chapter 1: vector analysis - universidad de sevilla · curso 2007/2008 dpto. física aplicada iii -...

41
Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos 2º Curso Ingeniería Industrial Dpto.Física Aplicada III Dpto. Física Aplicada III - Univ. de Sevilla 2 Chapter 1: Index (I) Introduction Scalar and Vector Fields Integral Calculus Circulation Flux Differential Calculus The Gradient The Divergence The Curl

Upload: others

Post on 30-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Curso 2007/2008

Dpto. Física Aplicada III - Univ. de Sevilla

Joaquín Bernal Méndez 1

Chapter 1: Vector Analysis

Campos Electromagnéticos2º Curso Ingeniería IndustrialDpto.Física Aplicada III

Dpto. Física Aplicada III - Univ. de Sevilla 2

Chapter 1: Index (I)

Introduction

Scalar and Vector Fields

Integral CalculusCirculation

Flux

Differential CalculusThe Gradient

The Divergence

The Curl

Page 2: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 3

Chapter 1: Index (II)

Mathematic toolsCylindrical and Spherical coordinates The “del” operatorThe Dirac delta function

Special types of fields:Curl-less or Irrotational fieldsDivergence-less or Solenoidal fieldsHarmonic fields

The Helmholtz Theorem

Dpto. Física Aplicada III - Univ. de Sevilla 4

Introduction

Scalar: quantities characterized by its magnitude.Examples: weight, charge, temperature…

Vector: quantities that have direction as well as magnitude.Examples: velocity, acceleration, force…

Page 3: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 5

Scalar Fields (I)

Definition: It is a function that associates a scalar value to every point in space.

Temperature: T(x,y,z)Geographical altitude: h(x,y)Density field of a body

A scalar field should give a single value of some variable for every point in space (monovalued function).

Dpto. Física Aplicada III - Univ. de Sevilla 6

Scalar Fields (II)

Graphical representation: Equipotentialsurfaces ( , , )x y z Cϕ =

-2

-1

0

1

2 -2

-1

0

1

2

-2-1

0

1

-2

-1

0

1

-4 -2 0 2 4-4

-2

0

2

4

Page 4: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 7

Scalar Fields (III)

Example: Atmospheric pressure

( , , )x y z Cϕ =

Dpto. Física Aplicada III - Univ. de Sevilla 8

Vector Fields (I)

Definition: It is a function that associates a vector to every point in space.

Gravitational field

Velocity of a flowing liquid

Electric and magnetic fields

Monovalued functions

Page 5: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 9

Vector Fields (II)Example: Wind field

Dpto. Física Aplicada III - Univ. de Sevilla 10

Vector Fields (III)Graphical representation: A Field line is drawn such that the tangent to the field line at any point is parallel to the vector field at that point

x y z

dx dy dz

F F F= =

Page 6: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 11

Vector Fields (IV)

Example: Electric field of a point charge

Positive charge

Dpto. Física Aplicada III - Univ. de Sevilla 12

Vector Fields (V)

Example: Field lines of two point charges

Positive Charges Positive and negative charges

�-q

��q

�q

�q

Page 7: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 13

Chapter 1: Index (I)

Introduction

Scalar and Vector Fields

Integral CalculusCirculation

Flux

Differential CalculusThe Gradient

The Divergence

The Curl

Dpto. Física Aplicada III - Univ. de Sevilla 14

Integral calculus

We have both scalar and vector fields

We can perform line, surface and volume integrals of these fields

From these, two types of integrals are important for us:

Circulation

Flux

Page 8: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 15

Circulation (I): definitionLine integral of a vector field:

,

B

AF dr

γΓ = ⋅∫

It measures how much the vector field is aligned with the curve

The result of the integral is a scalar

The line integral depends on the path

Example: work performed by a force

Dpto. Física Aplicada III - Univ. de Sevilla 16

Circulation (II): Physical meaningClosed path: indicates how much the vector field tends to circulate around the curve

·L

C F dl= ∫

0C =L

0C ≠L

For a force vector field this would be the work done in a closed path

Page 9: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 17

Circulation: Further Examples

What is the sign of the circulation of these vector fields?

Dpto. Física Aplicada III - Univ. de Sevilla 18

Circulation (III): calculation

Parametrize the curve:

Calculate the integral:

,

B

AF dr

γΓ = ⋅∫

{ }: ( ), t ( , )A Br r t t tγ = ∈

( ( ))B

A

t

t

drF r t dt

dtΓ = ⋅∫

Page 10: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 19

Flux (I): definition

Surface integral of a vector field

The result is a scalar magnitude

It depends on the surface S

The direction of must be specified

For closed surfaces: is pointing outwards

SF dsΦ = ⋅∫

ss

Dpto. Física Aplicada III - Univ. de Sevilla 20

Flux (II): Physical meaningThe flux of a vector field through a surface measures how much field crossed that surface

Example: velocity of a fluid

VSΦ =

·V SΦ =·

S

V dSΦ = ∫

d V dSΦ = ⋅

Page 11: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 21

Flux (III): calculation

Parametrize the surface:

We have to calculate this double integral:

{ }1 2 1 2: ( , ), ( , ), ( , )S r r α β α α α β β β= ∈ ∈

r r

dS d dα βα β

⎛ ⎞∂ ∂= ×⎜ ⎟∂ ∂⎝ ⎠

( ( , )) r r

F r d dα β α βα β

⎛ ⎞∂ ∂Φ = ⋅ ×⎜ ⎟∂ ∂⎝ ⎠

∫∫

Dpto. Física Aplicada III - Univ. de Sevilla 22

Summary

We will work with scalar and vector fieldsEquipotential surfaces are useful for representing scalar fieldsField lines are employed for representing vector fieldsCirculation of a vector field measures the “twist”of the vectorsThe flux of a vector field through a surface is proportional to the number of field lines passing through that surface

Page 12: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 23

Chapter 1: Index (I)

Introduction

Scalar and Vector Fields

Integral CalculusCirculation

Flux

Differential CalculusThe Gradient

The Divergence

The Curl

Dpto. Física Aplicada III - Univ. de Sevilla 24

Differential calculus

The derivative of scalar and vector fields can be performed in different ways.

Scalar fields: gradient

Vector fields: divergence and curl

Page 13: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 25

Gradient (I)For a function of one variable: ( )f x

0

0 0

0

( ) ( ) ( )lim

x

df x f x f x

dx ε

ε

ε→

+ −=

( )f x

0( )f x ε+

0( )f x

The derivative tell us how rapidly the function varies when we change x

Dpto. Física Aplicada III - Univ. de Sevilla 26

Gradient (II): directional derivative

¿How can we give an idea of the variation of a scalar function of several variables?

A direction must be specified:

Unit vector:

Directional derivative:

0

( , , ) ( , , )lim x y zx v y v z v x y zd

ds ε

ϕ ε ε ε ϕϕε→

+ + + −=

( , , )x y zv v v v=

Page 14: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 27

Gradient (III)

By using the concept of partial derivative:

Definition:

Therefore:

x y z

dv v v

ds x y z

ϕ ϕ ϕ ϕ∂ ∂ ∂= + +∂ ∂ ∂

, , vx y z

ϕ ϕ ϕ⎛ ⎞∂ ∂ ∂= ⋅⎜ ⎟∂ ∂ ∂⎝ ⎠

grad x y zu u ux y z

ϕ ϕ ϕϕ ∂ ∂ ∂= + +∂ ∂ ∂

d=grad

dsv

ϕ ϕ ⋅

Dpto. Física Aplicada III - Univ. de Sevilla 28

Gradient (IV): geometrical interpretation

gradϕ

v

α

The magnitude of the gradient at one point is the maximum value of the derivative at that point

The gradient vector points in the direction of maximun directional derivative (maximun increase of the function at that point)

v

gradϕ

0 cos 1α α= → =

d=grad

dsv⋅

ϕ ϕ

d= grad cos

ds

ϕ ϕ α

Page 15: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 29

Gradient (V)

Increase of a given scalar function:

The gradient in a point is perpendicular to the equipotential surface at that point:

grad gradd v ds drϕ ϕ ϕ= ⋅ = ⋅

0 gradd drϕ ϕ= = ⋅

|grad drϕ −

Cteϕ =

drgradϕ

Dpto. Física Aplicada III - Univ. de Sevilla 30

Gradient (VI): Summary

The Gradient is a vector field.Its magnitude gives the maximun value of the derivative of the function in that point.The gradient points in the direction of maximun rate of change of the scalar function.The gradient in a point is perpendicular to the equipotential surface at that point.

Page 16: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 31

Chapter 1: Index (I)

Introduction

Scalar and Vector Fields

Integral CalculusCirculation

Flux

Differential CalculusThe Gradient

The Divergence

The Curl

Dpto. Física Aplicada III - Univ. de Sevilla 32

Divergence (I)

The divergence of a vector field is a scalar field:

Divergence in cartesian coordinates:

0

1div ( ) lim

S

F r F dSτ

τ τΔ

Δ →= ⋅

Δ ∫

div ( ) yx zFF F

F rx y z

∂∂ ∂= + +∂ ∂ ∂

Page 17: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 33

Exercise

Calculate the divergence of the vector of position

div ( ) with ( )yx zFF F

F r F r rx y z

∂∂ ∂= + + =∂ ∂ ∂

) div 0

) div

) div 3

a r

b r x y z

c r

== + +=

Solution:

Dpto. Física Aplicada III - Univ. de Sevilla 34

Divergence (II): Geometrical Interpretation

The divergence is a measure of how much the vector field spreads out (diverges) from a given point

Large positive divergence at P Zero divergence points

P

Page 18: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 35

Divergence (III)

The Divergence Theorem:

vector pointing outward

Useful for evaluating integralsVery important for derivation of theoretical results

div ( )S

F r d F dSττ

τ = ⋅∫ ∫

z

xySτ

τ

dS

Dpto. Física Aplicada III - Univ. de Sevilla 36

Curl (I)

Definition:

The Curl in cartesian coordinates:

0

1rot ( ) lim

S

F r dS Fτ

τ τΔ

Δ →= ×

Δ ∫

rot ( )

x y z

x y z

u u u

F r y zx

F F F

∂ ∂ ∂=∂ ∂∂

rot ( ) y yz x z xx y z

F FF F F FF r u u u

y z z x x y

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

Page 19: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 37

Curl (II): Geometrical Interpretation

The curls measures how much the vector field curls around a given point:

Nonzero curl Zero curl Zero curl

Dpto. Física Aplicada III - Univ. de Sevilla 38

Stokes’ Theorem:

Right hand rule:If your finger point in the direction of the line integral then your thumb fixes the direction of

It is useful for:Calculation of integralsDerivation of important theoretical results

rotsS

F dS F drγ

⋅ = ⋅∫ ∫

Curl (III)

dS

Page 20: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 39

Divergence and Curl: Summary

Derivatives of vector fields

Divergence: scalar field. Related with the existence of sources and sinks of the vector field

Rotacional: vector field. Related with the existence of “whirlpools” in the field lines

Fundamental Theorems:Divergence theorem

Stokes’ theorem

Dpto. Física Aplicada III - Univ. de Sevilla 40

Chapter 1: Index (I)

Introduction

Scalar and Vector Fields

Integral CalculusCirculation

Flux

Differential CalculusThe Gradient

The Divergence

The Curl

Page 21: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 41

Chapter 1: Index (II)

Mathematic toolsCylindrical and Spherical coordinates The “del” operatorThe Dirac delta function

Special types of fields:Curl-less or Irrotational fieldsDivergence-less or Solenoidal fieldsHarmonic fields

The Helmholtz Theorem

Dpto. Física Aplicada III - Univ. de Sevilla 42

Curvilinear coordinates

We have seen several examples using cartesian coordinates

Many problems can be more easily solved by using other coordinates:

Cylindrical coordinates

Spherical coordinates

There are more coordinate systems but we will restrict ourselves to these.

Page 22: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 43

Cartesian Coordinates (I)Any point is represented by three signed numbers, (x,y,z), where the coordinate is the perpendicular distance from the plane formed by the other two axesCoordinate lines: straight lines parallel to the axisCoordinate surfaces: planes parallel to the coordinate planes

X

Y

Z

r

xy

z z = cte

y = cte

x = cte

X

Y

Z

x

y

z

•P

Dpto. Física Aplicada III - Univ. de Sevilla 44

Cartesian Coordinates (II)

Vector of position:

x y zr xu yu zu= + +

x y zdr dxu dyu dzu= + +

Orthogonal basis set:

Y

X

Z

r0

i j

k

uz

uy

ux

P

Differential elements of surface:

xy zdS dxdyu=

Differential volume elements:

zx ydS dxdzu=yz xdS dzdyu=

d dxdydzτ =

Infinitesimal displacement:

Page 23: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 45

Cylindrical Coordinates (I)Three coordinates for a point P :

X

Y

Z

r

ρ

z

φ

ρ: perpendicular distance from the zaxisφ (azimuthal angle): angle around from the x axis

z (vertical c.): distance from the XY plane

0

0 2π

z

≤ < ∞≤ <

−∞ < < ∞

ρϕ

cos

sen

x

y

z z

===

ρ ϕρ ϕ ρ

φ

x

yX

Y

Z

Dpto. Física Aplicada III - Univ. de Sevilla 46

Cylindrical Coordinates (II)

z=cte

z

ϕ=cte

ϕ

ρ

ρ=cteX

Y

Z

•P

Coordinate lines:ρ: horizontal straight half-linesφ: Horizontal circumferencesz: Vertical straight lines

Coordinate surfaces:ρ=cte.: vertical cylindersφ=cte: vertical half-planesz=cte: horizontal planes

Page 24: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 47

Cylindrical coordinates (III)

Orthogonal basis set

Y

X

Z

r0

ρ

ux uy

uz

φ uφ

z

uz

P

cos senx y zr u u zuρ ϕ ρ ϕ= + +Vector of position:

zr u zuρρ= +

zdr d u d u dzuρ ϕρ ρ ϕ= + +

The unit vectors change direction as P moves around

Infinitesimal displacement:

Dpto. Física Aplicada III - Univ. de Sevilla 48

Cylindrical coordinates (IV)

z=cte

z

ϕ=cte

ϕ

ρ

ρ=cteX

Y

Z

•P

Elements of surface:

Element of volume:d d dzdτ ρ ρ ϕ=

cte : dS d dzuρρ ρ ϕ= =

cte : zz dS d d uρ ϕ ρ= =

cte : dS dzd uϕϕ ρ= =

Sometimes letter r is used in instead of ρ

Page 25: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 49

Gradient, divergence and Curl in Cylindrical Coordinates

1grad z

f f ff u u u

z

∂ ∂ ∂= + +∂ ∂ ∂ρ ϕρ ρ ϕ

( )1 1div z

F F FF

z

∂ ∂ ∂= + +

∂ ∂ ∂ρ ϕρ

ρ ρ ρ ϕ

1 1rot ( )z z

z

F F FF FF u u F u

z z

∂ ∂ ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂= − + − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ϕ ρ ρρ ϕ ϕρ

ρ ϕ ρ ρ ρ ϕ

Dpto. Física Aplicada III - Univ. de Sevilla 50

Spherical Coordinates (I)

X

Y

Z

r

φ

θ r

r (radial): distance from the origin

θ (polar): angle down from the positive z axis

φ (azimuthal): angle from the positive x-axis to the orthogonal projection of the position vector in the XY plane

0

0 π

0 2π

r≤ < ∞≤ ≤≤ <θϕ

sen cos

sen sen

cos

x r

y r

z r

θ ϕθ ϕθ

===

ρ

φ

x

yX

Y

Z

ρ

θ z

Z

r

Page 26: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 51

Coordinate lines:r: radial half-lines from the origin

φ: horizontal circumferences (parallels)

θ: vertical circumferences (meridians)

Coordinate surfaces:r=constant: Concentric spheres

φ=constant: Vertical half-planes

θ=constant: Cones

Spherical Coordinates (II)

ϕ=cte ϕ

θ=cte

θr=cte

r

X

Y

Z

•P

Dpto. Física Aplicada III - Univ. de Sevilla 52

Spherical Coordinates (III)

Orthogonal basis set

Y

X

Z

r0

ρ

ux uy

uz

ur

φ uφ

z

P

uθθ

sen cos sen sen cosx y zr r u r u r uθ ϕ θ ϕ θ= + +

Vector of position:

These unit vectors change direction as Pmoves around

rr ru=

senrdr dr u rd u r d uθ ϕθ θ ϕ= + +

Line element:

Page 27: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 53

Spherical Coordinates (IV)

ϕ=cte ϕ

θ=cte

θr=cte

r

X

Y

Z

•P

Surface elements:

Volume elements:2 send r drd dτ θ θ ϕ=

2cte : sen rr dS r d d uθ ϕ θ= =

cte : sendS r d druθθ θ ϕ= =

cte : dS rd druϕϕ θ= =

Dpto. Física Aplicada III - Univ. de Sevilla 54

Gradient, Divergence and Curl in Spherical Coordinates

1 1grad

senr

f f ff u u u

r r r

∂ ∂ ∂= + +∂ ∂ ∂θ ϕθ θ ϕ

22

1 1 1div ( ) (sen )

sen senr

FF r F F

r r r r

∂∂ ∂= + +

∂ ∂ ∂ϕ

θθθ θ θ ϕ

(sen ) ( )1 1 1rot

sen sen

1 ( )

rr

r

F rFF FF u u

r r r

rF Fu

r r

ϕ ϕθθ

θϕ

∂ θ ∂⎡ ⎤ ⎡ ⎤∂ ∂= − + − +⎢ ⎥ ⎢ ⎥θ ∂θ ∂ϕ θ ∂ϕ ∂⎣ ⎦ ⎣ ⎦

∂ ∂⎡ ⎤−⎢ ⎥∂ ∂θ⎣ ⎦

Page 28: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 55

Chapter 1: Index (II)

Mathematic toolsCylindrical and Spherical coordinates The “del” operatorThe Dirac delta function

Special types of fields:Curl-less or Irrotational fieldsDivergence-less or Solenoidal fieldsHarmonic fields

The Helmholtz Theorem

Dpto. Física Aplicada III - Univ. de Sevilla 56

The Operator “ (I)

It allows a shorthand notation

Definition:

Vector operator :It acts upon (differentiate) the function to the right

It behaves like an ordinary vector

x y zu u ux y z

∂ ∂ ∂∇ = + +

∂ ∂ ∂

Page 29: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 57

The operator “ (II)

grad

div

x y z

yx z

u u ux y z

FF FF F

x y z

ϕ ϕ ϕϕ ϕ∂ ∂ ∂= + + = ∇∂ ∂ ∂

∂∂ ∂= + + = ∇ ⋅∂ ∂ ∂

rot

zyx

yx z

uuu

F Fy zxF F F

∂ ∂ ∂= = ∇×∂ ∂∂

Dpto. Física Aplicada III - Univ. de Sevilla 58

The operator “ (III)

“ can be expressed in any system of coordinates.Calculus carried out with the help of “ are independent of the coordinate system.Any identity that can be proved by using the cartesian coordinates version of “remains valid for any other system of coordinates.

Page 30: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 59

Product Rules (I)

A scalar field can be obtained as the product of two other fields:

Product of two scalar fields:

Dot product of two vector fields:

What is the gradient of the product?

ψϕ

F G⋅

( )ϕψ ϕ ψ ψ ϕ∇ = ∇ + ∇

( ) ( ) ( ) ( ) ( )F G F G F G G F G F∇ ⋅ = × ∇× + ⋅∇ + × ∇× + ⋅∇

x y zF F F Fx y z

∂ ∂ ∂⋅∇ = + +

∂ ∂ ∂ ( ) ( )F G F G⋅∇ ≠ ∇ ⋅

Dpto. Física Aplicada III - Univ. de Sevilla 60

Product Rules (II)Also, a vector field can be obtained from a product of fields:

Scalar and vector fields:Cross product of two vector fields: F G×

( )( )F F Fϕ ϕ ϕ∇ ⋅ = ∇⋅ + ∇ ⋅

( ) ( )F F Fϕ ϕ ϕ∇× = ∇× + ∇ ×

( ) ( ) ( )F G F G F G∇⋅ × = ∇× ⋅ − ⋅ ∇×

( ) ( ) ( ) ( ) ( )F G F G F G G F G F∇× × = ∇ ⋅ − ⋅∇ − ∇ ⋅ + ⋅∇

Divergence:

Curl:

Page 31: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 61

Product Rules : Summary

( )ϕψ ϕ ψ ψ ϕ∇ = ∇ + ∇

( )( )F F Fϕ ϕ ϕ∇ ⋅ = ∇⋅ + ∇ ⋅

( ) ( )F F Fϕ ϕ ϕ∇× = ∇× + ∇ ×

( ) ( ) ( )F G F G F G∇⋅ × = ∇× ⋅ − ⋅ ∇×

( ) ( ) ( ) ( ) ( )F G F G F G G F G F∇ ⋅ = × ∇× + ⋅∇ + × ∇× + ⋅∇

( ) ( ) ( ) ( ) ( )F G F G F G G F G F∇× × = ∇ ⋅ − ⋅∇ − ∇ ⋅ + ⋅∇

Gradient:

Divergence:

Curl:

Dpto. Física Aplicada III - Univ. de Sevilla 62

Second derivatives (I)By applying ∇ twice we can construct fivespecies of second derivatives:

The gradient is a vector field:Divergence of gradientCurl of gradient

The divergence is a scalar field:Gradient of divergence

The curl is a vector field:Divergence of curlCurl of curl

( )ϕ∇ ⋅ ∇( )ϕ∇× ∇

( )F∇⋅ ∇×( )F∇× ∇×

( )F∇ ∇⋅

Page 32: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 63

Second derivatives (II)

2 2 22

2 2 2( )

x y z

ϕ ϕ ϕϕ ϕ∂ ∂ ∂∇ ⋅ ∇ = + + = ∇

∂ ∂ ∂( ) 0ϕ∇× ∇ =

( ) 0F∇⋅ ∇× =

2( ) ( )F F F∇× ∇× = ∇ ∇ ⋅ −∇

( )F∇ ∇⋅

Laplacian2( )∇

Seldom occurs2¡ ( ) ( ) !F F F∇ ∇⋅ ≠ ∇ ⋅∇ = ∇

Very important

Very important

Already defined

Dpto. Física Aplicada III - Univ. de Sevilla 64

Chapter 1: Index (II)

Mathematic toolsCylindrical and Spherical coordinates The “del” operatorThe Dirac delta function

Special types of fields:Curl-less or Irrotational fieldsDivergence-less or Solenoidal fieldsHarmonic fields

The Helmholtz Theorem

Page 33: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 65

The Dirac Delta Function (I)

Consider this vector field:

Radial and pointing outwards, but:

However, by integrating over a sphere (R):

2 3ru r

vr r

= =

22 2

1 10v r

r r r

∂ ⎛ ⎞∇ ⋅ = =⎜ ⎟∂ ⎝ ⎠

2 220 0

sen 4rr

S

uv d v dS u R d d

π π

τ

τ θ θ ϕ π∇⋅ = ⋅ = ⋅ =∫ ∫ ∫ ∫Divergence theorem

Dpto. Física Aplicada III - Univ. de Sevilla 66

The Dirac Delta Function (II)The source of the problem is the point

Summing up, the function fulfills:

We have found a “weird” function: the Dirac delta function

0r =

22 2

0

1 1¡¡ !!

r

v rr r r =

∂ ⎛ ⎞∇ ⋅ = = ∞⎜ ⎟∂ ⎝ ⎠

2ru

r∇⋅

2 2

0 0 con 4

0r r

ru ud

rr rτ

τ π≠⎧

∇ ⋅ = ∇ ⋅ =⎨∞ =⎩∫

Page 34: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 67

The Dirac Delta Function (III)The one-dimensional Dirac delta function:

Distribution: the limit of a sequence of functions

-

0 0( ) con ( ) 1

0

xx x dx

xδ δ

≠⎧= =⎨∞ =⎩

2

2

0 0

1( ) lim ( ) lim e

π

x

x x−ε

εε→ ε→δ = δ =

ε

Dpto. Física Aplicada III - Univ. de Sevilla 68

The Dirac Delta Function (IV)

0

1

2

3

4

5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

δε(x

)

x

ε=1ε=0.5ε=0.25

ε=0.125

2

2εε

1( ) e

ε π

x

xδ−

=

Page 35: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 69

The Dirac Delta Function (IV)Product with an ordinary function:

It is sufficient that the domain extend across the delta function:

The “spike” can be shifted:

( ) ( ) ( ) (0) ( ) ( ) (0)x f x x f x f x dx f∞

−∞

= ⇒ =∫δ δ δ

( ) ( ) (0)x f x dx f−

=∫ε

ε

δ

( ) ( ) ( )x a f x dx f a∞

−∞

− =∫ δ

Dpto. Física Aplicada III - Univ. de Sevilla 70

z

x

y

τ

The Dirac Delta Function (V)The three-dimensional delta function:

In general:

3( ) ( ) ( ) ( )r x y zδ δ δ δ=

( )( ) ( )

0

a ar r a d

ϕ τϕ δ τ

τ∈⎧

− = ⎨ ∉⎩∫

3( ) ( ) ( ) ( )x y zr a x a y a z aδ δ δ δ− = − − −

a

a

Page 36: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 71

The Dirac Delta Function (VI)

Coming back to the function

It can be written as:

2ru

r∇⋅

2 2

0 0 with 4

0r r

ru ud

rr rτ

τ π≠⎧

∇ ⋅ = ∇ ⋅ =⎨∞ =⎩∫

24 ( )ru

rr

πδ∇ ⋅ =

003

0

4 ( )r r

r rr r

πδ⎛ ⎞−

∇ ⋅ = −⎜ ⎟⎜ ⎟−⎝ ⎠0

30 0

1 r r

r r r r

⎛ ⎞ −∇ = −⎜ ⎟− −⎝ ⎠2

00

14 ( )r r

r rπδ

⎛ ⎞∇ = − −⎜ ⎟−⎝ ⎠

Dpto. Física Aplicada III - Univ. de Sevilla 72

Chapter 1: Index (II)

Mathematic toolsCylindrical and Spherical coordinates The “del” operatorThe Dirac delta function

Special types of fields:Curl-less or Irrotational fieldsDivergence-less or Solenoidal fieldsHarmonic fields

The Helmholtz Theorem

Page 37: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 73

Curl-less vector fields:

Equivalent conditions:

There exits a scalar field such that:

Irrotational Fields

0F∇× =

0F drγ

⋅ =∫

1 2, ,

B B

A A

F dr F drγ γ

⋅ = ⋅∫ ∫

F = −∇ϕA

B

1γ2γ

( ) 0S

F dr F dSγγ

⋅ = ∇× ⋅ =∫ ∫

Dpto. Física Aplicada III - Univ. de Sevilla 74

Divergence-less vector fields:Propiedades:

Flux is constant through a field tube:

There exists a vector field such that:

Solenoidal Fields0F∇⋅ =

0S

F dSτ

⋅ =∫

1 2

1 2

si s s

S S

F dS F dS⋅ = ⋅ γ = γ∫ ∫

F A= ∇×

0S

F dS F dτ τ

⋅ = ∇⋅ τ =∫ ∫

S1

S2

SL

2dS

1dS1 2s sγ = γ

Page 38: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 75

Types of Vector Fields

0

0

F

F

∇⋅ ≠

∇× ≠

Irrotational

Solenoidal

Solenoidal andirrotational

0

0

F

F

∇⋅ ≠

∇× =

0

0

F

F

∇⋅ =

∇× ≠

0

0

F

F

∇⋅ =

∇× =

Dpto. Física Aplicada III - Univ. de Sevilla 76

Harmonic Fields

Scalar fields satisfying:

Example: consider a vector field which is irrotational and solenoidal:

2 0∇ ϕ = Laplace equation

0F∇× = F⇒ = −∇ϕ

0F∇⋅ = ( ) 0⇒ ∇⋅ −∇ϕ = 2 0⇒ ∇ ϕ =

Practical case: electrostatic field in a region without charges

Page 39: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 77

Chapter 1: Index (II)

Mathematic toolsCylindrical and Spherical coordinates The “del” operatorThe Dirac delta function

Special types of fields:Curl-less or Irrotational fieldsDivergence-less or Solenoidal fieldsHarmonic fields

The Helmholtz Theorem

Dpto. Física Aplicada III - Univ. de Sevilla 78

The Helmholtz Theorem

Given we can calculate: and

Given and Is it possible to get ?

Let:Scalar sources

Vector sources

If this is insufficient information: many solutions

If this is too much information: no solution

F∇⋅ F∇×F

FF∇⋅ F∇×

F∇⋅ = ρF c∇× = ( 0)c∇⋅ =

Page 40: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 79

Helmholtz theorem: statement

The system with defined in all the space with:

has a single solution given by:

with:

;F∇⋅ = ρ F c∇× = 0c∇⋅ =

2 2lim ( ) 0 ; lim ( ) 0 ; lim ( ) 0r r r

r r r c r F r→∞ →∞ →∞

ρ = = =

F A= −∇ϕ+∇×

1 1

1

1 ( )( ) y

4 esp

r dr

r r

ρ τϕ =

π −∫ 1 1

1

1 ( )( )

4 esp

c r dA r

r r

τ=

π −∫Scalar potential Vector potential

Field pointSource point

Dpto. Física Aplicada III - Univ. de Sevilla 80

Chapter 1: Index (I)

Introduction

Scalar and Vector Fields

Integral CalculusCirculation

Flux

Differential CalculusThe Gradient

The Divergence

The Curl

Page 41: Chapter 1: Vector Analysis - Universidad de Sevilla · Curso 2007/2008 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Bernal Méndez 1 Chapter 1: Vector Analysis Campos Electromagnéticos

Dpto. Física Aplicada III - Univ. de Sevilla 81

Chapter 1: Index (II)

Mathematic toolsCylindrical and Spherical coordinates The “del” operatorThe Dirac delta function

Special types of fields:Curl-less or Irrotational fieldsDivergence-less or Solenoidal fieldsHarmonic fields

The Helmholtz Theorem