chapter 12: water as solvent; acids and baseskuwata/classes/2009-10/env chem/ch_1… · chapter 12:...

16
1 Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to the properties of water as a solvent, and consider Hydrogen bonding, and the formation of clathrates and of biological structures Dissolved ions Strong and weak and bases acids Acid rain 12.1 Unique Properties of Water Water is the most commonplace of substances, and yet its properties are unique among chemical compounds. Perhaps most remarkable are its high melting and boiling temperatures. Table 12.1 lists the melting and boiling points for the hydrides from carbon to fluorine, all of which are elements in the first row of the periodic table. Compared to the neighboring hydrides, water has by far the highest melting and boiling points. One characteristic that makes Earth uniquely suitable for the evolution of life is its surface temperature which, over most of the planet, lies within the liquid range of water. 12.S1 Hydrogen bonding The high temperature required for boiling implies that liquid water has a high cohesive energy; the molecules associate strongly with one another. One source of this cohesion is water’s high dipole moment (1.85 Debye*). The O–H bonds are highly polar; negative charge builds up on the oxygen end while positive charge builds up on the hydrogen end. The dipoles tend to align with one another, increasing the cohesive energy. But if the dipole‐dipole interaction were the only factor, then HF would have a higher boiling point than water, because it has a higher dipole moment (1.91 Debye). The greater cohesion of water derives, in addition, from its ability to form a network of hydrogen bonds (H‐bonds). ‐‐‐ *The dipole moment, μ, is defined as the charge times the distance separating the charge. 1 Debye (D) = 3.336x10 –30 coulomb (C) x meters (m). For example, for one electron (1.60x10 –19 C) separated from a proton by 1 Å (10 –10 m), μ =1.6x10 –29 C x . m = 4.80 D.

Upload: ngothuan

Post on 08-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

1

Chapter 12: Water as Solvent; Acids and Bases

Preview We turn from water as a resource, to the properties of water as a solvent, and

consider • Hydrogen bonding, and the formation of clathrates and of biological

structures • Dissolved ions • Strong and weak and bases acids • Acid rain

12.1 Unique Properties of Water Water is the most commonplace of substances, and yet its properties are unique

among chemical compounds. Perhaps most remarkable are its high melting and boiling temperatures. Table 12.1 lists the melting and boiling points for the hydrides from carbon to fluorine, all of which are elements in the first row of the periodic table. Compared to the neighboring hydrides, water has by far the highest melting and boiling points. One characteristic that makes Earth uniquely suitable for the evolution of life is its surface temperature which, over most of the planet, lies within the liquid range of water.

12.S1HydrogenbondingThehightemperaturerequiredforboilingimpliesthatliquidwaterhasa

highcohesiveenergy;themoleculesassociatestronglywithoneanother.Onesourceofthiscohesioniswater’shighdipolemoment(1.85Debye*).TheO–Hbondsarehighlypolar;negativechargebuildsupontheoxygenendwhilepositivechargebuildsuponthehydrogenend.Thedipolestendtoalignwithoneanother,increasingthecohesiveenergy.Butifthedipole‐dipoleinteractionweretheonlyfactor,thenHFwouldhaveahigherboilingpointthanwater,becauseithasahigherdipolemoment(1.91Debye).Thegreatercohesionofwaterderives,inaddition,fromitsabilitytoformanetworkofhydrogenbonds(H‐bonds).‐‐‐

*Thedipolemoment,µ,isdefinedasthechargetimesthedistanceseparatingthecharge.1Debye(D) = 3.336x10–30coulomb(C)xmeters(m).Forexample,foroneelectron(1.60x10–19C)separatedfromaprotonby1Å(10–10m),µ =1.6x10–29Cx.m=4.80D.

Page 2: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

2

‐‐‐H‐bondsarethestrongelectrostaticinteractionbetweenanHatomonan

electronegativeatom,X[onewhichhasastrongattractionforelectrons]andalonepaironanotheratom,Y.WeuseadottedlinetorepresenttheH‐bond:

X‐H........:Y‐

TheelectronegativityofXisimportant,sinceitdeterminestheextenttowhichthebondingelectronsarepulledtowardXandawayfromH.ThushydrocarbonsdonotformH‐bondstoasignificantextent,becauseCandHhavesimilarelectronegativities,resultinginanessentiallyneutralHatom.Theelementstotherightofcarbonintheperiodictable–N,OandF‐areincreasinglyelectronegative,becausetheirincreasingnuclearchargedrawsthevalenceelectronsclosertothenucleus.TheyaretheonesthatcandonateH‐bonds,andtheyarealsotheelementsthatretainlonepairswhentheyformcompounds.

Thesameprinciplesapplytoelementsofthesecondandhigherrowsoftheperiodictable,butH‐bondingisweakerfortheseelements[e.g.P,SandCl]sincetheyarelesselectronegativethanthoseinthefirstrow[becausethenucleusisfartherfromthevalenceelectrons].ThemostimportantH‐bondsinnaturearethoseinwhichXandYareNand/orO.

H‐bondingisveryimportantinbiologicalmolecules,forwhichNandOatomsoccuratkeypointsinthestructure.TheH‐bondshelpmaintainthethree‐dimensionalshapeofthesemolecules,andareresponsiblefordetermininghowtheyinteractwithoneanother.PerhapsthemostimportantH‐bondsarethosewhichestablishcomplementarityofthebasesintheDNAdoublehelix[seep?],andtherebydeterminethegeneticcode.

Waterisabletodonatetwohydrogenbonds,onefromeachofitsHatoms,whilesimultaneouslyacceptingtwohydrogenbonds,onetoeachoftheelectronlonepairsontheoxygenatom.Thusliquidwaterformsathree‐dimensionalnetworkofH‐bonds,whereasHF,havingonlyonedonorsite,islimitedtoforminglinearH‐bondchains(Figure12.1).

Figure12.1LinearH‐bondinginHFversusnetworkH‐bondinginH2O.

TheH‐bondnetworkofwaterisdemonstratedstrikinglybythecrystalstructureofice,inwhicheachwatermoleculeisH‐bondedtofourothermoleculesinconnectedsix‐memberedrings(Figure12.2).Thesesix‐memberedringsproduceaveryopenstructure,whichaccountsforanotherunusualpropertyofwater,its

Page 3: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

3

expansionuponfreezing.Mostsubstancescontractuponsolidificationbecausethemoleculestakeupmoreroominthechaoticliquidstatethantheydointheclose‐packedsolid.Theliquidcontinuestoexpandasitisheatedduetotheincreasedmotionofthemolecules.Whenicemelts,however,theopenlatticestructurecollapsesonitselfandthedensityincreases.H‐bondednetworksstillexist,buttheyfluctuateveryrapidly,allowingtheindividualwatermoleculestobemobileandclosertogether.Asliquidwaterisheatedfrom0°C,theH‐bondednetworkisfurtherdisruptedandtheliquidwatercontinuestocontract.Whenthetemperaturereaches4°C,thedensityofliquidwaterreachesamaximum.Asthetemperaturerisesabove4°C,thewaterslowlyexpands,reflectingtheincreasingthermalmotion.Thelowerdensityoficerelativetowaterisofgreatecologicalsignificancetotheworld’stemperate‐zonelakesandrivers.Becausewintericefloatsontopofthewater,itprotectstheaquaticlifebelowthesurfacefromtheinhospitableclimateabove.Ificeweredenserthanwater,thelakesandriverswouldfreezefromthebottomup,creatingarcticconditions.

Figure12.2Thecrystalstructureofice.Thelargercirclesandsmallercirclesrepresentsoxygenatomsandhydrogenatoms,respectively.Oxygenatomswiththesamecolorshadingindicatetheylieinthesameplane.

12.S2.ClathratesandwatermiscibilityTheabilityofwatermoleculestohydrogenbondtooneanotheraccountsfor

theexistenceofcrystallineclathrates[alsocalledhydrates],compoundsinwhichwatermoleculescanpackthemselvesaroundnon‐polarmoleculesbyformingorderedarraysofH‐bonds.Thestructureofxenonhydrate,8Xe●46H2O,isshowninFigure12.3.Thecrystalsconsistofarraysofdodecahedraformedfrom20watermoleculesH‐ bondedtogether.WithinthedodecahedraaretheXeatoms,or

Page 4: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

4

nonpolarmoleculesofsimilarsize,suchasCH4orCO2.Byfillingthevoids,theguestmoleculesstabilizetheclathrateH‐bondnetwork.Theclathratesarestabletotemperaturesappreciablyhigherthanthemeltingpointofice.Forexample,methanehydratemeltsat18°Catatmosphericpressure.Cloggingofnaturalgaspipelinesbymethanehydratewasonceaproblemforgasdistribution.Itwassolvedbyremovingwatervaporbeforethegaswasfedintothelines.

Figure12.3Thestructureofaclathratecrystal,xenonhydrate;thexenonatomsoccupycavities(eightperunitcube)inahydrogen‐bondedthree‐dimensionalnetworkformedbywatermolecules(46perunitcube).

Asdiscussedearlier(p?)ithascometobeappreciatedthatmethanehydratesoccurverywidelyinnature,principallyinoceansedimentsorinthearcticpermafrost.Anaerobicmicrobesinsedimentsorinswampsdecomposeorganicmattertomethane[seep.?].Whenmethaneisreleasedintothesurroundingwater,itformsmethanehydrate,providedthetemperatureislowenough,and/orthepressureishighenough.

TheabilityofwatertoformextendedH‐bondnetworksaroundnonpolarmoleculesalsoexplainswhyoilandwaterdonotmix.Watermoleculesactuallyattracthydrocarbonmolecules;asshowninTable12.2,theenthalpyofdissolutioninwaterisnegativeforsimplehydrocarbons,meaningthatthemolecularcontactreleasesheat.Theheatreleasereflectsanattractiveforcecreatedbytheinteractionbetweenwaterandtheguestmolecule.Nevertheless,thefreeenergyvaluesarepositive;thereactionisdisfavoredbylargenegativeentropychanges(ΔG=Δ H – T Δ S ) . Thenegativeentropyimpliesthatmixingincreasesmolecularorder,consistentwiththewatermoleculespackingaroundthenonpolarsolute,astheydointheclathratestructures.Thus,oilandwaterdonotmixbecausethepackingtendencyofthewaterinhibitsit.

Page 5: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

5

Thistendencyofwaterandnonpolarmoleculestoseparateisresponsiblefor

manyimportantstructuresinbiology.Forexample,proteinskeeptheirshapeinwaterbyfoldinginsuchawaythathydrophobic(“water‐hating”)alkylandarylgroupsoftheaminoacidsareintheinterior,awayfromthewater,whilehydrophilic(“water‐loving”)polarandchargedgroupsfacetheexterior,wheretheycontactthewater.Likewise,biologicalmembranesarebilayersoflipidmolecules(Figure12.4),withthehydrocarbonchainsofthelipidspackedtogetherawayfromthewaterintheinteriorofthebilayer.

Figure12.4a)Thehydrophilic‐hydrophobicbilayerstructureofabiologicalmembrane;b)molecularstructureofalipidmolecule.

Page 6: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

6

ThesolubilityoforganicmoleculesinwaterincreaseswhentheyhavefunctionalgroupscapableofformingH‐bondswithwater.Thusalcohols,ethers,acids,aminesandamidesareallsignificantlysolubleinwater,theextentofsolubilitydependingonthesizeofthehydrocarbonportionofthemolecule.Thesmallerthehydrocarbonportionthehigherthesolubility.Smallalcohols,likemethanolandethanol,arecompletelymisciblewithwater.The–OHgroupcanbothdonateandacceptH‐bondswithwatermolecules,providingastrongimpetusformixing.Ethersarenotcompletelymiscible,sincethe–O‐atomsubstituentcanacceptbutnotdonateanH‐bond.However,thesolubilityisconsiderablyenhancedbytheH‐bondacceptance,relativetothesolubilityofacomparablehydrocarbon.ThusthesolubilityofthegasolineadditiveMTBE[methyltertiarybutylether–seep?]is4700mg/l,comparedtoonly24mg/lfortheequivalenthydrocarbon,2,2’‐dimethylbutane.ThisiswhyMTBEisafarmoreseriousgroundwatercontaminantthanthegasolinetowhichithasbeenadded.

12.2 Acids, Bases, and Salts

12.S3.Ions,autoionization,andpHAnotheruniquepropertyofwateristheeasewhichwithitdissolvesionic

compounds.Theforcesbetweenionsofoppositechargeinacrystalareverystrong,andcostagooddealofenergytodisrupt.Thiscanbeseeninthehighmeltingpointofanioniccrystal,suchasordinarytablesalt.Yetsaltdissolvesreadilyinwater,becausethewatermoleculesstronglysolvateboththepositivesodiumionsandthenegativechlorideions.Thestronginterionicforcesarereplacedbyequallystrongsolvationforces.

Thestrongsolvationforcesstemfromwater’slargedipolemomentandH‐bondingability.AnionsinteractwiththepositiveendofthedipoleviaH‐bonds,whilecationsinteractwiththenegativeendviacoordinatebondsfromtheoxygenlone‐pairelectrons(Figure12.5).

Figure12.5Solvationofionsinwater.

Amongtheionsthatarestabilizedinwaterarethehydrogenandhydroxideions.StrongacidssuchasHCl,HNO3,andH2SO4releaseH + ionswhendissolvedinwater,whilestrongbasessuchasNaOHorKOHreleaseOH–.Theseionsarespecialbecausetheyreacttogethertoformwater

H+ + OH– = H2O [12.1] Reaction[12.1] isaneutralizationreaction;thestrongbaseneutralizesthe

strongacidandviceversa.Thereverseofthisreactionisautoionization;thewater

Page 7: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

7

canionizeitselfbecausetheionsarestabilizedbyotherwatermolecules.Thisreversereactiondoesnotproceedtoanygreatextent;thepositionofequilibriumforreaction[12‐1] liesfartotheright.Nevertheless,autoionizationisakeyfactorinacid‐basechemistrybecauseitsetstherangeofavailableacidandbasestrengthsinwater.

Incontrasttoreactionsinthegasphase,reactionsinaqueoussolutionareusuallyrapid.Thewatermoleculesareincontinuouscontactwithoneanother,andtheH‐bondsandcoordinatebondsarebrokenandreformedrapidly.Therearesomemetalionsforwhichthecoordinatebondstowaterarelong‐livedforspecialelectronicreasons,asinthecomplexionCr(H2O)63+.Butformostions,thebondsarebrokenandreformedveryrapidly,producinganaveragedsolvationenvironmentfortheion.Consequentlytheextentofreactionisgenerallysetbytheequilibriumconstant,ratherthanthekinetics,evenifthepositionofequilibriumliesfartotherightortotheleft.Wecanusetheexperimentallydeterminedequilibriumconstanttocalculatetheextentofreactionsfromvariousstartingconditions.Thisisaparticularlyusefulcapabilityinacid‐basereactions,whicharefundamentaltothechemistryoftheaqueousenvironment.

12.S4ThepHScaleForsolutionsofastrongacid,HX,theconcentrationofH+ionsisthesameas

theanalyticalconcentration(CHX),i.e.thenumberofmolesperliter[symbolizedM]ofdissolvedHX.Wewrite

[H+] = CHX M

Likewiseforsolutionsofastrongbase,MOH

[OH-] = CMOH M

Because[H+]isgenerallylessthan1M,andfrequentlymuchless,ithasbecomestandardtoexpresstheconcentrationasthenegativelogarithm,symbolizedby“p”:

pH = -log[H+] Forexample,whentheHXconcentrationis10‐3M[i.e.1millimolar],thepHis

3,andwhenitistwicethismuch,thepHis2.7[because–log[2x10‐3]=0.3‐3=2.7].Inthesameway

pOH = -log[OH-]

Ifwenowconsidertheautoionizationreaction[reverseofequation[12.1]]H2O=H++OH‐ [12.2]

wecanwritetheequilibriumexpressionas

K=[H+][OH–]/[H2O] [12.3]

Page 8: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

8

Weseethat[H+]and[OH‐]arereciprocallyrelated

[H+]=K[H2O]/[OH‐] or pH=‐log(K[H2O])–pOH [12.4]

Inanaqueoussolutiontheconcentrationofthewatermoleculesisessentiallyconstant;aliterofwaterweighs1000g,andcontains1000g/18gmol‐1=55.5moles.[Theaddedweightfromthedissolvedionsisasmallfractionof1000g,unlessthesolutionisveryconcentrated].Thereforeitiscustomarytoinclude[H2O]inthe‘effective’equilibriumconstant.Fortheautoionizationequilibrium,theeffectiveconstant,K[H2O],iscalledKw;itsexperimentalvalueis10‐14M2.Substitutingthisvalueineq.[12‐4],weseethat

pH=14–pOH [12.5]

Inotherwords,theautoionizationequilibriumrequiresthatthepHandpOH

addupto14.InpurewaterthereisnosourceofH+orOH‐otherthantheautoionization

reactionitself,whichrequiresthatoneH+beproducedforeveryOH‐.Inthatcase[H+]=[OH‐],andpluggingthisconditionintotheequilibriumexpression[12‐3]gives

[H+]2=10‐14M2,or[H+]=10‐7MThustheautoionizationreactionrequiresthatpurewaterhaveapHof7.

ThisisalsothepHofasolutioninwhichastrongacidhasbeenexactlyneutralizedbyastrongbase.ApHof7definesneutrality;pHvaluesbelow7areacidic,whilepHvaluesabove7arebasic,oralkaline.

12.S5Weakacidsandbases;buffersBecausewaterdissolvessomanydifferentsubstances,theonlyplaceinthe

environmentwherepurewaterisfoundisatthestartofthehydrologicalcycle,inwatervapor.Evenraindropsincludeothersubstances;asdetailedinPartII,theformationofraindropsinsaturatedairisnucleatedbyatmosphericparticles,especiallynitratesandsulfates.Inaddition,thewaterincloudvaporandraindropsisinequilibriumwithotherconstituentsoftheatmosphere,especiallycarbondioxide.ThesesubstancestendtolowerthepHofrainwatersignificantlybelowneutrality.

Strongacidstransferaprotoncompletelytowater,butmanyacidicsubstancesholdtheprotonmoreorlesstenaciously,andthetransfertowatermaybeincomplete.Forageneralizedacid,HA,theextentofthetransferdependsontheequilibriumconstant,Ka,fortheaciddissociationreaction

HA=H++A– [12.6] Ka=[H+][A–]/[HA] [12.7]Kaisoftenreferredtoastheacidityconstant.IfKaissmall,thenonlyasmall

fractionofHAwillbedissociated,creatingaconsiderabledifferencebetweentheconcentrationofacidmoleculesandtheconcentrationofhydrogenions.

Page 9: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

9

WorkedProblem12.1:pHofaWeakAcidQ:WhatisthepHofa0.1Msolutionofaceticacid,whichhasaKaof10–4.75

M2?A:DissociationofHAproducesanequalnumberofH+andA‐ions,and

therefore[H+]=[A‐].Substitutingthisequalityineq.[12‐7],andrearranging,gives[H+]2=Ka[HA] [12.8]

IfonlyasmallfractionofHAisdissociated,then[HA]isessentiallythesame

astheanalyticalconcentration,CHA[thiswillbethecaseprovidedKa<<CHA],andtherefore

[H+]2~KaCHA [12.9] InthisproblemCHA=0.1M,andKa=10–4.75M2(whichismuchsmallerthan

CHA*)so [H+]2=10–4.75x10–1.0=10–5.75

[H+]=10–2.88MorpH=2.88 Therefore,a0.1MsolutionofaceticacidhasapHcloseto3.0.* [footnote:*Sincethevalueof[H+]isonly1%ofthevalueofCHA,the

approximationthat(HA)=CHAisagoodoneinthiscase.Whenthisapproximationispoor,thenallowancemustbemadefortheloweringofHAduetotheionizationreaction.SinceeverymoleculeofHAthationizesproducesoneH+ion,CHA=[HA]+[H+],or[HA]=CHA–[H+].Substitutingthisintoequation[12‐7]andrearranging,wehave

[H+]2+Ka[H+]–KaCHA=0whichmaybesolvedwiththequadraticformula.]

========================================= IfHAholdsitsprotontenaciously,thentheanion,A‐,willhavesome

tendencytoremoveaprotonfromwater.ThusifasaltofA‐isaddedtowater,thereaction

A‐+H2O=HA+OH‐ [12.10]whichiscalledahydrolysis,orabasedissociationreaction,willproceedtosomeextent.SinceOH‐isproduced,A‐isactingasabase.Assumingthattheequilibriumdoesnotliecompletelytotheright,A‐isaweakbase.Theequilibriumconstant,calledthebasicityconstant,is

Kb=[HA][OH‐]/[A‐] [12.11]

[Asinthecaseoftheautoionizationreactionthewaterconcentration,[H2O],beingconstant,islumpedintotheequilibriumconstant.]

Theacidandbasedissociationreactionsarelinkedbytheautoionizationreaction.Thiscanbeseenbyaddingreaction[12‐6]toreaction[12‐10]toyieldreaction[12‐2].Whenreactionsareadded,theequilibriumconstantsmultiply,i.e.

Page 10: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

10

KaKb=Kw[Thisresultcanbecheckedbysubstitutingtheequilibriumexpressions,eq.[12‐7],[12‐11]and[12‐3].]ThusdeterminingKaalsospecifiesKb.

WorkedProblem12.2:pHofaWeakBaseQ:WhatisthepHofa0.1Msolutionofsodiumacetate?A:SincebasedissociationproducesoneOH‐foreveryHA[eq.[12‐10],then

[OH‐]=[HA]forasaltofA‐dissolvedinwater.Then[OH‐]canbecalculatedbysubstitutionineq.[12‐11]andrearranging,

[OH‐]2=Kb[A‐]~KbCA‐ [12.12]

providedthatKb<<CA‐,sothatthedifferencebetween[A‐]andCA‐isnegligible.InthisproblemCA‐=0.1M,andKb=Kw/Ka=10‐14/10‐4.75=10‐9.25M(which

ismuchlessthanCA‐),sothat[OH‐]2=10‐9.25x10‐1.0=10‐10.25

or [OH‐]=10‐5.12M.Since[H+]=Kw/[OH‐],thenpH=14–5.12=8.88.Thusa0.1MsodiumacetatesolutionhasapHcloseto9,afairlyalkalinevalue.=========================================

12.S6ConjugateAcidsandBases;BuffersAweakacid,HA,anditsanion,A‐,constituteaconjugateacid­basepair.The

twoarethesamemolecularentity,differingonlybyoneproton.Theactualchargeisunimportantinthiscontext.Thebasecouldequallywellbeneutral,andthenitsconjugateacidwouldhaveapositivecharge.Forexample,theammoniumionandammonia,NH4+andNH3,constituteaconjugateacidbasepair.

Animportantcharacteristicofaconjugateacid‐basepairisthatamixtureofthetwopartnershasapHthatisclosetothenegativelogarithmoftheacidityconstant,calledthepKa.Thiscanbeseenbyrearrangingtheequilibriumexpression,eq.[12‐7]

[H+]=Ka[HA]/[A‐] or pH=pKa–log[HA]/[A‐] [12.13]

If[HA]=[A‐],thenthepHisexactlypKa.Moreover,thepHwillbeclosetothe

pKa,aslongas[HA]/[A‐]isnotfarfromunity.Evenifthisratioreachesavalueof10or0.1,thepHwilldeviatefrompKabyonlyoneunit.ThusthepHisbufferedagainstlargechanges.AmixtureofHAandA‐constitutesabuffersolution,becauseitresistslargepHchangeswhensmallamountsofotheracidsorbasesareaddedtothesolution.

Thebufferingeffectisbestillustratedbyatitrationcurveoftheacid.Figure12.6showsatitrationcurvefora0.1Maceticacidsolution,towhichsuccessiveamountsofastrongbase[e.g.NaOH]areadded.AtthestartofthetitrationthepHiscloseto3,whileattheendpoint,whenalloftheHAchasbeenconvertedtoNaAc,thepHiscloseto9.Atthehalfwaypoint[HAc]=[Ac‐],andpH=pKa=4.74.Fromthe10%tothe90%pointsofthetitration,thepHvariesonlybyminusandplusone

Page 11: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

11

unitfromthisvalue.Butastheendpointisapproached,thebuffercapacityoftheHAc/Ac‐mixtureisusedup,andthepHshootsupto9andbeyond.Withonlya10%excessofthebasetitrant[OH‐]=10‐2M],thepHreaches12.

Figure12.6ThechangeinpHduringthetitrationofaweakacidwithastrongbase;50.0mLof0.100Maceticacidistitratedwith0.100MNaOH.

12S.7WaterintheAtmosphere:AcidRainAlthoughpurewaterisneutral,andhasapHof7.0,rainwaterisnaturally

acidicbecauseitisinequilibriumwithcarbondioxide.Whendissolvedinwater,carbondioxideformscarbonicacid,aweakacid:

CO2+H2O=H2CO3 [12.14]Wecangaugetheamountofcarbonicacidfromtheequilibriumconstantfor

reaction[12‐7]Ks=[H2CO3]/PCO2=10–1.5M/atm [12.15] wherePCO2isthepartialpressureofCO2,inatmospheres.*[footnote:*Actually,dissolvedCO2ismostlyunhydrated;onlyasmall

fractionexistsasH2CO3molecules:CO2 (aq) + H2O (l) = H2CO3 (aq) Kh = [H2CO3]/[CO2] = 10–2.81

The total concentration of dissolved CO2 is:

[CO2]T = [CO2] + [H2CO3] = [H2CO3][1 + Kh–1] = 102.81[H2CO3]

MostequilibriummeasurementsaremadewithrespecttototaldissolvedCO2 , and[H2CO3]istobeunderstoodas[CO2]T.]‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Page 12: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

12

SincetheatmosphericconcentrationofCO2iscurrently379ppm,PCO2=379x10–6or10–3.4atm(atsealevel),andtherefore[H2CO3]=KsPCO2=10–1.5∞ 10–3.4=10–4.9M.

Rainwateristhusadilutesolutionofcarbonicacid.Theaciddissociatespartiallytohydrogenandbicarbonateions:

H2CO3=H++HCO3–Ka=10–6.4M [12.16]

FromKawecancalculate[H+],asinWorkedProblem12.1

[H+]2=Ka[H2CO3]=10–6.4x10–4.9=10–11.3

[H+]=10–5.7andpH=5.7

Thus,atmosphericCO2depressesthepHofrainwaterby1.3unitsfromneutrality.Evenintheabsenceofanthropogenicemissions,rainwaterisnaturallyacidic(althoughitcanoccasionallybeneutraloralkalineasaresultofcontactwithalkalinemineralsinwindblowndust,orwithgaseousammoniafromsoilsorfromindustrialemissions).

Totheacidifyingeffectofcarbondioxidemustbeaddedthecontributionsfromotheracidicconstituentsoftheatmosphere,particularlyHNO3andH2SO4.Theseacidscanbothbeformednaturally:HNO3derivesfromNOproducedinlightningandforestfires,whileH2SO4derivesfromvolcanoesandfrombiogenicsulfurcompounds.Atthenaturalbackgroundconcentrations,theseacidsrarelyinfluencerainwaterpHsignificantly.

Inpollutedareas,however,theconcentrationsoftheseacidscanbemuchhigherandcanreducethepHofrainwatersubstantiallyoverextendedregions,producingwhatisknownasacidrain.ItisnotuncommoninpollutedareastofindthepHofrainwaterinthepH5–3.5range.Somefogs,whichcanbeincontactwithpollutantsovermanyhours,havehadpHreadingsaslowas2.0,adegreeofacidityequivalenttoa0.01Msolutionofastrongacid.Moreover,theacidraincanfallquitefarfromthesourcesofpollution,duetolong‐rangeatmospherictransport.Inparticular,acidrainisapressingproblemforareasdownwindofcoal‐firedpowerplants,whosetallsmokestacksamelioratelocalpollutionbyloftingSO2andNOemissionshighintotheair.Thus,powerplantsinwesternandcentralEuropeaffecttherainfallingonScandinavia,andpowerplantsintheU.S.MidwesternindustrialbeltsimilarlyaffectrainfallingonnortheasternregionsoftheUnitedStatesandonsoutheasternCanada(Figure12.7),althoughemissionsofSO2havebeenreducedinrecentdecades(seeFigure2.x,p.?).Whileacidrainisaphenomenoninthehydrosphere,itdependsuponatmosphericconditions—theextentofacidicemissionsandtheprevailingweatherpatterns.

Page 13: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

13

Figure12.7Contourlinesoflong‐term,volume‐weightedaveragesofpHinprecipitationina)Europe,1978‐1982,andb)easternNorthAmerica,1980‐1984.Sources:EMEP/CCC(1984).SummaryReport,Report2/84(Lillestrøm,Norway:NorwegianInstituteforAirResearch);NationalAcidPrecipitationAssessmentProgram(NAPAP)(1987).NAPAPInterimAssessment(Washington,DC:U.S.GovernmentPrintingOffice).

12.S8PolyproticAcidsCarbonicacidactuallyhastwoionizableprotons,buttheydissociate

successively,andwithverydifferentKavalues: H2CO3=H++HCO3–Ka1=10–6.40 [12.17]and HCO3–=H++CO32‐Ka2=10‐10.33 [12.18]

Page 14: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

14

Becausethebicarbonateionisnegativelycharged,itholdsitsprotonmoretenaciouslythandoescarbonicacid,andtheseconddissociationreactionmakesnosignificantcontributiontotheH+concentrationofacarbonicacidsolutionortothatofaH2CO3/HCO3‐buffer.However,wecanneutralizebothprotonsonH2CO3withastrongbase,orequivalentlystartwithasolutionofacarbonatesalt,andthenthebasicproperties ofCO32‐comeintoplay:CO32‐ +H2O=H C O 3–+OH‐ Kb=Kw/Ka=10‐14/10‐10.33=10‐3.67 [12.19]

Forasolutionwhichis0.1Minacarbonatesalt(justasinWorkedProblem:12.2foracetate)

[OH‐]2=Kb[CO32‐]~10‐3.67x10‐1=10‐4.67 and [OH‐]=10‐2.34,givingpH=11.66,ahighlyalkalinevalue.

Also,abufferhavingequimolarHCO3–andCO32‐has

pH=pKa–log[HCO3‐]/[CO32‐]=10.33However,ifonlyoneofthetwoH2CO3protonsisneutralized,or,equivalently,ifwestartwithasolutionofabicarbonatesalt,thenthingsareslightlymorecomplicated,sinceHCO3‐isbothaconjugatebase[ofH2CO3]andaconjugateacid[ofCO32‐].TotheextentthatHCO3‐dissociatesaproton[viareaction12‐18],theprotonistakenupbyanotherHCO3‐ion[viathereverseofreaction12‐17].Consequentlythemainacid‐basereactioninabicarbonatesolutionis

2HCO3‐=H2CO3+CO32‐ [12.20]

Thisreactionisobtainedbysubtractingreaction[12.17]fromreaction[12.18],andconsequentlytheequilibriumconstantisgivenby

Ka2/Ka1=[H2CO3][CO32‐]/[HCO3‐]2Fromequation[12‐20],[H2CO3]=[CO32‐]forasolutioncontainingonly

bicarbonateinitially.Then

Ka2/Ka1 = [H2CO3]2 /[HCO3-]2 or [HCO3

-]/[H2CO3] = [Ka1/Ka2]1/2

TocalculatethepH,wecaninsertthisratiointotheequilibriumexpression

forreaction[12‐17]:

[H+] = Ka1[HCO3-]/[H2CO3] = Ka1[Ka2/Ka1]1/2 = [Ka1Ka2]1/2

or pH=[pKa2+pKa1]/2=[10.33+6.40]/2=8.36 [12.21]Equation[12‐21]canbegeneralizedtoanydiproticacid:thepHofasolution

ofthemonoproticformisjustthegeometricmeanofthetwopKavalues.Therecanalsobemorethantwoionizableprotons.Forexample,phosphoric

acidhasthree:

Page 15: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

15

H3PO4=H++H2PO4‐ pKa1=2.17 [12.22] H2PO4‐=H++HPO42‐ pKa2=7.31 [12.23] HPO42‐=H++PO43‐ pKa3=12.36 [12.24]

Asinthecaseofcarbonicacid,thepHofasolutionofH3PO4orofPO43‐canbecalculatedjustasitwouldbeforamonoproticacidorbase,whileforsolutionsofthediproticandmonoproticforms,thepHisthegeometricmeanofthebracketingpKavalues,i.e.forH2PO4‐

pH=[pKa1+pKa2]/2=4.74

while for HPO42-

pH=[pKa2+pKa3]/2=9.83

Thephosphoricacidsystemhasthreebufferzones,correspondingtothe

threepKavalues,i.e.solutionshavingcomparableconcentrationsofH3PO4andH2PO4‐,orofH2PO4‐andHPO42‐,orofHPO42‐andPO43‐.

WorkedProblem12.3:PhosphateProtonationQ:GiventhepKavaluesabove,whatisthedominantformofthephosphate

ionina)alakewithpH=5.0,andb)seawaterwithpH=8.0,andwhatistheratioofthisformtothenextmostabundantform?

A:ThelakepHishigherthanpKa1butlowerthanpKa2,somostofthephosphatewillbepresentasH2PO4‐.FortheseawaterHPO42‐dominates,becausethepHisbetweenpKa2andpKa3.SincethelakepHisclosertopKa2thanpKa1,thenextmostabundantformisHPO42‐,whilefortheseawaterH2PO4‐isthenextmostabundantform,sincethepHisclosertopKa2thantopKa3.Theratioscanbeobtainedfromtheequilibriumexpressionforthesecondionization,[12.23]

[HPO42‐]/[H2PO4‐]=Ka2/[H+]

AtpH=5.0,thisratiois10‐7.31/10‐5.0=10‐2.31=0.0049,whileatpH=8.0,theratiois10‐7.31/10‐8.0=100.69=4.9[or[H2PO4‐]/[HPO42‐]=0.20].

Problems:

1. H2Sboilsat– 61οC,H2Seat–42οC,andH2Teat–2οC.Basedonthistrend,atwhattemperaturewouldoneexpectwatertoboil?Whydoeswaterboilatamuchhighertemperature?

2. ThepHofaqueous0.20Mchlorousacid(HClO2),aweakacid,was

measuredtobe1.1.WhatarethevaluesofKaandpKaofchlorousacid?3. ThepHofaqueous0.20Mpropylamine(C3H7NH2),aweakbase,was

measuredtobe11.96.WhatarethevaluesofKbandpKbofpropylamine?

Page 16: Chapter 12: Water as Solvent; Acids and Baseskuwata/classes/2009-10/Env Chem/Ch_1… · Chapter 12: Water as Solvent; Acids and Bases Preview We turn from water as a resource, to

16

4. Calculatetheinitialconcentrationofanaqueoussolutionoftheweak

acidhydrocyanicacid(HCN),withapHof6.4.ThepKaofhydrocyanicacidis9.31.5. Calculatetheinitialconcentrationofanaqueoussolutionoftheweak

basehydrazine,NH2NH2,withapHof10.20.ThepKbofhydrazineis5.77. 6. AsolutionmadeofequalconcentrationsoflacticacidandsodiumlactatewasmeasuredtohaveapH=3.08.a)calculatethepKaandKaoflacticacid.b)CalculatethepHofthesolutioniftherewastwiceasmuchacidassaltinthesolution. 7. CalculatetheratioofmolaritiesofPO42‐andHPO4‐ionsinabuffersolutionwithapHof11.0.

8. IftheconcentrationofatmosphericCO2weretodoublefromitscurrentvalueof370ppm,whatwouldbethecalculatedpHofrainwater(assumingthatCO2weretheonlyacidicinput)?WithrespecttorisingCO2levels,dowehavetobeconcernedaboutenhancedacidityofraininadditiontopotentialclimatewarming?

9.Writethestepwiseprotontransferequilibriaforthedeprotonationofthefollowingchemicalspecies: a)hydrosulfuricacid;H2S

b)arsenicacid;H3AsO4 b)succinicacid;(CH2)2(COOH)2 10.Selenousacid,H2SeO3,isadiproticacidwithpKavaluesof2.46and7.31.EstimatethepHof0.200MNaHSeO3(aq).