chapter 11 observation of gravitational waves from a

21
Chapter 11 Observation of Gravitational Waves from a Binary Black Hole Merger B. P. Abbott et al. LIGO Scientific Collaboration and Virgo Collaboration Full author list given at the end of this contribution Albert Einstein’s general theory of relativity, first published a century ago, was described by physicist Max Born as “the greatest feat of human thinking about nature.” We report on two major scientific breakthroughs involving key predictions of Einstein’s theory: the first direct detec- tion of gravitational waves and the first observation of the collision and merger of a pair of black holes. This cataclysmic event, producing the gravitational-wave signal GW150914, took place in a distant galaxy more than one billion light years from the Earth. It was observed on September 14, 2015 by the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO), arguably the most sensitive scientific instruments ever constructed. LIGO estimated that the peak gravitational-wave power radiated during the final moments of the black hole merger was more than ten times greater than the combined light power from all the stars and galaxies in the observable Universe. This remarkable discovery marks the beginning of an exciting new era of astronomy as we open an entirely new, gravitational-wave window on the Universe. 1 Contents 1. Introduction and Background ...................... 292 2. The LIGO Detectors ........................... 293 3. Our LIGO Observations and What They Mean ............ 296 4. How Do We Know GW150914 was a Black Hole Merger? ...... 298 Contribution submitted by Spokesperson, LIGO Scientific Collaboration (lsc- [email protected]). 1 See more at http://ligo.org/science/Publication-GW150914/index.php and at http://public.virgo-gw.eu/the-virgo-collaboration/. 291 Centennial of General Relativity Downloaded from www.worldscientific.com by UNIVERSITY OF MICHIGAN ANN ARBOR on 05/18/17. For personal use only.

Upload: others

Post on 30-May-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 291

Chapter 11

Observation of Gravitational Waves from a BinaryBlack Hole Merger

B. P. Abbott et al.LIGO Scientific Collaboration and Virgo CollaborationFull author list given at the end of this contribution∗

Albert Einstein’s general theory of relativity, first published a centuryago, was described by physicist Max Born as “the greatest feat of humanthinking about nature.” We report on two major scientific breakthroughsinvolving key predictions of Einstein’s theory: the first direct detec-tion of gravitational waves and the first observation of the collisionand merger of a pair of black holes. This cataclysmic event, producingthe gravitational-wave signal GW150914, took place in a distant galaxymore than one billion light years from the Earth. It was observed onSeptember 14, 2015 by the two detectors of the Laser InterferometerGravitational-Wave Observatory (LIGO), arguably the most sensitivescientific instruments ever constructed. LIGO estimated that the peakgravitational-wave power radiated during the final moments of the blackhole merger was more than ten times greater than the combined lightpower from all the stars and galaxies in the observable Universe. Thisremarkable discovery marks the beginning of an exciting new era ofastronomy as we open an entirely new, gravitational-wave window on theUniverse.1

Contents

1. Introduction and Background . . . . . . . . . . . . . . . . . . . . . . 2922. The LIGO Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 2933. Our LIGO Observations and What They Mean . . . . . . . . . . . . 2964. How Do We Know GW150914 was a Black Hole Merger? . . . . . . 298

∗Contribution submitted by Spokesperson, LIGO Scientific Collaboration ([email protected]).1See more at http://ligo.org/science/Publication-GW150914/index.php and athttp://public.virgo-gw.eu/the-virgo-collaboration/.

291

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 2: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 292

292 B. P. Abbott et al.

5. Are We Sure that GW150914 was a Real Astrophysical Event? . . . 298

6. Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . 300

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

1. Introduction and Background

Gravitational waves are ‘ripples’ in space-time produced by some of themost violent events in the cosmos, such as the collisions and mergers ofmassive compact stars. Their existence was predicted by Einstein in 1916,when he showed that accelerating massive objects would shake space-timeso much that waves of distorted space would radiate from the source. Theseripples travel at the speed of light through the Universe, carrying with theminformation about their cataclysmic origins, as well as invaluable clues tothe nature of gravity itself.

Over the past few decades astronomers have amassed strong supportingevidence that gravitational waves exist, chiefly by studying their effect onthe motions of tightly orbiting pairs of stars in our galaxy. The resultsof these indirect studies agree extremely well with Einstein’s theory —with their orbits shrinking, exactly as predicted, due to the emission ofgravitational wave energy. Nevertheless the direct detection of gravitationalwaves as they reach the Earth has been hugely anticipated by the scientificcommunity as this breakthrough would provide new and more stringentways to test general relativity under the most extreme conditions and openup an entirely novel way to explore the Universe.

In the same year that Einstein predicted gravitational waves, the physi-cist Karl Schwarzschild showed that Einstein’s work permitted the existenceof black holes: bizarre objects which are so dense and so compact that noteven light can escape their gravitational field. Although by definition we can-not directly ‘see’ light from a black hole, astronomers have gathered a greatdeal of circumstantial evidence for their existence by studying the effectsof black hole candidates on their immediate surroundings. For example, itis thought that most galaxies in the Universe, including the Milky Way,contain a supermassive black hole at their center — with masses millions oreven billions of times that of the Sun. There is also evidence of many blackhole candidates with much lower masses (ranging from a few to a few dozentimes the Sun’s mass), believed to be the remnants of dead stars that haveundergone a cataclysmic explosion known as a core-collapse supernova.

Alongside this substantial progress in the indirect observation ofblack holes, there have been dramatic improvements in our theoretical

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 3: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 293

Observation of Gravitational Waves from a Binary Black Hole Merger 293

Fig. 1. (Adapted from Fig. 1 of our publication [Abbott et al. (2016)]). Thegravitational wave event GW150914 observed by the LIGO Hanford (H1, leftpanel) and LIGO Livingston (L1, right panel) detectors. The two plots show howthe gravitational wave strain (see below) produced by the event in each LIGOdetector varied as a function of time (in seconds) and frequency (in hertz, ornumber of wave cycles per second). Both plots show the frequency of GW150914sweeping sharply upwards, from 35 Hz to about 150 Hz over two tenths of asecond. GW150914 arrived first at L1 and then at H1 about seven thousandths ofa second later — consistent with the time taken for light, or gravitational waves,to travel between the two detectors.

understanding of these bizarre objects — including, over the past decade,some remarkable advances in modeling a pair of black holes (referred toas a binary) through several close orbits before they finally merge. Thesecomputer models have allowed us to construct precise gravitational wave-forms — i.e. the pattern of gravitational waves emitted by the black holesas they approach ever closer and finally merge into a single, larger blackhole — in accordance with the predictions of general relativity. The directobservation of a binary black hole merger would therefore provide a powerfulcosmic laboratory for testing Einstein’s theory.

2. The LIGO Detectors

LIGO is the world’s largest gravitational wave observatory and one of theworld’s most sophisticated physics experiments. Composed of two giantlaser interferometers located thousands of kilometers apart, one in Liv-ingston, Louisiana and the other in Hanford,2 Washington, LIGO usesthe physical properties of light and of space itself to detect gravitationalwaves — a concept first proposed in the early 1960’s and the 1970’s.

2Note of the Editor: Fig. 1 shows the gravitational wave event GW150914 recentlyobserved by the LIGO Hanford (H1, left panel) and LIGO Livingston (L1, rightpanel) detectors.

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 4: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 294

294 B. P. Abbott et al.

A set of initial interferometers was completed by the early 2000’s, includingTAMA300 in Japan, GEO600 in Germany, LIGO in the United States andVirgo in Italy. Combinations of these detectors made joint observationsbetween 2002 and 2011, but did not detect any gravitational wave sources.After undergoing major upgrades, in 2015 the LIGO detectors began oper-ation as Advanced LIGO: the first of a significantly more sensitive globalnetwork of advanced detectors.

An interferometer like LIGO consists of two “arms” (each one 4 kmlong) at right angles to each other, along which a laser beam is shone andreflected by mirrors (suspended as test masses) at each end. When a grav-itational wave passes by, the stretching and squashing of space causes thearms of the interferometer alternately to lengthen and shrink, one gettinglonger while the other gets shorter and then vice versa. As the interferom-eters’ arms change lengths, the laser beams take a different time to travelthrough the arms — which means that the two beams are no longer “instep” (or in phase) and what we call an interference pattern is produced.This is why we refer to the LIGO detectors as “interferometers”.

The difference between the two arm lengths is proportional to thestrength of the passing gravitational wave, referred to as the gravitational-wave strain, and this number is mind-bogglingly small. For a gravitationalwave typical of what we can detect, we expect the strain to be about1/10,000th the width of a proton! However LIGO’s interferometers are sosensitive that they can measure even such tiny amounts.

Figure 2 shows a simplified diagram of an Advanced LIGO detector.To successfully detect a gravitational wave event like GW150914 the

LIGO detectors need to combine astounding sensitivity with an ability toisolate real signals from sources of instrument noise: tiny disturbances, dueto e.g. environmental effects or the behavior of the instruments themselves,that could mimic — or indeed simply overwhelm — the signature strainpattern we are looking for. This is a key reason why there are two AdvancedLIGO detectors, as it allows us to distinguish gravitational waves from localinstrumental or environmental effects: only a real gravitational wave signalwould appear in both detectors — albeit separated by a few thousandths ofa second, to account for the time taken for light (or a gravitational wave)to travel between the two detector sites.

Inset (b) in Fig. 2 shows how the instrument noise in the LIGO detec-tors depends on frequency. We can see that the instrument noise is lowestin the ‘sweet spot’ around a few hundred hertz, but increases sharply atboth low and high frequencies. There are also a number of narrow spikes

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 5: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 295

Observation of Gravitational Waves from a Binary Black Hole Merger 295

Fig. 2. Simplified diagram of an Advanced LIGO detector (not to scale), includ-ing several of the key enhancements to the basic design: an optical cavity thatreflects the laser light back and forth many times in each arm, multiplying theeffect of the gravitational wave on the phase of the laser light; a power recy-clying mirror that increases the power of the laser in the interferometer as awhole; a signal recycling mirror that further optimizes the signal extracted atthe photodetector. These enhancements boost the power of the laser in the opti-cal cavity by a factor of 5000, and increase the total amount of time that thesignal spends circulating in the interferometer. Inset (a), on the left, shows thelocations and orientations of the two LIGO observatories, and indicates the lighttravel time between them. Inset (b) shows how the instrument strain noise variedwith frequency in each detector near to the time of the event. The lower theinstrument noise, the higher the detectors’ sensitivity. The tall spikes indicatenarrow frequency ranges where the instrument noise is particularly large.

where the instrument noise is particularly large, due to e.g. vibration of thefibers that suspend the mirrors and test masses in each interferometer.

Reaching the much greater sensitivity of Advanced LIGO required theupgrading of almost every aspect of the initial LIGO design. These upgradesincluded:

• Significantly increasing the laser power, to reduce the main source of highfrequency noise;

• Redesigning the recyclying cavities to better contain the spatial distri-bution of the laser light;

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 6: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 296

296 B. P. Abbott et al.

• Using larger, heavier fused silica test masses, to reduce the randommotions of the mirrors;

• Suspending the test masses using fused silica fibers, to reduce their ther-mal noise;

• Suspending the test masses with a four-stage pendulum, improving theirseismic isolation;

• Using an active “measure and cancel” strategy for reducing the impactof ground motions.

Operating a network of two or more detectors also lets us ‘triangulate’the direction in the sky from which a gravitational wave arrives, by studyingthe difference in arrival time at each detector. The more detectors in one’snetwork, the better the sky position of a gravitational wave source can belocalised. In 2016 the Advanced Virgo detector,3 in Italy, will join the globalnetwork, and other advanced interferometers are planned for the future. Formore details see e.g. our publication [Abbott et al. (2016)].

3. Our LIGO Observations and What They Mean

On September 14, 2015 at 09:50:45 Greenwich Mean Time the LIGOHanford and Livingston Observatories both detected a signal fromGW150914 [Abbott et al. (2016)]. The signal was identified first by whatwe call low-latency search methods that are designed to analyse the detectordata very promptly, looking for evidence of a gravitational-wave-like patternbut without modeling the precise details of the waveform. These promptsearches reported the candidate event within only three minutes of the sig-nals arriving at the detectors. The gravitational-wave strain data acquiredby the LIGO interferometers was then compared with an extensive bankof theoretically predicted waveforms — a process known as matched filter-ing — with the goal of finding the waveform that best matched the data.

Figure 3 presents key results of these detailed analyses — all of whichfirmly point to GW150914 being produced by the coalescence of two blackholes [Abbott et al. (2016)]. The middle part of the figure shows our recon-struction of the gravitational-wave strain, as seen by the Hanford detector.Note, in particular, the impressive agreement between this pattern (shownin grey) and (shown in red) a waveform for two coalescing black holesconsistent with our data, computed using general relativity.

3Note from the Editor: You can read more about the remarkable technology thatunderpins Advanced LIGO at http://tinyurl.com/ALIGO-upgrades-pdf.

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 7: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 297

Observation of Gravitational Waves from a Binary Black Hole Merger 297

Fig. 3. Some key results of our analysis of GW150914, comparing the recon-structed gravitational-wave strain (as seen by H1 at Hanford) with the predictionsof the best-matching waveform computed from general relativity, over the threestages of the event: inspiral, merger and ringdown. Also shown are the separa-tion and velocity of the black holes, and how they change as the merger eventunfolds [Abbott et al. (2016)].

Images of the black hole horizons at various stages of this computationare shown at the top of Fig. 3: the inspiral, as the two black holes approacheach other; the merger as the black holes join together and the subsequentringdown, as the single black hole that has newly formed briefly oscillatesbefore settling down.

Comparing the strain data with theoretical predictions allows us totest whether general relativity is able to fully describe the event. It passesthis test with flying colors: all of our observations are consistent with thepredictions of general relativity.

We can also use the data to estimate the specific physical characteristicsof the system that produced GW150914, including the masses of its twoblack holes before the merger, the mass of the single post-merger blackhole, and the distance of the event.

Our results indicate that GW150914 was produced by the merger oftwo black holes with masses of about 36 times and 29 times the mass of

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 8: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 298

298 B. P. Abbott et al.

the Sun respectively, and that the post-merger black hole had a mass ofabout 62 times the Sun’s mass. Moreover, we infer that the final black holeis spinning — such rotating black holes were first predicted theoreticallyin 1963 by mathematician Roy Kerr. Finally, our results indicate that theGW150914 occurred at a distance of more than one billion light years. Sothe LIGO detectors have observed a truly remarkable event that happeneda long time ago in a galaxy far, far away!

If we compare the masses of the pre- and post-merger black holes, wesee that the coalescence converted about three times the mass of the Sun (ornearly six million trillion trillion kilograms) into gravitational-wave energy,most of it emitted in a fraction of a second. By contrast the Sun con-verts a mere two billionths of one trillionth of its mass into electromagneticradiation every second. In fact, the gravitational-wave power radiated byGW150914 was more than ten times greater than the combined luminosity(i.e. the light power) of every star and galaxy in the observable Universe.

4. How Do We Know GW150914 was a Black Hole Merger?

Our estimated pre-merger masses of the two components in GW150914make a very strong argument that they are both black holes — particularlywhen we also consider the enormous velocity and tiny separation of the twocomponents, as shown in the lower part of Fig. 3 [Abbott et al. (2016)]. Inthis figure indicative velocities of the two components are seen to be signif-icant fractions of the speed of light. Similarly their approximate separationis shown to be just a few times the characteristic size of a black hole, knownas its Schwarzschild radius.

These graphs imply that the two components were only a few hundredkilometers apart just before they merged, i.e. when the gravitational-wavefrequency was about 150 Hz. Black holes are the only known objects com-pact enough to get this close together without merging. Based on our esti-mated total mass for the two components, a pair of neutron stars would notbe massive enough, and a black hole–neutron star pair would have alreadymerged at a lower frequency than 150 Hz.

5. Are We Sure that GW150914 was a Real AstrophysicalEvent?

The short answer is “yes”, but of course this is a crucial question andthe LIGO Scientific Collaboration and Virgo Collaboration have together

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 9: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 299

Observation of Gravitational Waves from a Binary Black Hole Merger 299

made a huge effort to address it, carrying out a variety of independent andthorough checks — all of which contribute to strengthening the detectioncase for GW150914.

Firstly, as we noted already, the time delay between the observationsmade at each LIGO detector was consistent with the light travel timebetween the two sites. Also, as seen in Fig. 1, the Hanford and Livingstonsignals showed a similar pattern, as would be expected given the near align-ment of the two interferometers, and were strong enough to ‘stand out’against the background noise around the time of the event — like a burstof laughter heard above the background chatter of a crowded room.

Understanding this background noise is an essential part of our analysisand involves monitoring a vast array of environmental data recorded at bothsites: ground motions, temperature variations and power grid fluctuationsto name just a few. In parallel, many data channels monitor in real time thestatus of the interferometers — checking, for example, that the various laserbeams are properly centred. If any of these environmental or instrumentalchannels indicated a problem, then the detector data would be discarded.However, despite exhaustive studies, no such data quality problems werefound at the time of the event.

But perhaps GW150914 was a rare noise fluctuation, which happenedto occur simply by chance with similar characteristics at both sites? Toreject this possibility we need to work out just how rare such a fluctuationwould be: the less often it could occur by chance, the more confidently wecan rule out this scenario in favour of the alternative — that GW150914was indeed a real gravitational wave event [Abbott et al. (2016)].

To carry out this statistical analysis we used 16 days’ worth of sta-ble, high quality detector strain data from the month following the event.GW150914 was indeed by far the strongest signal observed in either detec-tor during that period. We then introduced a series of artificial time shiftsbetween the H1 and L1 data, effectively creating a much longer data set inwhich we could search for apparent signals that were as strong (or stronger)than GW150914. By using only time shifts greater than 10 milliseconds (thelight travel time between the detectors) we ensured that these artificial datasets contained no real signals, but only coincidences in noise. We can thensee, in the very long artificial data set, how often a coincidence mimickingGW150914 would appear. This analysis gives us the false alarm rate: howoften we could expect to measure such a seemingly loud event that wasreally just a noise fluctuation (i.e. a ‘false alarm’).

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 10: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 300

300 B. P. Abbott et al.

Fig. 4. (Adapted from Fig. 4 of our publication [Abbott et al. (2016)]). Resultsfrom our binary coalescence search quantifying how rare GW150914 was comparedwith false ‘events’ resulting from noise fluctuations. This search concluded thata noise event mimicking GW150914 would be extremely rare — less than oneoccurrence in about 200,000 years of data like this — a value that correspondsto a detection significance of more than 5 ‘sigma’.

Figure 4 (adapted from Fig. 4 of our publication [Abbott et al. (2016)])shows the result of this statistical analysis, for one of the searches carried outon our detector data. The solid black and purple curves represent the ‘back-ground’: the number of coincidental noise ‘events’ that we estimate wouldbe produced (under slightly different assumptions) for different strengths ofsignal. The orange boxes represent what we actually saw, without the artifi-cial time shifts. The key message of this figure is how far away the observedevent GW150914 is from the background noise. This means that a noiseevent mimicking GW150914 would be exceedingly rare — indeed we expectan event as strong as GW150914 to appear by chance only once in about200,000 years of such data! This false alarm rate can be translated into anumber of ‘sigma’ (denoted by σ), which is commonly used in statisticalanalysis to measure the significance of a detection claim. This search iden-tifies GW150914 as a real event, with a significance of more than 5 sigma.

6. Conclusions and Outlook

The first direct detection of gravitational waves and the first observationof a binary black hole merger are remarkable achievements [Abbott et al.

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 11: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 301

Observation of Gravitational Waves from a Binary Black Hole Merger 301

(2016)], but they represent only the first page of an exciting new chapterin astronomy.

The next decade will see further improvements to the Advanced LIGOdetectors and extension of the global detector network to include AdvancedVirgo in Italy, KAGRA in Japan, and a possible third LIGO detector inIndia.

This enhanced global network will significantly improve our ability tolocate the positions of gravitational-wave sources in the sky and estimatemore accurately their physical properties. The nascent field of gravitational-wave astronomy has a very bright future!

Editor’s note (taken from https://www.ligo.caltech.edu/system/mediafiles/binaries/301/original/detection-science-summary.pdf):FURTHER INFORMATION. LIGO Scientific Collaboration homepage(includes link to our main publication, published in Physical Review Let-ters): http://www.ligo.org. Advanced Virgo homepage: http://public.virgo-gw.eu/language/en/. Some of the companion papers to our main publica-tion:

• Observing gravitational-wave transient GW150914 with minimalassumptions: https://dcc.ligo.org/P1500229/;

• GW150914: First results from the search for binary black hole coalescencewith Advanced LIGO: https://dcc.ligo.org/P1500269/;

• Astrophysical implications of the binary black hole merger GW150914:https://dcc.ligo.org/P1500262/;

• Localization and broadband follow-up of the gravitational-wave candi-date G184098: https://dcc.ligo.org/P1500227/;

• GW150914: a black-hole binary coalescence as predicted by general rel-ativity: https://dcc.ligo.org/P1500213/;

• The rate of binary black hole mergers inferred from Advanced LIGOobservations surrounding GW150914: https://dcc.ligo.org/P1500217/;

• Properties of the binary black hole merger GW150914: https://dcc.ligo.org/P1500218/. LIGO Open Science Center (with access toGW150914 data): https://losc.ligo.org/about/.

Full author list

B.P. Abbott[1], R. Abbott[1], T.D. Abbott[2], M. R. Abernathy[1],F. Acernese[3,4], K. Ackley[5], C. Adams[6], T. Adams[7], P. Addesso[3],

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 12: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 302

302 B. P. Abbott et al.

R.X. Adhikari[1], V.B. Adya[8], C. Affeldt[8], M. Agathos[9], K. Agat-suma[9], N. Aggarwal[10], O.D. Aguiar[11], L. Aiello[12,13], A. Ain[14], P.Ajith[15], B. Allen[8,16,17], A. Allocca[18,19], P.A. Altin[20], S.B. Ander-son[1], W.G. Anderson[16], K. Arai[1], M.A. Arain[5], M.C. Araya[1],C.C. Arceneaux[21], J.S. Areeda[22], N. Arnaud[23], K.G. Arun[24], S.Ascenzi[25,13], G. Ashton[26], M. Ast[27], S.M. Aston[6], P. Astone[28], P.Aufmuth[8], C. Aulbert[8], S. Babak[29], P. Bacon[30], M.K.M. Bader[9],P.T. Baker[31], F. Baldaccini[32,33], G. Ballardin[34], S.W. Ballmer[35],J.C. Barayoga[1], S. E. Barclay[36], B.C. Barish[1], D. Barker[37], F.Barone[3,4], B. Barr[36], L. Barsotti[10], M. Barsuglia[30], D. Barta[38], J.Bartlett[37], M.A. Barton[37], I. Bartos[39], R. Bassiri[40], A. Basti[18,19],J.C. Batch[37], C. Baune[8], V. Bavigadda[34], M. Bazzan[41,42], B.Behnke[29], M. Bejger[43], C. Belczynski[44], A.S. Bell[36], C.J. Bell[36],B.K. Berger[1], J. Bergman[37], G. Bergmann[8], C.P.L. Berry[45], D.Bersanetti[46,47], A. Bertolini[9], J. Betzwieser[6], S. Bhagwat[35], R.Bhandare[48], I.A. Bilenko[49], G. Billingsley[1], J. Birch[6], R. Bir-ney[50], O. Birnholtz[8], S. Biscans[10], A. Bisht[8,17], M. Bitossi[34],C. Biwer[35], M.A. Bizouard[23], J.K. Blackburn[1], C.D. Blair[51], D.G.Blair[51], R.M. Blair[37], S. Bloemen[52], O. Bock[8], T.P. Bodiya[10],M. Boer[53], G. Bogaert[53], C. Bogan[8], A. Bohe[29], P. Bojtos[54],C. Bond[45], F. Bondu[55], R. Bonnand[7], B.A. Boom[9], R. Bork[1],V. Boschi[18,19], S. Bose[56,14], Y. Bouffanais[30], A. Bozzi[34], C.Bradaschia[19], P.R. Brady[16], V.B. Braginsky[49], M. Branchesi[57,58],J.E. Brau[59], T. Briant[60], A. Brillet[53], M. Brinkmann[8], V. Brisson[23],P. Brockill[16], A.F. Brooks[1], D.A. Brown[35], D.D. Brown[45], N.M.Brown[10], C.C. Buchanan[2], A. Buikema[10], T. Bulik[44], H.J. Bul-ten[61,9], A. Buonanno[29,62], D. Buskulic[7], C. Buy[30], R.L. Byer[40], M.Cabero[8], L. Cadonati[63], G. Cagnoli[64,65], C. Cahillane[1], J. CalderonBustillo[66,63], T. Callister[1], E. Calloni[67,4], J.B. Camp[68], K.C. Can-non[69], J. Cao[70], C.D. Capano[8], E. Capocasa[30], F. Carbognani[34],S. Caride[71], J. Casanueva Diaz[23], C. Casentini[25,13], S. Caudill[16], M.Cavaglia[21], F. Cavalier[23], R. Cavalieri[34], G. Cella[19], C.B. Cepeda[1],L. Cerboni Baiardi[57,58], G. Cerretani[18,19], E. Cesarini[25,13], R.Chakraborty[1], T. Chalermsongsak[1], S.J. Chamberlin[72], M. Chan[36],S. Chao[73], P. Charlton[74], E. Chassande-Mottin[30], H.Y. Chen[75], Y.Chen[76], C. Cheng[73], A. Chincarini[47], A. Chiummo[34], H.S. Cho[77],M. Cho[62], J.H. Chow[20], N. Christensen[78], Q. Chu[51], S. Chua[60],S. Chung[51], G. Ciani[5], F. Clara[37], J.A. Clark[63], F. Cleva[53], E.

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 13: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 303

Observation of Gravitational Waves from a Binary Black Hole Merger 303

Coccia[25,12,13], P.-F. Cohadon[60], A. Colla[79,28], C.G. Collette[80], L.Cominsky[81], M. Constancio Jr.[11], A. Conte[79,28], L. Conti[42], D.Cook[37], T.R. Corbitt[2], N. Cornish[31], A. Corsi[71], S. Cortese[34], C.A.Costa[11], M.W. Coughlin[78], S.B. Coughlin[82], J.-P. Coulon[53], S.T.Countryman[39], P. Couvares[1], E.E. Cowan[63], D.M. Coward[51], M.J.Cowart[6], D.C. Coyne[1], R. Coyne[71], K. Craig[36], J.D.E. Creighton[16],T.D. Creighton[83], J. Cripe[2], S.G. Crowder[84], A.M. Cruise[45], A.Cumming[36], L. Cunningham[36], E. Cuoco[34], T. Dal Canton[8], S.L.Danilishin[36], S. D’Antonio[13], K. Danzmann[17,8], N.S. Darman[85],C.F. Da Silva Costa[5], V. Dattilo[34], I. Dave[48], H.P. Daveloza[83],M. Davier[23], G.S. Davies[36], E.J. Daw[86], R. Day[34], S. De[35], D.DeBra[40], G. Debreczeni[38], J. Degallaix[65], M. De Laurentis[67,4], S.Deleglise[60], W. Del Pozzo[45], T. Denker[8,17], T. Dent[8], H. Dereli[53],V. Dergachev[1], R.T. DeRosa[6], R. De Rosa[67,4], R. DeSalvo[87], S.Dhurandhar[14], M.C. Dıaz[83], L. Di Fiore[4], M. Di Giovanni[79,28], A.Di Lieto[18,19], S. Di Pace[79,28], I. Di Palma[29,8], A. Di Virgilio[19],G. Dojcinoski[88], V. Dolique[65], F. Donovan[10], K.L. Dooley[21],S. Doravari[6,8], R. Douglas[36], T.P. Downes[16], M. Drago[8,89,90],R.W.P. Drever[1], J.C. Driggers[37], Z. Du[70], M. Ducrot[7], S.E.Dwyer[37], T.B. Edo[86], M.C. Edwards[78], A. Effler[6], H.-B. Eggen-stein[8], P. Ehrens[1], J. Eichholz[5], S.S. Eikenberry[5], W. Engels[76],R.C. Essick[10], T. Etzel[1], M. Evans[10], T.M. Evans[6], R. Everett[72],M. Factourovich[39], V. Fafone[25,13,12], H. Fair[35], S. Fairhurs[91], X.Fan[70], Q. Fang[51], S. Farinon[47], B. Farr[75], W.M. Farr[45], M.Favata[88], M. Fays[91], H. Fehrmann[8], M.M. Fejer[40], D. Feldbaum[5],I. Ferrante[18,19], E.C. Ferreira[11], F. Ferrini[34], F. Fidecaro[18,19], L.S.Finn[72], I. Fiori[34], D. Fiorucci[30], R.P. Fisher[35], R. Flaminio[65,92], M.Fletcher[36], H. Fong[69], J.-D. Fournier[53], S. Franco[23], S. Frasca[79,28],F. Frasconi[19], M. Frede[8], Z. Frei[54], A. Freise[45], R. Frey[59], V.Frey[23], T.T. Fricke[8], P. Fritschel[10], V.V. Frolov[6], P. Fulda[5],M. Fyffe[6], H.A.G. Gabbard[21], J.R. Gair[93], L. Gammaitoni[32,33],S.G. Gaonkar[14], F. Garufi[67,4], A. Gatto[30], G. Gaur[94,95], N.Gehrels[68], G. Gemme[47], B. Gendre[53], E. Genin[34], A. Gennai[19],J. George[48], L. Gergely[96], V. Germain[7], Abhirup Ghosh[15], Archis-man Ghosh[15], S. Ghosh[52,9], J.A. Giaime[2,6], K.D. Giardina[6], A.Giazotto[19], K. Gill[97], A. Glaefke[36], J.R. Gleason[5], E. Goetz[98], R.Goetz[5], L. Gondan[54], G. Gonzalez[2], J.M. Gonzalez Castro[18,19], A.Gopakumar[99], N.A. Gordon[36], M.L. Gorodetsky[49], S.E. Gossan[1], M.

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 14: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 304

304 B. P. Abbott et al.

Gosselin[34], R. Gouaty[7], C. Graef[36], P.B. Graff[62], M. Granata[65],A. Grant[36], S. Gras[10], C. Gray[37], G. Greco[57,58], A.C. Green[45],R.J.S. Greenhalgh[100], P. Groot[52], H. Grote[8], S. Grunewald[29],G.M. Guidi[57,58], X. Guo[70], A. Gupta[14], M.K. Gupta[95], K.E.Gushwa[1], E.K. Gustafson[1], R. Gustafson[98], J.J. Hacker[22], B.R.Hall[56], E.D. Hall[1], G. Hammond[36], M. Haney[99], M.M. Hanke[8],J. Hanks[37], C. Hanna[72], M.D. Hannam[91], J. Hanson[6], T. Hard-wick[2], J. Harms[57,58], G.M. Harry[101], I.W. Harry[29], M.J. Hart[36],M.T. Hartman[5], C.-J. Haster[45], K. Haughian[36], J. Healy[102], J.Heefner[1,a], A. Heidmann[60], M.C. Heintze[5,6], G. Heinzel[8], H. Heit-mann[53], P. Hello[23], G. Hemming[34], M. Hendry[36], I.S. Heng[36], J.Hennig[36], A.W. Heptonstall[1], M. Heurs[8,17], S. Hild[36], D. Hoak[103],K.A. Hodge[1], D. Hofman[65], S.E. Hollitt[104], K. Holt[6], D.E. Holz[75],P. Hopkins[91], D.J. Hosken[104], J. Hough[36], E.A. Houston[36], E.J.Howell[51], Y.M. Hu[36], S. Huang[73], E.A. Huerta[105,82], D. Huet[23], B.Hughey[97], S. Husa[66], S.H. Huttner[36], T. Huynh-Dinh[6], A. Idrisy[72],N. Indik[8], D.R. Ingram[37], R. Inta[71], H.N. Isa[36], J.-M. Isac[60], M.Isi[1], G. Islas[22], T. Isogai[10], B.R. Iyer[15], K. Izumi[37], M.B. Jacob-son[1], T. Jacqmin[60], H. Jang[77], K. Jani[63], P. Jaranowski[106], S.Jawahar[107], F. Jimenez-Forteza[66], W.W. Johnson[2], N.K. Johnson-McDaniel[15], D.I. Jones[26], R. Jones[36], R.J.G. Jonker[9], L. Ju[51], K.Haris[108], C.V. Kalaghatgi[24,91], V. Kalogera[82], S. Kandhasamy[21],G. Kang[77], J.B. Kanner[1], S. Karki[59], M. Kasprzack[2,23,34], E. Kat-savounidis[10], W. Katzman[6], S. Kaufer[17], T. Kaur[51], K. Kawabe[37],F. Kawazoe[8,17], F. Kefelian[53], M.S. Kehl[69], D. Keitel[8,66], D.B.Kelley[35], W. Kells[1], R. Kennedy[86], D.G. Keppel[8], J.S. Key[83], A.Khalaidovski[8], F.Y. Khalili[49], I. Khan[12], S. Khan[91], Z. Khan[95],E.A. Khazanov[109], N. Kijbunchoo[37], C. Kim[77], J. Kim[110], K.Kim[111], Nam-Gyu Kim[77], Namjun Kim[40], Y.-M. Kim[110], E.J.King[104], P.J. King[37], D.L. Kinzel[6], J.S. Kissel[37], L. Kleybolte[27],S. Klimenko[5], S.M. Koehlenbeck[8], K. Kokeyama[2], S. Koley[9], V.Kondrashov[1], A. Kontos[10], S. Koranda[16], M. Korobko[27], W.Z.Korth[1], I. Kowalska[44], D.B. Kozak[1], V. Kringel[8], B. Krishnan[8], A.Krolak[112,113], C. Krueger[17], G. Kuehn[8], P. Kumar[69], R. Kumar[36],L. Kuo[73], A. Kutynia[112], P. Kwee[8], B.D. Lackey[35], M. Landry[37],J. Lange[102], B. Lantz[40], P.D. Lasky[114], A. Lazzarini[1], C. Laz-zaro[63,42], P. Leaci[29,79,28], S. Leavey[36], E.O. Lebigot[30,70], C.H.Lee[110], H.K. Lee[111], H.M. Lee[115], K. Lee[36], A. Lenon[35], M.

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 15: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 305

Observation of Gravitational Waves from a Binary Black Hole Merger 305

Leonardi[89,90], J.R. Leong[8], N. Leroy[23], N. Letendre[7], Y. Levin[114],B.M. Levine[37], T.G.F. Li[1], A. Libson[10], T.B. Littenberg[116],N.A. Lockerbie[107], J. Logue[36], A.L. Lombardi[103], L.T. London[91],J.E. Lord[35], M. Lorenzini[12,13], V. Loriette[117], M. Lormand[6], G.Losurdo[58], J.D. Lough[8,17], C.O. Lousto[102], G. Lovelace[22], H.Luck[17,8], A.P. Lundgren[8], J. Luo[78], R. Lynch[10], Y. Ma[51], T.MacDonald[40], B. Machenschalk[8], M. MacInnis[10], D.M. Macleod[2],F. Magana-Sandoval[35], R.M. Magee[56], M. Mageswaran[1], E. Majo-rana[28], I. Maksimovic[117], V. Malvezzi[25,13], N. Man[53], I. Mandel[45],V. Mandic[84], V. Mangano[36], G.L. Mansell[20], M. Manske[16], M. Man-tovani[34], F. Marchesoni[118,33], F. Marion[7], S. Marka[39], Z. Marka[39],A.S. Markosyan[40], E. Maros[1], F. Martelli[57,58], L. Martellini[53], I.W.Martin[36], R.M. Martin[5], D.V. Martynov[1], J.N. Marx[1], K. Mason[10],A. Masserot[7], T.J. Massinger[35], M. Masso-Reid[36], F. Matichard[10],L. Matone[39], N. Mavalvala[10], N. Mazumder[56], G. Mazzolo[8], R.McCarthy[37], D.E. McClelland[20], S. McCormick[6], S.C. McGuire[119],G. McIntyre[1], J. McIver[1], D.J. McManus[20], S.T. McWilliams[105],D. Meacher[72], G.D. Meadors[29,8], J. Meidam[9], A. Melatos[85], G.Mendell[37], D. Mendoza-Gandara[8], R.A. Mercer[16], E. Merilh[37], M.Merzougui[53], S. Meshkov[1], C. Messenger[36], C. Messick[72], P.M.Meyers[84], F. Mezzani[28,79], H. Miao[45], C. Michel[65], H. Middle-ton[45], E.E. Mikhailov[120], L. Milano[67,4], J. Miller[10], M. Mill-house[31], Y. Minenkov[13], J. Ming[29,8], S. Mirshekari[121], C. Mishra[15],S. Mitra[14], V.P. Mitrofanov[49], G. Mitselmakher[5], R. Mittleman[10],A. Moggi[19], M. Mohan[34], S.R.P. Mohapatra[10], M. Montani[57,58],B.C. Moore[88], C.J. Moore[122], D. Moraru[37], G. Moreno[37], S.R. Mor-riss[83], K. Mossavi[8], B. Mours[7], C.M. Mow-Lowry[45], C.L. Mueller[5],G. Mueller[5], A.W. Muir[91], Arunava Mukherjee[15], D. Mukherjee[16],S. Mukherjee[83], N. Mukund[14], A. Mullavey[6], J. Munch[104], D.J.Murphy[39], P.G. Murray[36], A. Mytidis[5], I. Nardecchia[25,13], L.Naticchioni[79,28], R.K. Nayak[123], V. Necula[5], K. Nedkova[103], G.Nelemans[52,9], M. Neri[46,47], A. Neunzert[98], G. Newton[36], T.T.Nguyen[20], A.B. Nielsen[8], S. Nissanke[52,9], A. Nitz[8], F. Nocera[34],D. Nolting[6], M.E.N. Normandin[83], L.K. Nuttall[35], J. Oberling[37], E.Ochsner[16], J. O’Dell[100], E. Oelker[10], G.H. Ogin[124], J.J. Oh[125],S.H. Oh[125], F. Ohme[91], M. Oliver[66], P. Oppermann[8], Richard J.Oram[6], B. O’Reilly[6], R. O’Shaughnessy[102], C.D. Ott[76], D.J. Ott-away[104], R.S. Ottens[5], H. Overmier[6], B.J. Owen[71], A. Pai[108],

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 16: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 306

306 B. P. Abbott et al.

S.A. Pai[48], J.R. Palamos[59], O. Palashov[109], C. Palomba[28], A.Pal-Singh[27], H. Pan[73], Y. Pan[62], C. Pankow[82], F. Pannarale[91],B.C. Pant[48], F. Paoletti[34,19], A. Paoli[34], M.A. Papa[29,16,8], H.R.Paris[40], W. Parker[6], D. Pascucci[36], A. Pasqualetti[34], R. Passaqui-eti[18,19], D. Passuello[19], B. Patricelli[18,19], Z. Patrick[40], B.L. Pearl-stone[36], M. Pedraza[1], R. Pedurand[65], L. Pekowsky[35], A. Pele[6],S. Penn[126], A. Perreca[1], H.P. Pfeiffer[69,29], M. Phelps[36], O. Pic-cinni[79,28], M. Pichot[53], M. Pickenpack[8], F. Piergiovanni[57,58], V.Pierro[87], G. Pillant[34], L. Pinard[65], I.M. Pinto[87], M. Pitkin[36], J.H.Poeld[8], R. Poggiani[18,19], P. Popolizio[34], A. Post[8], J. Powell[36],J. Prasad[14], V. Predoi[91], S.S. Premachandra[114], T. Prestegard[84],L.R. Price[1], M. Prijatelj[34], M. Principe[87], S. Privitera[29], R. Prix[8],G.A. Prodi[89,90], L. Prokhorov[49], O. Puncken[8], M. Punturo[33],P. Puppo[28], M. Purrer[29], H. Qi[16], J. Qin[51], V. Quetschke[83],E.A. Quintero[1], R. Quitzow-James[59], F.J. Raab[37], D.S. Rabeling[20],H. Radkins[37], P. Raffai[54], S. Raja[48], M. Rakhmanov[83], C. R.Ramet[6], P. Rapagnani[79,28], V. Raymond[29], M. Razzano[18,19], V.Re[25], J. Read[22], C.M. Reed[37], T. Regimbau[53], L. Rei[47], S.Reid[50], D.H. Reitze[1,5], H. Rew[120], S.D. Reyes[35], F. Ricci[79,28],K. Riles[98], N.A. Robertson[1,36], R. Robie[36], F. Robinet[23], A. Roc-chi[13], L. Rolland[7], J.G. Rollins[1], V.J. Roma[59], J.D. Romano[83],R. Romano[3,4], G. Romanov[120], J.H. Romie[6], D. Rosinska[127,43], S.Rowan[36], A. Rudiger[8], P. Ruggi[34], K. Ryan[37], S. Sachdev[1], T.Sadecki[37], L. Sadeghian[16], L. Salconi[34], M. Saleem[108], F. Salemi[8],A. Samajdar[123], L. Sammut[85,114], L.M. Sampson[82], E.J. Sanchez[1],V. Sandberg[37], B. Sandeen[82], G.H. Sanders[1], J.R. Sanders[98,35],B. Sassolas[65], B.S. Sathyaprakash[91], P.R. Saulson[35], O. Sauter[98],R.L. Savage[37], A. Sawadsky[17], P. Schale[59], R. Schilling[8,b], J.Schmidt[8], P. Schmidt[1,76], R. Schnabel[27], R.M.S. Schofield[59], A.Schonbeck[27], E. Schreiber[8], D. Schuette[8,17], B.F. Schutz[91,29], J.Scott[36], S.M. Scott[20], D. Sellers[6], A.S. Sengupta[94], D. Sentenac[34],V. Sequino[25,13], A. Sergeev[109], G. Serna[22], Y. Setyawati[52,9],A. Sevigny[37], D.A. Shaddock[20], T. Shaffer[37], S. Shah[52,9], M.S.Shahriar[82], M. Shaltev[8], Z. Shao[1], B. Shapiro[40], P. Shawhan[62], A.Sheperd[16], D.H. Shoemaker[10], D.M. Shoemaker[63], K. Siellez[53,63],X. Siemens[16], D. Sigg[37], A.D. Silva[11], D. Simakov[8], A. Singer[1],L.P. Singer[68], A. Singh[29,8], R. Singh[2], A. Singhal[12], A.M. Sintes[66],B.J.J. Slagmolen[20], J.R. Smith[22], M.R. Smith[1], N.D. Smith[1],

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 17: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 307

Observation of Gravitational Waves from a Binary Black Hole Merger 307

R.J.E. Smith[1], E.J. Son[125], B. Sorazu[36], F. Sorrentino[47], T.Souradeep[14], A.K. Srivastava[95], A. Staley[39], M. Steinke[8], J. Stein-lechner[36], S. Steinlechner[36], D. Steinmeyer[8,17], B.C. Stephens[16],S.P. Stevenson[45], R. Stone[83], K.A. Strain[36], N. Straniero[65], G.Stratta[57,58], N.A. Strauss[78], S. Strigin[49], R. Sturani[121], A.L.Stuver[6], T.Z. Summerscales[128], L. Sun[85], P.J. Sutton[91], B.L.Swinkels[34], M.J. Szczepanczyk[97], M. Tacca[30], D. Talukder[59], D.B.Tanner[5], M. Tapai[96], S.P. Tarabrin[8], A. Taracchini[29], R. Tay-lor[1], T. Theeg[8], M.P. Thirugnanasambandam[1], E.G. Thomas[45],M. Thomas[6], P. Thomas[37], K.A. Thorne[6], K.S. Thorne[76], E.Thrane[114], S. Tiwari[12], V. Tiwari[91], K.V. Tokmakov[107], C. Tomlin-son[86], M. Tonelli[18,19], C.V. Torres[83,c], C.I. Torrie[1], D. Toyra[45],F. Travasso[32,33], G. Traylor[6], D. Trifiro[21], M.C. Tringali[89,90],L. Trozzo[129,19], M. Tse[10], M. Turconi[53], D. Tuyenbayev[83], D.Ugolini[130], C.S. Unnikrishnan[99], A.L. Urban[16], S.A. Usman[35], H.Vahlbruch[17], G. Vajente[1], G. Valdes[83], M. Vallisneri[76], N. vanBakel[9], M. van Beuzekom[9], J.F.J. van den Brand[61,9], C. Van DenBroeck[9], D.C. Vander-Hyde[35,22], L. van der Schaaf[9], J.V. van Heijnin-gen[9], A.A. van Veggel[36], M. Vardaro[41,42], S. Vass[1], M. Vasuth[38], R.Vaulin[10], A. Vecchio[45], G. Vedovato[42], J. Veitch[45], P.J. Veitch[104],K. Venkateswara[131], D. Verkindt[7], F. Vetrano[57,58], A. Vicere[57,58],S. Vinciguerra[45], D.J. Vine[50], J.-Y. Vinet[53], S. Vitale[10], T. Vo[35],H. Vocca[32,33], C. Vorvick[37], D. Voss[5], W.D. Vousden[45], S.P.Vyatchanin[49], A.R. Wade[20], L.E. Wade[132], M. Wade[132], S.J. Wald-man[10], M. Walker[2], L. Wallace[1], S. Walsh[16,8,29], G. Wang[12], H.Wang[45], M. Wang[45], X. Wang[70], Y. Wang[51], H. Ward[36], R.L.Ward[20], J. Warner[37], M. Was[7], B. Weaver[37], L.-W. Wei[53], M.Weinert[8], A.J. Weinstein[1], R. Weiss[10], T. Welborn[6], L. Wen[51],P. Weßels[8], T. Westphal[8], K. Wette[8], J.T. Whelan[102,8], S.E. Whit-comb[1], D.J. White[86], B.F. Whiting[5], K. Wiesner[8], C. Wilkinson[37],P.A. Willems[1], L. Williams[5], R.D. Williams[1], A.R. Williamson[91], J.L.Willis[133], B. Willke[17,8], M.H. Wimmer[8,17], L. Winkelmann[8], W.Winkler[8], C.C. Wipf[1], A.G. Wiseman[16], H. Wittel[8,17], G. Woan[36],J. Worden[37], J.L. Wright[36], G. Wu[6], J. Yablon[82], I. Yakushin[6],W. Yam[10], H. Yamamoto[1], C.C. Yancey[62], M.J. Yap[20], H. Yu[10],M. Yvert[7], A. Zadrozny[112], L. Zangrando[42], M. Zanolin[97], J.-P.Zendri[42], M. Zevin[82], F. Zhang[10], L. Zhang[1], M. Zhang[120], Y.Zhang[102], C. Zhao[51], M. Zhou[82], Z. Zhou[82], X.J. Zhu[51], M.E.

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 18: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 308

308 B. P. Abbott et al.

Zucker[1,10], S.E. Zuraw[103], and J. Zweizig[1] (LIGO Scientific Collab-oration and Virgo Collaboration).

Institutions

[1] LIGO, California Institute of Technology, Pasadena, California 91125,USA; [2] Louisiana State University, Baton Rouge, Louisiana 70803, USA;[3] Universita di Salerno, Fisciano, I-84084 Salerno, Italy; [4] INFN, Sezionedi Napoli, Complesso Universitario di Monte S. Angelo, I-80126 Napoli,Italy; [5] University of Florida, Gainesville, Florida 32611, USA; [6] LIGOLivingston Observatory, Livingston, Louisiana 70754, USA; [7] Labora-toire d’Annecy-le-Vieux de Physique des Particules (LAPP), UniversiteSavoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France; [8]Albert-Einstein-Institut, Max-Planck-Institut fur Gravitationsphysik, D-30167 Hannover, Germany; [9] Nikhef, Science Park, 1098 XG Amsterdam,Netherlands; [10] LIGO, Massachusetts Institute of Technology, Cambridge,Massachusetts 02139, USA; [11] Instituto Nacional de Pesquisas Espaci-ais, 12227-010 Sao Jose dos Campos, Sao Paulo, Brazil; [12] INFN, GranSasso Science Institute, I-67100 L’Aquila, Italy; [13] INFN, Sezione di RomaTor Vergata, I-00133 Roma, Italy; [14] Inter-University Centre for Astron-omy and Astrophysics, Pune 411007, India; [15] International Centre forTheoretical Sciences, Tata Institute of Fundamental Research, Bangalore560012, India; [16] University of Wisconsin-Milwaukee, Milwaukee, Wis-consin 53201, USA; [17] Leibniz Universitat Hannover, D-30167 Hannover,Germany; [18] Universita di Pisa, I-56127 Pisa, Italy; [19] INFN, Sezionedi Pisa, I-56127 Pisa, Italy; [20] Australian National University, Canberra,Australian Capital Territory 0200, Australia; [21] The University of Missis-sippi, University, Mississippi 38677, USA; [22] California State UniversityFullerton, Fullerton, California 92831, USA; [23] LAL, Universite Paris-Sud,CNRS/IN2P3, Universite Paris-Saclay, Orsay, France; [24] Chennai Math-ematical Institute, Chennai, India 603103; [25] Universita di Roma TorVergata, I-00133 Roma, Italy; [26] University of Southampton, Southamp-ton SO17 1BJ, United Kingdom; [27] Universitat Hamburg, D-22761 Ham-burg, Germany; [28] INFN, Sezione di Roma, I-00185 Roma, Italy; [29]Albert-Einstein-Institut, Max-Planck-Institut fur Gravitationsphysik, D-14476 Potsdam-Golm, Germany; [30] APC, AstroParticule et Cosmologie,Universie Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris,Sorbonne Paris Cite, F-75205 Paris Cedex 13, France; [31] Montana StateUniversity, Bozeman, Montana 59717, USA; [32] Universita di Perugia,

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 19: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 309

Observation of Gravitational Waves from a Binary Black Hole Merger 309

I-06123 Perugia, Italy; [33] INFN, Sezione di Perugia, I-06123 Perugia,Italy; [34] European Gravitational Observatory (EGO), I-56021 Cascina,Pisa, Italy; [35] Syracuse University, Syracuse, New York 13244, USA;[36] SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom;[37] LIGO Hanford Observatory, Richland, Washington 99352, USA; [38]Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklos ut 29-33,Hungary; [39] Columbia University, New York, New York 10027, USA; [40]Stanford University, Stanford, California 94305, USA; [41] Universita diPadova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy; [42]INFN, Sezione di Padova, I-35131 Padova, Italy; [43] CAMK-PAN, 00-716Warsaw, Poland; [44] Astronomical Observatory Warsaw University, 00-478Warsaw, Poland; [45] University of Birmingham, Birmingham B15 2TT,United Kingdom; [46] Universita degli Studi di Genova, I-16146 Genova,Italy; [47] INFN, Sezione di Genova, I-16146 Genova, Italy; [48] RRCAT,Indore MP 452013, India; [49] Faculty of Physics, Lomonosov Moscow StateUniversity, Moscow 119991, Russia; [50] SUPA, University of the West ofScotland, Paisley PA1 2BE, United Kingdom; [51] University of WesternAustralia, Crawley, Western Australia 6009, Australia; [52] Department ofAstrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500GL Nijmegen, Netherlands; [53] Artemis, Universite Cote d’Azur, CNRS,Observatoire Cote d’Azur, CS 34229, Nice cedex 4, France; [54] MTA EotvosUniversity, “Lendulet” Astrophysics Research Group, Budapest 1117, Hun-gary; [55] Institut de Physique de Rennes, CNRS, Universite de Rennes 1,F-35042 Rennes, France; [56] Washington State University, Pullman, Wash-ington 99164, USA; [57] Universita degli Studi di Urbino “Carlo Bo” I-61029Urbino, Italy; [58] INFN, Sezione di Firenze, I-50019 Sesto Fiorentino,Firenze, Italy; [59] University of Oregon, Eugene, Oregon 97403, USA; [60]Laboratoire Kastler Brossel, UPMC-Sorbonne Universites, CNRS, ENS-PSL Research University, College de France, F-75005 Paris, France; [61]VU University Amsterdam, 1081 HV Amsterdam, Netherlands; [62] Uni-versity of Maryland, College Park, Maryland 20742, USA; [63] Center forRelativistic Astrophysics and School of Physics, Georgia Institute of Tech-nology, Atlanta, Georgia 30332, USA; [64] Institut Lumiere Matiere, Univer-site de Lyon, Universite Claude Bernard Lyon 1, UMR CNRS 5306, 69622Villeurbanne, France; [65] Laboratoire des Materiaux Avances (LMA),IN2P3/CNRS, Universite de Lyon, F-69622 Villeurbanne, Lyon, France;

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 20: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 310

310 B. P. Abbott et al.

[66] Universitat de les Illes Balears, IAC3–IEEC, E-07122 Palma de Mal-lorca, Spain; [67] Universita di Napoli “Federico II”, Complesso Univer-sitario di Monte S. Angelo, I-80126 Napoli, Italy; [68] NASA/GoddardSpace Flight Center, Greenbelt, Maryland 20771, USA; [69] Canadian Insti-tute for Theoretical Astrophysics, University of Toronto, Toronto, OntarioM5S 3H8, Canada; [70] Tsinghua University, Beijing 100084, China; [71]Texas Tech University, Lubbock, Texas 79409, USA; [72] The Pennsyl-vania State University, University Park, Pennsylvania 16802, USA; [73]National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic ofChina; [74] Charles Sturt University, Wagga Wagga, New South Wales 2678,Australia; [75] University of Chicago, Chicago, Illinois 60637, USA; [76]Caltech CaRT, Pasadena, California 91125, USA; [77] Korea Institute ofScience and Technology Information, Daejeon 305-806, Korea; [78] Car-leton College, Northfield, Minnesota 55057, USA; [79] Universita di Roma“La Sapienza”, I-00185 Roma, Italy; [80] University of Brussels, Brus-sels 1050, Belgium; [81] Sonoma State University, Rohnert Park, Califor-nia 94928, USA; [82] Northwestern University, Evanston, Illinois 60208,USA; [83] The University of Texas Rio Grande Valley, Brownsville, Texas78520, USA; [84] University of Minnesota, Minneapolis, Minnesota 55455,USA; [85] The University of Melbourne, Parkville, Victoria 3010, Aus-tralia; [86] The University of Sheffield, Sheffield S10 2TN, United King-dom; [87] University of Sannio at Benevento, I-82100 Benevento, Italyand INFN, Sezione di Napoli, I-80100 Napoli, Italy; [88] Montclair StateUniversity, Montclair, New Jersey 07043, USA; [89] Universita di Trento,Dipartimento di Fisica, I-38123 Povo, Trento, Italy; [90] INFN, TrentoInstitute for Fundamental Physics and Applications, I-38123 Povo, Trento,Italy; [91] Cardiff University, Cardiff CF24 3AA, United Kingdom; [92]National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo181-8588, Japan; [93] School of Mathematics, University of Edinburgh,Edinburgh EH9 3FD, United Kingdom; [94] Indian Institute of Technol-ogy, Gandhinagar Ahmedabad Gujarat 382424, India; [95] Institute forPlasma Research, Bhat, Gandhinagar 382428, India; [96] University ofSzeged, Dom ter 9, Szeged 6720, Hungary; [97] Embry-Riddle Aeronau-tical University, Prescott, Arizona 86301, USA; [98] University of Michi-gan, Ann Arbor, Michigan 48109, USA; [99] Tata Institute of Fundamen-tal Research, Mumbai 400005, India; [100] Rutherford Appleton Labora-tory, HSIC, Chilton, Didcot, Oxon OX11 0QX, United Kingdom; [101]

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.

Page 21: Chapter 11 Observation of Gravitational Waves from a

January 17, 2017 19:2 Centennial of General Relativity: A Celebration 9in x 6in b2646-ch11 page 311

Observation of Gravitational Waves from a Binary Black Hole Merger 311

American University, Washington, D.C. 20016, USA; [102] Rochester Insti-tute of Technology, Rochester, New York 14623, USA; [103] University ofMassachusetts-Amherst, Amherst, Massachusetts 01003, USA; [104] Uni-versity of Adelaide, Adelaide, South Australia 5005, Australia; [105] WestVirginia University, Morgantown, West Virginia 26506, USA; [106] Uni-versity of Bia ystok, 15-424 Bia ystok, Poland; [107] SUPA, Universityof Strathclyde, Glasgow G1 1XQ, United Kingdom; [108] IISER-TVM,CET Campus, Trivandrum Kerala 695016, India; [109] Institute of AppliedPhysics, Nizhny Novgorod, 603950, Russia; [110] Pusan National Univer-sity, Busan 609-735, Korea; [111] Hanyang University, Seoul 133-791, Korea;[112] NCBJ, 05-400 Swierk-Otwock, Poland; [113] IM-PAN, 00-956 War-saw, Poland; [114] Monash University, Victoria 3800, Australia; [115] SeoulNational University, Seoul 151-742, Korea; [116] University of Alabama inHuntsville, Huntsville, Alabama 35899, USA; [117] ESPCI, CNRS, F-75005Paris, France; [118] Universita di Camerino, Dipartimento di Fisica, I-62032Camerino, Italy; [119] Southern University and A&M College, Baton Rouge,Louisiana 70813, USA; [120] College of William and Mary, Williamsburg,Virginia 23187, USA; [121] Instituto de Fısica Teorica, University Estad-ual Paulista/ICTP South American Institute for Fundamental Research,Sao Paulo SP 01140-070, Brazil; [122] University of Cambridge, CambridgeCB2 1TN, United Kingdom; [123] IISER-Kolkata, Mohanpur, West Ben-gal 741252, India; [124] Whitman College, 345 Boyer Avenue, Walla Walla,Washington 99362 USA; [125] National Institute for Mathematical Sciences,Daejeon 305-390, Korea; [126] Hobart and William Smith Colleges, Geneva,New York 14456, USA; [127] Janusz Gil Institute of Astronomy, Universityof Zielona Gora, 65-265 Zielona Gora, Poland; [128] Andrews University,Berrien Springs, Michigan 49104, USA; [129] Universita di Siena, I-53100Siena, Italy; [130] Trinity University, San Antonio, Texas 78212, USA; [131]University of Washington, Seattle, Washington 98195, USA; [132] KenyonCollege, Gambier, Ohio 43022, USA; [133] Abilene Christian University,Abilene, Texas 79699, USA.

Reference

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration).Phys. Rev. Lett. 116, 061102 (2016).

Cen

tenn

ial o

f G

ener

al R

elat

ivity

Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

MIC

HIG

AN

AN

N A

RB

OR

on

05/1

8/17

. For

per

sona

l use

onl

y.