chapter 10 potentials and fields

37
hapter 10 Potentials and Fields 10.1 The Potential Formulation 10.2 Continuous Distributions 10.3 Point Charges

Upload: coleen-dennis

Post on 08-Jan-2018

304 views

Category:

Documents


1 download

DESCRIPTION

10.1 The Potential Formulation 10.1.1 Scalar and vector potentials 10.1.2 Gauge transformation 10.1.3 Coulomb gauge and Lorentz gauge

TRANSCRIPT

Page 1: Chapter 10 Potentials and Fields

Chapter 10 Potentials and Fields

10.1 The Potential Formulation

10.2 Continuous Distributions

10.3 Point Charges

Page 2: Chapter 10 Potentials and Fields

10.1 The Potential Formulation

10.1.1 Scalar and vector potentials

10.1.2 Gauge transformation

10.1.3 Coulomb gauge and Lorentz gauge

Page 3: Chapter 10 Potentials and Fields

10.1.1 Scalar and Vector Potentials

0

E

tBE

tEJB

000

0B

Maxwell’s eqs

),(),(

),(),(

trBtrE

trJtr

),(),(

trAtrV

or

field formulism

potential formulism

MS

ES

0E

VE

B

AB

)( At

E

0At

E )(

VAt

E

AB

tAVE

Page 4: Chapter 10 Potentials and Fields

10.1.1 (2)

0

E

0tAV

][

0

2 At

V

)(

][)( At

Vt

JA000

AAA 2 )()(

JtVA

tAA 0002

2

002

)()(

tEJB 000

Page 5: Chapter 10 Potentials and Fields

Ex.10.1

10.1.1 (3)

0V

ctxfor0

ctxforzxctc4k

A20 ˆ)(

where k is a constant,

?, J

Sol:

yxctc2kyxct

xc4kAB

zxct2k

tAE

020

0

ˆ)(ˆ)(

ˆ)(

for ctx )(, ctxfor0BE

0E

0B

y2kyxct

x2kE 00 ˆ)ˆ)((

z2kzxct

xc2kB 00 ˆ)ˆ)((

21

00c

)(

Page 6: Chapter 10 Potentials and Fields

10.1.1 (4)

z2kc

tE

0 ˆ

y2k

tB

0 ˆ

0E0

0z2kcz

c2k

tEB1J 0

00

0

ˆˆ)(

)(

200 c1

210x

z0x

z EEas0xat EE , 0Ex ,

xK fxy

xy

xy

xy BBBB ˆ11 0000

00

)ˆˆ(ˆ)]()[( xzKy2kt

2kt

f

yzktK f ˆ

Page 7: Chapter 10 Potentials and Fields

10.1.2 Gauge transformation

tAVE

0ttrVVforV )(),(,

0trAAforAABAA

),(,?aboutHow

tAV

ttAV

ttAV

tAVE

)(

)(tk

t

ttk

t

)(

Page 8: Chapter 10 Potentials and Fields

tiontransformaGauge

tVV

AAWhen

tAV

tAVE

AAB

The fields are independent of the gauges.(note: physics is independent of the coordinates.)

10.1.2 (2)

Page 9: Chapter 10 Potentials and Fields

10.1.3 Coulomb gauge and Lorentz gaugePotential formulation

)( At

V2

JtVA

tAA 0002

2

002

)()(

Sources: J

, AV

,AB

tAVE

Coulomb gauge: 0A

( )A VA Jt t

22

0 0 0 0 02

d

Rtr

41trVV

0

2 ),(),( easy to solve

difficult to solve

V

A

Page 10: Chapter 10 Potentials and Fields

10.1.3 (2)Lorentz gauge:

tVA 00

02

2

002

02

2

002

tVV

JtAA

0

2 V

JA 02

2

2

0022

t

inhomogeneous wave eq.

the d’Alembertion

[Note:Since is with ,the potentials with both and are solutions.]

2 2tt t

0f wave equation2

Page 11: Chapter 10 Potentials and Fields

Then, you have a solution and

Gauge transformation AA

tVV

Coulomb gauge : 0A

If you have a and ,A 0A

2AA

Find , A2

0A

A

10.1.3 (3)

Page 12: Chapter 10 Potentials and Fields

10.1.3 (4)

Lorentz gauge :tVA 00

If you have a set of and , andA

Vt

VA 00

2

2

002

0000 ttVA

tVA

Find ,t

VAt 002

2

002

Then ,you have a set if solutions and , andA V

tVA 00

Page 13: Chapter 10 Potentials and Fields

10.2 Continuous Distributions :

With the Lorentz gauge ,

tVA 00

0

2 1V wheret

2

0022

JA 02

,t

AVE

AB

In the static case ,)( 0t

,22

0

2 1V

JA 02

d

Rr

41rV

0

)()(

dRrJ

4rA 0 )()(

Page 14: Chapter 10 Potentials and Fields

10.2 (2)For nonstatic case, the above solutions only valid when for , and due to and , where is the retarded time. Because the message ofthe pensence of and must travel a distance the delay is ; that is ,

),( trV ),( trA ),( rtr ),( rtrJ

rt J

,rrR

cR /

cRtt r (Causality)

cttrr r )(

Page 15: Chapter 10 Potentials and Fields

10.2 (3)The solutions of retarded potentials for nonstatic sources are

d

Rtr

41trV r

0

),(),(

dR

trJ4

trA r0 ),(),(

Proof:

d

RRtrV )1(1)(

41),(

0

rrRRRR

R1

R1

22 ˆ

)(

Rc

Rc1t

tcRttr r

rr

ˆ)(),(

Page 16: Chapter 10 Potentials and Fields

10.2 (4)

d

RR

RR

c41V 2

0

ˆˆ

dRR

RR

RR

RR

c1

41V 22

0

2 )ˆ

()(ˆˆ

)(ˆ

Rc

tt r

r

ˆ

22

2 R1

R1R

RR1

RR

)()

ˆ( )()

ˆ( R4RR 3

2

dR4

Rc1

Rc1

Rc1

41V 3

2220

2 )(

0

rr

02

2

2ttrd

Rtr

41

tc1

),()),((

),( tr1tV

c1

02

2

2

The same procedure is for proving .A

Page 17: Chapter 10 Potentials and Fields

Example 10.2

Solution:

0V0

dzRtIz

4tsA r0

)(

ˆ),(

10.2 (5)

?),(,?),(,)(

tsB0tforItsE0tfor0tI

0

scontributesctzonlycstfor

0tsBtsE0tsAcstfor

22

)(,

),(),(),(,

Page 18: Chapter 10 Potentials and Fields

22 sct

0 2200

zsdz2z

4ItsA )()ˆ(),(

22 sct

0

2200 zzsz2

I

)()ln(ˆ

ssctctz2

I 2200 ln))(ln(ˆ

zs

sctct2

I 2200 ˆ)

)(ln(

)ln( zzsdzd 22

zzs1

22zs

z221

22

22 zs1

zsct2

cItAtsE

2200 ˆ)(

),(

ˆ),(

sAAtsB z

ˆ))(()(

)()(

22

2222200 sctcts

sct2s2

s1

sctcts

2I

10.2 (6)

Page 19: Chapter 10 Potentials and Fields

22

22222

2200

sctsctsctcts

sctct1

s2I

)()()(

)(

ˆ

)(),(

2200

sctct

s2ItsB

Note:

sct1

ssctctD 2

22

)(

1221

D1

scD

scD

t 2lnln

11

sc

11

D1

sc

22

2

222 sct

c

1sct

1sc

)()(

10.2 (7)

Page 20: Chapter 10 Potentials and Fields

Dt

ts

Ds

Ds

lnlnln

Dtc

ss1ct 2 ln)(

22 sctc

st

)(

,t0E

ˆ

s2IB 00

recover the static case

10.2 (8)

Page 21: Chapter 10 Potentials and Fields

10.3 Point Charges10.3.1 Lienard-Wiechert Potentials

10.3.2 The Fields of a Moving Point Charge

Page 22: Chapter 10 Potentials and Fields

10.3.1 Lienard-Wiechert potentials

Consider a point charge q moving on a trajectory )(tW

retarded position )( rtwrR

location of the observer at time t

cRtt r

Two issues•There is at most one point on the trajectory communicating with at any time t.r

),()( 2211 ttcRttcR

Since q can not move at the speed of light, there is only one point at meet.

Suppose there are two points:

cttRRVttcRR

12

211221

)(

Page 23: Chapter 10 Potentials and Fields

10.3.1 (2)

• qdtr r ),( the point chage

cVR1qdtr r /ˆ),(

due to Doppler –shift effect as the point charge is considered as an extended charge.

cx

vLL

cxL

Proof.consider the extended charge has a length L as a train

(a) moving directly to the observer

time for the light to arrive the observer.

E F

cv1LL

/

Page 24: Chapter 10 Potentials and Fields

(b)moving with an angle to the observer

10.3.1 (3)

cosL x L L xc v c

1 cos /LL

v c

The apparent volumec

vR1

ˆ actual volume

cvR1qdtr r /ˆ),(

Page 25: Chapter 10 Potentials and Fields

10.3.1 (4)

(

),(),(

c

vR1R

q4

1dR

tr4

1trV0

r

0

dtr

Rv

4d

Rtvtr

4trA r

0rr0 ),()(),(),(

),()(

),( trVcv

vRRcvqc

4trA 2

0

Lienard-Wiechert Potentials for a moving point charge

vRRcqc

41trV

0

),(

Page 26: Chapter 10 Potentials and Fields

10.3.1 (5)Example 10.3

constv ?),(?),(

trAtrV

22

22222222

r

2rr

222r

2r

2

rr

vctcrvcvrtcvrtct

ttt2tctvtvr2r

ttctvrR

tvtw00twlet

))(()()(

)(

)(

)()(

Solution:

1

consider

signchoose

retardedcrt

crtt0v r,

q

Page 27: Chapter 10 Potentials and Fields

10.3.1 (6)

))(()(

)(

)()()

ˆ(

2222222

r

2

r

r

rr

tcrvcvrtcc1

tc

vc

rvttc

ttctvr

cv1ttc

cvR1R

1

))(()()ˆ

(),(

222222200 tcrvcvrtc

qc4

1

cvR1Rc

qc4

1trV

),(),( trVcvtrA 2

))(()( 22222220

tcrvcvrtcvqc

4

002c1

)(ˆ)(

r

rr ttc

tvrRttcR

Page 28: Chapter 10 Potentials and Fields

10.3.2 The Fields of a Moving Point ChargeLienard-Weichert potentials:

)(),(

vRRcqc

41trV

0

),(),( trV

cvtrA 2

tAVE

AB

)(),(),( rrr twvandttcRtwrR

Math., Math., and Math,…. are in the following:

)()(

vRRcvRRc

14

qcV 20

Page 29: Chapter 10 Potentials and Fields

10.3.2 (2)

rtcR

)()()()()( RvvRRvvRvR

)(ˆˆ)()( rr

jr

irjii tRajitv

tRjtvRvR

wvrvRv )()()( va

vjvjzrvrv ijijii ˆˆ)(

)(ˆˆ)()( rr

r

jirjii tvvj

it

tw

vjtwvwv

rrijr

r

jrji taktak

it

tv

ktvv

ˆˆˆ)(

rrr tvtvtwrR )()(

0

)()()()()( rrrr tvvtaRtvvvtRavR

)()( aRttRa rr

=

0

Page 30: Chapter 10 Potentials and Fields

10.3.2 (4)

)()(

vRRcvRRc

14

qcV 20

r2

r2

20tvaRvtc

vRRc1

4qc

)()(

vRRcRaRvcv

vRRcqc

41 22

20

)()(

RaRvcvvRRcvRRc

qc4

1 2230

)()()(

vaRvc

cR

caRvvRRc

vRRcqc

41

tA 22

30

)())(()(

Prob.10.17

Page 31: Chapter 10 Potentials and Fields

10.3.2 (3)

)()()( vvttvvtvv0 rrr

r2

r tvtvv )(

r2 tvaRvvR )()(

)()( RRRR2

1RRRtc r

)()( RRRRR1

vRRcRt r

)( rtRvR

rtv

=

rtvRRR1 )(

)()( rr tvRtRvRR1

=

)()( vRttRv rr

Page 32: Chapter 10 Potentials and Fields

10.3.2 (5)

tAVtrE

),( RaRvcvvRRc

vRRcqc

41 22

30

)()()(

vaRvc

cR

caRvvRRc 22

)())((

])ˆ()ˆ)(()(

avRcRvRcaRvcvRRc

qR4

1 223

0

define vRRcuRvRcu ˆ

)()()()(

),( uRaaRuuvcuR

qR4

1trE 223

0

)()()(

),( auRuvcuR

qR4

1trE 223

0

vRcu ˆ

generalized Coulomb field radiation field or acceleration field dominates at large R

if RRq

41trE0v0a 2

0

ˆ),(,,

Electrostatic field

Page 33: Chapter 10 Potentials and Fields

10.3.2 (6)

)()()( VvvVc1vV

c1AB 22 V

cvA 2

vRRcRatav r

RaRvcvvRRcvRRc

qc4

1V 223

0

)()()(

)()( vRRc

RavRRc

qc4

1c1B

02

RvaRvc

vRRcqc

41 22

30

)()(

Page 34: Chapter 10 Potentials and Fields

10.3.2 (7)

)()()()(

223

0vcvaRvuRaR

uR1

4q

c1

)())(())(()(

ˆ uRaaRvRvcvRuR

qR4

1Rc1 22

30

)()()()(

ˆ uRaaRuvcuuR

qR4

1Rc1 22

30

)()()(

ˆ auRvcuuR

qR4

1Rc1 22

30

),(ˆ trERc1

),(ˆ),( trERc1trB

Page 35: Chapter 10 Potentials and Fields

10.3.2 (8)The force on a test charge Q with velocity due to a moving charge q with velocity is

V

v

)( BVEQF

)()(ˆ)()(

)(auRuvcR

cVauRuvc

uRR

4qQ 2222

30

Where rtatevaluatedallareaandvuR ,,,

Page 36: Chapter 10 Potentials and Fields

10.3.2 (9)Example 10.4 q constv ?),( trE

?),( trB

Solution:0a tvw 0t originatw

uuR

Rvc4

qtrE 3

22

0

)()(),(

)()()( tvrcvttcVtrcvRRcuR rr

21

2222222 tcrvcvrtcvRRcuR ))(()( Ex.10.3

Prob.10.14cv1Rc 22 /sin

3

21

22

22

0cv1Rc

Rcvc4

qtrE

)/sin(

)(),(

tvrR

Page 37: Chapter 10 Potentials and Fields

10.3.2 (10)

22

3222

22

0 RR

cv1

cv14

qtrEˆ

)/sin(

/),(

),(ˆ),( trERc1trB

),(),( trEvc1trB 2

c

vRP

Rvtttvr

RtvrR rr

)()(

)ˆ(4

),(,ˆ4

1),(2

02

0

PvPqtrBR

PqtrE

Coulomb`s law “Biot-savart Law for a point charge.”

ecoincidencbyptontpoiE ˆ

p

,22 cvwhen