chapter 1 - limits.pdf

Upload: redzuan-kamarudin

Post on 03-Apr-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Chapter 1 - Limits.pdf

    1/11

    SFM 1002 Mathematics II

    Chapter 1 Limits

    1

    CHAPTER 1

    LIMITS

    ________________________________________________________________________

    At the end of chapter, the students are able to

    find the limit of function )(xf , whetherx approaches a real number or (C1) trace the limit properties to solve the limit problems (P3, C3) use the concept of limit to determine continuity of the function (C3)

    ________________________________________________________________________

    1.1 Introduction to Limits

    Definition 1.1: Letx be any real number variable, and let c be a fixed real number. To say thatxapproaches c

    means thatx can take on any value which is arbitrarily close to c.

    Notation: x approaches c is written as cx . If cx , then the distance between x and c

    differs by arbitrarily small amount which can be denoted by a positive number such that

  • 7/28/2019 Chapter 1 - Limits.pdf

    2/11

    SFM 1002 Mathematics II

    Chapter 1 Limits

    2

    Example 1.2(a): Let () = 29

    3and 3. As we known, () is defined for all except

    = 3. To find the limit of() when approaches 3, we choose any number close to 3.

    2 2.5 2.9 2.99 2.999

    () 5 5.5 5.9 5.99 5.999

    or

    4 3.5 3.1 3.01 3.001 3.0001

    () 7 6.5 6.1 6.01 6.001 6.0001

    Figure 2 : Table ofx and ()

    From the table above we can observe that asx approaches 3, () will approach 6. If we choose

    x close enough to 3, thenf will be nearer to 6. We conclude that 6 is the limit off asx

    approaches 3.

    The above result can be written as follows,

    lim3

    2 9

    3= 6.

    Example 1.2(b): Let5

    125)(

    3

    =

    x

    xxf and 5. Find the limit of )(xf when approaches 5.

  • 7/28/2019 Chapter 1 - Limits.pdf

    3/11

    SFM 1002 Mathematics II

    Chapter 1 Limits

    3

    Definition 1.3: The limit of() when approaches from right side can be written as

    lim +

    ().

    Definition 1.4: The limit of() when approaches from left side can be written as

    lim ().

    Proposition 1.1: If Lxfcx

    =+

    )(lim and Lxfcx

    =

    )(lim , then Lxfcx

    =

    )(lim .

    Example 1.3(a): Find 12lim3

    +

    xx

    .

    Solution:

    Step 1: 712lim3

    =++

    xx

    ;

    Step 2: 712lim3

    =+

    xx

    .

    Conclusion: Because of 12lim12lim33

    +=++

    xxxx

    , thus 712lim3

    =+

    xx

    .

    Example 1.3(b): Find 1lim2

    5+

    x

    x.

    Proposition 1.2: If )(lim)(lim xfxfcxcx+

    , then )(lim xfcx

    does not exist.

    Method:

    To find the limit of the function )(xf , we need to the follow:

    Step 1: Find the value of )(lim xfcx+

    Step 2: Find the value of )(lim xfcx

    Step 3: Make a conclusion

    If )(lim)(lim xfxfcxcx +

    = , thus )(lim)(lim)(lim xfxfxfcxcxcx+

    ==

    If )(lim)(lim xfxfcxcx +

    , thus )(lim xfcx

    does not exist.

    Note: The function )(xf and the number c will be given.

  • 7/28/2019 Chapter 1 - Limits.pdf

    4/11

    SFM 1002 Mathematics II

    Chapter 1 Limits

    4

    Example 1.4(a): Find )(lim2

    xfx

    , where

  • 7/28/2019 Chapter 1 - Limits.pdf

    5/11

    SFM 1002 Mathematics II

    Chapter 1 Limits

    5

    Example 1.5(a): Let 2=n , 5=k , 3=c ,3

    9)(

    2

    =

    x

    xxf , and 12)( += xxg . Verify the limit

    properties.

    Solution:

    Step 1: 639lim)(lim

    2

    33 == xxxf

    xxand 712lim)(lim

    33 =+= xxg xx ;

    Step 2:

    1. 55limlim3

    == xcx

    k ;

    2. 3065)(lim5)(lim)(lim3

    ====

    xfxfkxkfxcxcx

    ;

    3. [ ] 1376)(lim)(lim)(lim)(lim)()(lim33

    =+=+=+=+

    xgxfxgxfxgxfxxcxcxcx

    ;

    4.

    [ ] 176)(lim)(lim)(lim)(lim)()(lim 33====

    xgxfxgxfxgxf xxcxcxcx ;

    5. [ ] 4276)(lim)(lim)(lim)(lim)()(lim33

    ====

    xgxfxgxfxgxfxxcxcxcx

    ;

    6.7

    6

    )(lim

    )(lim

    )(lim

    )(lim

    )(

    )(lim

    3

    3 ===

    xg

    xf

    xg

    xf

    xg

    xf

    x

    x

    cx

    cx

    cx;

    7. [ ] 366)(lim)(lim)(lim 223

    ====

    xfxfxfx

    n

    cx

    n

    cx;

    8. 223

    6)(lim)(lim)(lim ===

    xfxfxfx

    ncx

    n

    cx.

    Example 1.5(b): Let 3=n , 7=k , 5=c ,5

    125)(

    3

    =

    x

    xxf , and 1)( 2 += xxg . Verify the limit

    properties.

  • 7/28/2019 Chapter 1 - Limits.pdf

    6/11

    SFM 1002 Mathematics II

    Chapter 1 Limits

    6

    1.2 Limit involve Infinity

    Definition 1.5: If the function )(xf increases without limit when x approaches c , then we

    write +=

    )(lim xfcx

    .

    )(xf

    + +

    x

    c

    Figure 3: Limit )(xf approach +

    Definition 1.6: If the function )(xf decreases without limit when x approaches c , then we

    write =

    )(lim xfcx

    .

    )(xf

    c x

    Figure 4: Limit )(xf approach

    Notation: +=

    )(lim xfcx

    or =

    )(lim xfcx

    does not mean that limit does not exist. This is

    because + and is not real number.

    Example 1.6(a): Find3

    1lim

    3 xx.

  • 7/28/2019 Chapter 1 - Limits.pdf

    7/11

    SFM 1002 Mathematics II

    Chapter 1 Limits

    7

    Solution:

    Step 1: +=+ 3

    1lim

    3 xx;

    Step 2: +=

    3

    1lim

    3

    xx

    .

    Conclusion: Because of3

    1lim

    3

    1lim

    33 =

    + xx xx, thus +=

    3

    1lim

    3 xx.

    Example 1.6(b): Find1

    1lim

    1 xx.

    Definition 1.7: If the limit of the function )(xf as x approaches a very large value, like + and then we write )(lim xf

    x +and )(lim xf

    x .

    Proposition 1.3: 01

    lim =+ nx x

    for any number of n .

    Method:

    To find the limit of the function )(xf as x approaches + or , we need tothe follow:

    Step 1: Suppose that)(

    )()(

    xq

    xpxf = , then determine the highest order of

    x for functions )(xp and )(xq , let say is n ;

    Step 2: Both functions )(xp and )(xq divided by nx ;

    Step 3: Using the limit properties to solve the limit of function )(xf

  • 7/28/2019 Chapter 1 - Limits.pdf

    8/11

    SFM 1002 Mathematics II

    Chapter 1 Limits

    8

    Example 1.7(a): Find52

    34lim

    +

    ++ x

    x

    x

    Solution :

    22

    4

    0.52

    0.34

    (3))&(2)1.1Theorem(1

    lim52lim

    1lim34lim

    (6))1.1Theorem(5

    2lim

    34lim

    )bydivide(52

    34

    lim52

    34lim

    ==+

    +=

    +

    +

    =

    +

    +

    =

    +

    +=

    +

    +

    ++

    ++

    +

    +

    ++

    x

    x

    x

    x

    x

    x

    x

    x

    x

    xx

    xx

    x

    x

    xx

    Example 1.7(b): Find14

    52lim

    3

    2

    + x

    xx

    x

    Example 1.7(c): Find52

    43lim

    2

    ++ x

    x

    x

  • 7/28/2019 Chapter 1 - Limits.pdf

    9/11

    SFM 1002 Mathematics II

    Chapter 1 Limits

    9

    1.3 Continuity

    Definition 1.8: A function )(xf is said to be continuous at cx = if )(xf satisfy the following

    three conditions.

    (a) )(cf is defined (exist);(b)exist )(lim xf

    cx, that mean )(lim)(lim xfxf

    cxcx+

    = ;

    (c) )()(lim cfxfcx

    =

    .

    Example 1.8(a): Determine whether12

    34)(

    2

    +

    +=

    x

    xxf is continuous at 2=x .

    Solution:

    Step 1:5

    19

    1)2(2

    3)2(4)2(

    2

    =+

    +=f

    Thus, )(cf is defined.

    Step 2:5

    19

    12

    34lim)(lim

    2

    2=

    +

    +=

    ++ x

    xxf

    xcx

    5

    19

    12

    34lim)(lim

    2

    2=

    +

    +=

    x

    xxf

    xcx

    Thus, exist )(lim xfcx

    , because )(lim)(lim xfxfcxcx+

    =

    Step 3: )2()(lim2

    fxfx

    =

    Conclusion: )(cf is continuous at 2=x .

    Method:

    To determine the function )(xf is continuous at cx = , we need to the follow:

    Step 1: Find )(cf , the value of )(cf must be a real number;

    Step 2: Find the values of )(lim xfcx+

    and )(lim xfcx

    , if they are equal, then

    exist )(lim xfcx

    ;

    Step 3: Check )(cf is equal to )(lim xfcx

    or not.

    Conclusion: If all conditions are fulfill, then function )(xf is continuous at

    cx = ; if one of them cannot fulfill, then function )(xf is not

    continuous at cx = .

  • 7/28/2019 Chapter 1 - Limits.pdf

    10/11

    SFM 1002 Mathematics II

    Chapter 1 Limits

    10

    Example 1.8(b): Determine whether3

    13)(

    2

    ++=

    x

    xxxf is continuous at 3=x .

    Exercise 1:

    1. Evaluate the following limits:

    a) )11392(lim235

    2+

    xxx

    xb)

    695

    73lim

    2

    3

    1 ++

    ++ zz

    zz

    x

    c)3 2

    2 23lim xxx d) )73(lim2

    2 + xxx

    e)4

    2lim

    4

    x

    x

    xf)

    2

    6lim

    2

    2

    + x

    xx

    x

    g) )45(lim33

    0+

    tt

    xh) )72)(5(lim

    3+

    xx

    x

    i)1

    3lim

    2

    1 +

    + z

    zz

    xj)

    753

    103lim

    2

    2

    3 +

    + xx

    xx

    x

    k)14x19x4x

    6x11x6xlim

    23

    23

    1x ++

    +

    l)

    2x

    10x7xlim

    2

    2x +

    ++

    m)1x

    2xxlim

    2

    2

    1x

    +

    n)21x4x

    51x14xlim

    2

    2

    3x

    o)6uu

    x2u2uxulim

    2

    2

    2u

    +

    p)

    3x2x

    uxuxxlim

    2

    2

    1x +

    +

    q)22

    22

    x x

    4x6x2lim

    +

    r)

    4w4w

    )6ww)(2w(lim

    2

    2

    2w ++

    +

  • 7/28/2019 Chapter 1 - Limits.pdf

    11/11

    SFM 1002 Mathematics II

    Chapter 1 Limits

    11

    2. Find the following limits:

    a)5x

    xlimx

    b))x3)(5x(

    xlim

    2

    x

    c)3

    2

    x x5

    xlim

    d)

    15x8x

    xlim

    2

    2

    x +

    e)2

    2

    t t7

    tlim

    f)

    23

    3

    x x100x2

    xlim

    g)5t

    tlimt

    h)45

    5

    5lim

    3. Determine the function )(xf is continuous or not

    a) 1)( 2 ++= xxxf at 3=x b)1

    4)(

    2

    +

    =

    x

    xxf at 2=x

    c)1

    22)(

    3

    +=

    x

    xxxf at 1=x d)

    1

    22)(

    3

    +

    ++=

    x

    xxxf at 1=x

    e)4

    16)(

    2

    =

    x

    xxf at 4=x f)

    1

    43)(

    2

    +

    =

    x

    xxxf at 4=x

    g)

    =

    +=

    0for,0

    0for,2)(

    x

    xxxf at 0=x i)