = (1 mol Br2 (g))(30.91kJ/mol) = 30.91 kJ Hf

0 (products) = 0

H0 = (0kJ) – (30.91kJ) = -30.91kJ

Page 198: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Sample ProblemWhat is the standard heat of reaction for the reaction CaCO3(s)

CaO(s) + CO2(g)

Hf0 CaCO3(s) ) = -1207.0 kJ/mol Hf

0

CaO(s) = -635.1 kJ/mol Hf0 CO2(g) = -

393.5 kJ/mol

The equation is already balanced

Next find and add the Hf0 of all of the reactants, taking into

account the number of moles of each.

Hf0

(products) = (1 mol CaO(s) )(-635.1 kJ/mol ) + (1 mol CO2(g) )(-393.5 kJ/mol ) = -1028.6 kJ

Hf0

(reactants) = -1207.0kJ

H0 = (-1028.6 kJ) – (-1207.9 kJ) = 179.3 kJ

Page 199: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Chapter 18Rates of Reaction

Page 200: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Collision TheoryThe speed of a chemical reactions can vary from instantaneous

(strike a match) to extremely slow (coal)

Speed is measured as a change in distance in a given interval of time. Rate = distance/time

Rate is a measure of the speed of any change that occurs within an interval of time.

In chemistry, the rate of chemical change (the reaction rate) is usually expressed as the amount of reactant changing per unit time.

Page 201: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Collision TheoryAccording to the collision theory, atoms, ions, and molecules

can react to form products when they collide with one another, provided that the colliding particles have enough kinetic energy.

Particles lacking the necessary kinetic energy to react, bounce apart unchanged when they collide.

To illustrate the collision theory, If soft balls of clay are thrown together with great force, they will stick tightly together. (analogous to colliding particles of high energy that react)

Balls of clay thrown together gently, don’t stick to one another. (analogous to colliding particles of low energy that fail to react)

Page 202: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Collision Theory

If you roll clay into a rope and begin to shake one end more and more vigorously, eventually it will break.

If enough energy is applied to a molecule, the bonds holding it together can break.

The minimum energy that colliding particles must have in order to react is called the activation energy.

When two reactant particles with the necessary activation energy collide, a new entity called the activated complex may form.

An activated complex is an unstable arrangement of atoms that forms momentarily at the peak of the activation energy barrier.

Page 203: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Activated Complex

Page 204: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Collision TheoryThe lifetime of an activated complex is typically about 10-13 s.

The reactants either re-form or the products form.

Both cases are equally likely, thus the activated complex is sometimes called the transition state.

High activation energies explain the slow reaction of some natural substances at room temperature.

The collisions are not great enough to break the bonds, thus the reaction rate is essentially zero or very slow.

Page 205: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Factors Affecting Reaction RatesEvery chemical reaction proceeds at its own rate. Some fast,

some slow under the same conditions.

By varying the conditions of a reaction, you can modify the rate of almost any reaction.

The rate of a chemical reaction depends upon:• temperature• concentration• particle size• the use of a catalyst.

Page 206: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

TemperatureUsually, raising the temperature speeds up reactions, while

lowering the temperature slows down reactions.

At higher temperatures, the motions of the reactant particles are faster and more chaotic than they are at lower temperatures.

Increasing the temperature increases both the frequency of collisions and the number of particles that have enough KE to slip over the activation energy barrier to become products.

An increase in temperature causes products to form faster.

Page 207: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

ConcentrationThe number of particles in a given volume affects the rate at

which reactions occur.

Cramming more particles into a fixed volume increases the frequency of collisions.

Increased collision frequency leads to a higher reaction rate.

Page 208: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Particle SizeSurface area plays an important role in determining the rate of

reaction.

The smaller the particle size, the larger the surface area for a given mass of particles.

An increase in surface area increases the amount of the reactant exposed for reaction, which increases the collision frequency and the reaction rate.

One way to increase the surface area of solid reactants is to dissolve them. In solution, particles are separated and more accessible to other reactants.

You can also increase the surface area by grinding it into a fine powder.

Page 209: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

CatalystsIncreasing the temperature is not always the best way to

speed up a reaction. A catalyst is often better.

A catalyst is a substance that increases the rate of a reaction without being used up during the reaction.

Catalysts permit reactions to proceed along a lower energy path.

The activation energy barrier for a catalyzed reaction is lower than that of a uncatalyzed reaction.

With a lower activation energy barrier, more reactants have the energy to form products within a given time.

Because a catalyst is not consumed during a reaction, it does not appear as a reactant or product in the chemical equation.

Page 210: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

CatalystsEnzymes are biological catalysts that increase the rates of

biological reactions.

For example, without catalysts, digesting protein would take years.

An inhibitor is a substance that interferes with the action of a catalyst.

The inhibitor reduces the amount of functional catalyst available.

Reactions slow or even stop when a catalyst is poisoned by an inhibitor.

Page 211: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Reversible ReactionsA reversible reaction is one in which the conversion of

reactants to products and the conversion of products to reactants occur simultaneously.

2SO2 (g) + O2 (g) 2SO3 (g)

The double arrow tells you that this reaction is reversible.

When the rates of the forward and reverse reactions are equal, the reaction has reached a state of balance called chemical equilibrium.

At chemical equilibrium, no net change occurs in the actual amounts of the components of the system.

The amount of SO3 in the equilibrium mixture is the maximum amount that can be produced by this reaction under the conditions of the reaction.

Page 212: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Reversible ReactionsChemical equilibrium is a dynamic state.

Both the forward and reverse reactions continue, but because their rates are equal, no net change occurs in their concentrations.

Even though the rates are equal at equilibrium, the concentrations of the components on both side of the equation are not necessarily the same.

The relative concentrations of the reactants and products at equilibrium constitute the equilibrium position of a reaction.

The equilibrium position indicates whether the reactants or products are favored.

Page 213: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Factors Affecting Equilibrium

LeChatelier’s principle states that if a stress is applied to a system in equilibrium, the system changes in a way that reflects the stress.

Stresses that upset the equilibrium include:• Changes to the concentration of reactants or products• Changes to temperature• Changes in pressure

Page 214: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Change in Concentration

Page 215: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Changes in TemperatureIncreasing the temperature causes the equilibrium position of

a reaction to shift in the direction that absorbs heat. The heat absorption reduces the applied temperature stress. add heat direction of shift2SO2 (g) + O2 (g) 2SO3 (g) + heat remove heat direction of shift

Heat can be considered a product, just like SO3.

Cooling, pulls equilibrium to right, and product yield increases. Heating pushed equilibrium to left and product yield decreases.

Page 216: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Changes in PressureA change in pressure affects only gaseous equilibria that have

an unequal number of moles of reactants and products. add Pressure direction of shiftN2 (g) + 3H2 (g) 2NH3 (g) reduce pressure direction of shift

When pressure is increased for gases at equilibrium, the pressure momentarily increases because the same number of molecules is contained in a smaller volume.

System immediately relieves some of the pressure by reducing the number of gas molecules.

Page 217: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Le Châtelier’s Principle

• Changes in Concentration continued

Change Shifts the Equilibrium

Increase concentration of product(s) left

Decrease concentration of product(s) right

Decrease concentration of reactant(s)

Increase concentration of reactant(s) right

left

14.5

aA + bB cC + dD

AddAddRemove Remove

Page 218: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Le Châtelier’s Principle

• Changes in Volume and Pressure

A (g) + B (g) C (g)

Change Shifts the Equilibrium

Increase pressure Side with fewest moles of gas

Decrease pressure Side with most moles of gas

Decrease volume

Increase volume Side with most moles of gas

Side with fewest moles of gas

14.5

Page 219: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Equilibrium is a state in which there are no observable changes as time goes by.

Chemical equilibrium is achieved when:

• the rates of the forward and reverse reactions are equal

• the concentrations of the reactants and products remain constant

The Concept of Equilibrium

Page 220: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

The Concept of EquilibriumAs the reaction progresses

• [A] decreases to a constant,

• [B] increases from zero to a constant.

• When [A] and [B] are constant, equilibrium is achieved.

A B

Page 221: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

The Equilibrium Constant• No matter the starting composition of reactants and products, the same ratio of

concentrations is achieved at equilibrium.

• For a general reaction

the equilibrium constant expression is

where Keq is the equilibrium constant. The square brackets indicate the concentrations of the species.

aA + bB(g) pP + qQ

ba

qp

eqKBA

QP

Page 222: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

The Equilibrium Constant Expression

For the general reaction:

aA + bB gG + hH

The equilibrium expression is:Each concentration is simply raised to the

power of its coefficient

Products in numerator.

Reactants in denominator.

[G]g[H]h

Kc = [A]a[B]b

Page 223: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

N2O4 (g) 2NO2 (g)

= 4.63 x 10-3K = [NO2]2

[N2O4]

aA + bB cC + dD

K = [C]c[D]d

[A]a[B]b

Law of Mass Action

K >> 1

K << 1

Lie to the right Favor products

Lie to the left Favor reactants

Equilibrium Will

14.1

Page 224: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Write the equilibrium expression for Keq for the following reactions:

Write the equilibrium-constant expression, Kc for

Page 225: Chapter 13 States of Matter. Kinetic Theory as Applied to Gases 1.The particles in a gas are considered to be small, hard spheres with an insignificant

Calculation of the Equilibrium ConstantAt 454 K, the following reaction takes place:

3 Al2Cl6(g) = 2 Al3Cl9(g)

At this temperature, the equilibrium concentration of Al2Cl6(g) is 1.00 M and the equilibrium concentration of Al3Cl9(g) is 1.02 x 10-2 M. Compute the equilibrium constant at 454 K.