chapter - 1 :...

24
189 CHAPTER - 1 : BIBLIOGRAPHY [1] P. J. Ward, H. V. Atkinson, P. R. G. Anderson, L. G. Elias, B. Garcia, L. Kahlen and J-M. Rodriguez-Ibabe, “Semi-solid processing of novel MMCs based on hypereutectic aluminium-silicon alloysActa Materialia, Vol. 44, No. 5, 1996, pp.1717-1727. [2] C. M. Ward-Close, L. Chandrasekaran, J. G. Robertson, S. P. Godfrey and D. P. Murgatroyde, “Advances in the fabrication of titanium metal matrix composite”, Materials Science and Engineering A, Vol. 263, No. 2, 1999, pp. 314-318. [3] Yoshiaki Shimizu, Toshiyasu Nishimura and Iwao Matsushima, “Corrosion resistance of Al-based metal matrix composites”, Materials Science and Engineering A, Vol. 198, No.1-2, 1995, pp.113-118. [4] C. Chen and F. Mansfeld, “Corrosion protection of an Al 6092/SiC p metal matrix composite”, Journal Corrosion Science, Vol.39, No.6, 1997, pp.1075-1082. [5] D. J. Blackwood, A. W. C. Chua, K. H. W. Seah, R. Thampuran and S. H. Teoh , “Corrosion behaviour of porous titanium–graphite composites designed for surgical implants”, Corrosion Science, Vol. 42, No.3, 2000, pp. 481-503. [6] F. E. Kennedy, A. C. Balbahadur and D. S. Lashmore “The friction and wear of Cu- based silicon carbide particulate metal matrix composites for brake applications”, Wear, Vol. 203-204, 1997, pp.715-721. [7] H. Akbulut, M. Durman and F. Yilmaz, “Dry wear and friction properties of -Al 2 O 3 short fiber reinforced Al-Si (LM 13) alloy metal matrix composites”, Wear, Vol. 215, No.1-2, 1998, pp.170-179. [8] Hans Berns, “Comparison of wear resistant MMC and white cast iron”, Wear,

Upload: others

Post on 20-Mar-2020

22 views

Category:

Documents


0 download

TRANSCRIPT

189

CHAPTER - 1 : BIBLIOGRAPHY

[1] P. J. Ward, H. V. Atkinson, P. R. G. Anderson, L. G. Elias, B. Garcia, L. Kahlen and

J-M. Rodriguez-Ibabe, “Semi-solid processing of novel MMCs based on

hypereutectic aluminium-silicon alloys” Acta Materialia, Vol. 44, No. 5, 1996,

pp.1717-1727.

[2] C. M. Ward-Close, L. Chandrasekaran, J. G. Robertson, S. P. Godfrey and D. P.

Murgatroyde, “Advances in the fabrication of titanium metal matrix composite”,

Materials Science and Engineering A, Vol. 263, No. 2, 1999, pp. 314-318.

[3] Yoshiaki Shimizu, Toshiyasu Nishimura and Iwao Matsushima, “Corrosion

resistance of Al-based metal matrix composites”, Materials Science and Engineering

A, Vol. 198, No.1-2, 1995, pp.113-118.

[4] C. Chen and F. Mansfeld, “Corrosion protection of an Al 6092/SiCp metal matrix

composite”, Journal Corrosion Science, Vol.39, No.6, 1997, pp.1075-1082.

[5] D. J. Blackwood, A. W. C. Chua, K. H. W. Seah, R. Thampuran and S. H. Teoh ,

“Corrosion behaviour of porous titanium–graphite composites designed for surgical

implants”, Corrosion Science, Vol. 42, No.3, 2000, pp. 481-503.

[6] F. E. Kennedy, A. C. Balbahadur and D. S. Lashmore “The friction and wear of Cu-

based silicon carbide particulate metal matrix composites for brake applications”,

Wear, Vol. 203-204, 1997, pp.715-721.

[7] H. Akbulut, M. Durman and F. Yilmaz, “Dry wear and friction properties of -Al2O3

short fiber reinforced Al-Si (LM 13) alloy metal matrix composites”, Wear, Vol.

215, No.1-2, 1998, pp.170-179.

[8] Hans Berns, “Comparison of wear resistant MMC and white cast iron”, Wear,

190

Vol.254, No.1-2, 2003, pp.47-54.

[9] H. Z. Wang, S. Q. Wu and S. C. Tjong, “Mechanical and wear behavior of an Al/Si

alloy metal-matrix composite reinforced with aluminosilicate fiber”, Composites

Science and Technology, Vol.56, No. 11, 1996, pp.1261-1270.

[10] L. Weber, J. Dorn and A. Mortensen “On the electrical conductivity of metal matrix

composites containing high volume fractions of non-conducting inclusions”, Acta

Materialia, Vol. 51, No.11, 2003, pp.3199-3211.

[11] J. Koráb, P. Štefánik, Š. Kavecký, P. Šebo and G. Korb, “Thermal conductivity of

unidirectional copper matrix carbon fibre composites”, Composites Part A: Applied

Science and Manufacturing, Vol. 33, No.4, 2002, pp.577-581.

[12] J. LLorca, “High temperature fatigue of discontinuously-reinforced metal–matrix

composites”, International Journal of Fatigue, Vol.24, No. 2-4, 2002, pp.233-240.

[13] Z. Y. Ma and S. C. Tjong, “The high-temperature creep behaviour of 2124

aluminium alloys with and without particulate and SiC-whisker reinforcement”,

Composites Science and Technology, Vol.59, No.5, 1999, pp. 737-747.

[14] S. C. Tjong and Z. Y. Ma, “The high-temperature creep behaviour of aluminium-

matrix composites reinforced with SiC, Al2O3 and TiB2 particles”, Composites

Science and Technology, Vol.57, No.6, 1997, pp.697-702.

[15] Everett R.K., Arsenault R.J., “Metal Matrix composites: processing and interfaces”,

Academic press, 1991

[16] Everett R.K., Arsenault R.J., “Metal Matrix composites: mechanism and properties”,

Academic press, 1991

[17] Zhonghao Jiang, Jianshe Lian, Dezhuang Yang, Shangli Dong, “An analytical study

191

of the influence of thermal residual stresses on the elastic and yield behaviors of

short fiber-reinforced metal matrix composites ” Materials Science and Engineering,

A248, 1998, pp.256–275.

[18] T.S. Arjun, P. Thakur, H. Vaidya, K. Singh, D.K. Dwivedi, Sliding wear and friction

behaviour of Al–18% Si–0.5% Mg alloy, J. Mater. Process. Technol. 152 (2004)

323–328.

[19] M. Acilar, F. Gul, Effect of the applied load, sliding distance and oxidation on the

dry sliding wear behaviour of Al–10Si/SiCp composites produced by vacuum

infiltration technique, Mater. Des. 25 (2004) 209–217.

[20] A.K. Prasada Rao, Karabi Das, B.S. Murthy, M. Chakraborty, Effect of grain

refinement on wear properties of Al and Al–7Si alloy, Wear 257 (2004) 148–153.

[21] K.G. Basavakumar, P.G. Mukunda,M.Chakraborty, Influence of grain refinement

and modification on dry sliding wear behaviour of Al–7Si and Al–7Si–2.5Cu cast

alloys, J. Mater. Process. Technol. 186 (2007) 236–245.

[22] A.K. Dey, P. Poddar, K.K. Singh, K.L. Sahoo, Mechanical and wear properties of

rheocast and conventional gravity die cast A356 alloy, Mater. Sci. Eng. A 435/436

(2006) 521–529.

[23] D. Casellas, A. Beltran, J.M. Prado, A. Larson, A. Romero, Microstructural effects

on the dry wear resistance of powder metallurgy Al–Si alloys, Wear 257 (2004)

730–739.

[24] K.V. Ojha, A. Tomar, D. Singh, G.C. Kaushal, Shape, microstructure and wear of

spray formed hypoeutectic Al–Si alloys, Mater. Sci. Eng. A 487 (2008) 591–596.

[25] G. Meijer, F. Ellyin, and Z. Xia, “Aspects of residual thermal stress/strain in particle

192

reinforced metal matrix composites”, Composites: Part B, Vol.31, 2000, pp.29–37.

[26] G.K. Hu, G.J. Weng, “Influence of thermal residual stresses on the composite

macroscopic behavior”, Mechanics of Materials, Vol.27, 1998, pp.229–240.

[27] Kurmura T. and King J.E., “Residual stress effect on crack initiation and growth in

Al/SiC MMCs,” Proceeding of the Fourth European conference on residual

stresses, June, 4-6,1996, Vol. 1, pp.499-508.

[28] S. Mukherjee, C. R. Ananth, and N. Chandra, “Effect of residual stresses on the

interfacial fracture behavior of metal-matrix composites”, Composites Science and

Technology, Vol.57, 1999, pp.1501-1512.

[29] Lu. J., Miège, B., Flavenot, J.F., and Thery, S., “Study on the effect of surface

treatment on the residual stress gradient in silicon carbide(SiC) reinforeced

aluminium metal matrix composites”, Journal of Composites Technology and

Research, JCTRER, Vol.12, 1990

[30] J. Li, J. Lu, M. Perrin, M. Ceretti, and A. Lodini, “Study of residual stress in cold-

rolled 7075 Al-SiC whisker-reinfored composites by x-ray and neutron diffraction”.

Journal of Composites Technology & Research. Vol.17, No.3, 1995, pp.194-198.

[31] J. Li, J. Lu, M. Perrin, M. Ceretti, and A. Lodini, “Study of residual stress in a metal

matrix composite by neutron diffraction and X-ray diffraction method”, Proceedings

of the SEM spring conference, SEM, Grand rapids, June 1995, pp.745-750.

[32] C.Oman Nonga, J. Lu, H.P.Lieurade, J.F. Flavenot, and C, Bathias, “Grenaillage de

précontrainte étude paramétrique dans le cas de composites a matrice metallique Al-

SiCw”, Materiaux composites à matrice métallique, Oct. 1993, pp.49-56.

[33] C.Oman Nonga, J. Lu, H.P.Lieurade, and J.F. Flavenot, “The Influence of residual

193

stresses and surface finish on the fatigue resistance of metal matrix composites”,

ICRS-5, June, 16-18, 1997, Linkoping, Sweden, pp.95-100.

[34] C.Oman Nonga, J. Lu, H.P.Lieurade, J.F. Flavenot, and C, Bathias, “Study of

residual stress produced in metal matrix composite Al-SiCw by shot peening”, The

5th

international conference on shot peening, 13-17, September, 1993, pp.290-299.

[35] C.Oman Nonga, J. Lu, H.P. Lieurade, and J.F. Flavenot, “ Residual stresses induced

by different manufacturing techniques and their effect on the fatigue behaviour of

the metal matrix composites Al2 O3”, Proceedings of the SEM spring conference,

SEM, Grand rapids, June 1995, pp.751-757.

[36] C.Oman Nonga, “Influence combinée des contraintes residuelles et de l‟état de

surface sur le comportement monotone et cyclique des matériaux composites a

matrice métallique”, PhD thesis, 1994

[37] Eric Hanus, and Torsten Ericsson, “Effect of pressure rolling on the residual stress

state of a particulate-reinforced metal matrix composite”, Material Science and

Engineering, A190, 1995, pp.155-163.

[38] Eric Hanus, and Torsten Ericsson, “Influence of fout-point bending fatigue on the

residual stress state of a pressure-rolled, particulate-reinforced methal matrix

composite”, Material Science and Engineering, A194, 1995, pp.147-156.

[39] L. Liao, D. Lai, and J. Lu, “Influence of surface treatment on the fatigue life of a

SiCp/Al composite”, Mat-Tec 96, pp.149-156.

[40] Tohriyama S., Kumano M., and Hisamatsu S., “Influence of peening in the fatigue

life of SiC reinforced aluminum”, Proceeding of the Fourth International conference

on shot peening, pp.307-316.

194

[41] Zong BY, Derby B. Characterization of microstructural damage during plastic strain

of a particulate-reinforced metal matrix composite at elevated temperature. J Mater

Sci 1996;31:297–303.

[42] D. Retraint and J. Lu, “Study of residual stress distribution by the combination of

three techniques in an aluminium based MMC”, Materials Science Forum,

Vols.347-349, 2000, pp.498-503.

[43] B. Reynier, P. Handmar, and J.M. Sprauel, “Macro-residual-stresses induced by the

shot peening of heterogeneous materials: Evaluation by X-ray diffraction”, ICRS-5,

June 16-18, 1997, Linkoping, Sweden, pp.101-106.

[44] Kim WJ, Lee YS, Moon SJ, Hong SH. High strain rate superplasticity in powder

metallurgy aluminium alloy 6061 + 20 vol% SiCp composite with relatively large

particle size. Mater Sci Technol 2000;16(6):675–80.

[45] Couturier L, Lieurade H P, Flavenot J F, and Lu Jian, “Fatigue strength behaviour of

metal matrix composites”, Mecanique Industrielle et Materiaux, 1997, Vol.50, No.3,

pp.116-121.

[46] Cook C.R., Yun D.L. and Hunt W.H., “System optimization for squeeze cast

composites”, International symposium on advances in cast reinforced metal matrix

composites, 1988, Chicago, pp.195-204.

[47] B.W. Chua, L. Lu, M.O. Lai, “Influence of SiC particles on mechanical properties of

Mg based composite ” Composite Structures, Vol.47, 1999, pp.595-601.

[48] William C. Harrigan Jr., “Commercial processing of metal matrix composites”,

Materials Science and Engineering, A244, 1998, pp.75–79.

[49] T. Weissgarber, B.F. Kieback, Mat. Sci. Forum 343–346 (2000) 275

195

[50] B.Q. Han, K.C. Chan, “Superplastic deformation mechanisms of particulate

reinforced aluminium alloy matrix composites”, Materials Science and Engineering,

A212, 1996, pp.256-264.

CHAPTER - 2 : BIBLIOGRAPHY

[1] S.F. Moustafa, Z. Abdel-Hamid, and A.M. Abd-Elhay, “Copper matrix SiC and

Al2O3 particulate composites by powder metallurgy technique”, Materials

Letters,Vol. 53, 2002, pp.244–249.

[2] Kuen-Ming Shu, G.C. Tu, “The microstructure and the thermal expansion

characteristics of Cu/SiCp composites”, Materials Science and Engineering, A00,

2002, pp.1-12.

[3] Osman Yilmaz, Mustafa Aksoy, “The effects of production parameters on the

electrical receptivity of Cu/M7C3-M23C6 MMCs”, Journal of Materials Processing

Technology, 110, 2001, pp.177-181.

[4] J. H. Tweed, “Manufacture of 2014 aluminium reinforced with SiC particulate by

vacuum hot pressing”, Materials Science and Engineering A, Vol.135, No. 30, 1991,

pp.73-76.

[5] N. Popovska, H. Gerhard, D. Wurm, S. Poscher, G. Emig and R. F. Singer,

“Chemical vapor deposition of titanium nitride on carbon fibres as a protective layer

in metal matrix composites”, Materials and Design, Vol.18, No.4-6, 1997, pp. 239-

242.

[6] J. P. A. Löfvander, F. -C Dary , U. Ruschewitz and C. G. Levi, “Evolution of a

metastable FCC solid solution during sputter deposition of Ti-Al-B alloys”,

Materials Science and Engineering A, Vol.202, No.1-2, 1995, pp.188-192.

196

[7] S. Skolianos, “Mechanical behavior of cast SiCp-reinforced Al-4.5%Cu-1.5%Mg

alloy”, Materials Science and Engineering A, Vol.210, No.1-2, pp. 76-82.

[8] G. Kang C. and H. Seo Y, “The influence of fabrication parameters on the

deformation behaviour of the preform of metal-matrix composites during the

squeeze-casting processes”, Journal of Materials Processing Technology, Vol.61,

No.3, 1996, pp.241-249.

[9] J. Vicens, M. Chédru and J. L. Chermant, “New Al–AlN composites fabricated by

squeeze casting: interfacial phenomena”, Composites Part A: Applied Science and

Manufacturing, Vol.33, No.10, 2002, pp. 1421-1423.

[10] Afonso CRM, Kiminami CS, Bolfarini C, et al. “Microstructural characterizatin of

spray deposited Al-Y-Ni-Co-Zr alloy and Al-Y-Ni-Co-Zr+SiCp metal matrix

composite” Material Science Forum, Vol.403, 2002, pp.95-100.

[11] J. T. Lin, D. Bhattacharyya and C. Lane, “Machinability of a silicon carbide

reinforced aluminium metal matrix composite”, Wear, Vol.181-183, Part 2 , 1995,

pp.883-888.

[12] Ü. Cöcenand and K. Önel, “The production of Al-Si alloy-SiCp composites via

compocasting: Some microstructural aspects”, Materials Science and Engineering A,

Vol.221, No.1-2, 1996, pp.187-191.

[13] J.W. Kaczmar, K. Pietrzak, and W. Wlosiński, “The production and application of

metal matrix composite materials”, Journal of Materials Processing Technology,

Vol.106, 2000, pp.58-67.

[14] S.C. Tjong, Z.Y. Ma, “Microstructural and mechanical characteristics of in situ

metal matrix composites”, Materials Science and Engineering, Vol.29, 2000, pp.49-

197

113.

[15] Z. Y. Ma, S. C. Tjong and L. Gen, “In-situ Ti-TiB metal–matrix composite prepared

by a reactive pressing process”, Scripta Materialia, Vol.42, No.4, 2000, pp.367-373.

[16] C. Raghunath, M. S. Bhat and P. K. Rohatgi, “In situ technique for synthesizing Fe-

TiC composites”, Scripta Metallurgica et Materialia, Vol.32, No.4, 1995, pp.577-

582.

[17] Schajer G S. “Measurement of non-uniform residual stresses using the hole drilling

method, part I-stresses calculation procedures”, J. Eng. Mater. Technol. Vol.110,

No.4, 1988, pp.338-343.

[18] G. Bartos, K. Xia, in: Proceedings of the Fourth International Conference on Semi

Solid Processing of Alloys and Composites, University of Sheffield, UK, 1996, p.

290.

[19] M.P. Kenney, J.A. Courtois, et al., Metal Handbooks: Casting, 9th

ed., vol. 15, ASM

International, Metals Park, OH, USA, 1998, p. 331.

[20] D. Brabazon, D.J. Browne, A.J. Carr, J.C. Healy, in: Proceedings of the Fifth

International Conference on Semi-Solid Processing of Alloys and Composites, 2000,

p. 21

[21] T. Witulski, A. Winkelmann, G. Hirt, in: Proceedings of the Fourth International

Conference on Semi-Solid Processing of Alloys and Composites, University of

Sheffield, UK, 1996, p. 242.

[22] W. Wang, F. Ajersch, in: Proceedings of the International Symposium on Advances

in Production and Fabrication of Light Metals and MMC, Alta., Edmonton, Canada,

1992, p. 629.

198

[23] Hashim J, Looney L, Hashmi MSJ. Particle distribution in cast metal matrix

composites – Part I. J Mater Process Technol 2002;123(2):251–7.

[24] Prangnell PB, Barnes SJ, Withers PJ, Roberts SM. The effect of particle distribution

on damage formation in particulate reinforced metal matrix composites deformed in

compression. Mater Sci Eng A 1996;220(1–2):41–56.

[25] Yotte S, Breysse D, Riss J, Ghosh S. Cluster characterisation in a metal matrix

composite. Mater Charact 2001;46(2–3):211–9.

[26] Doel TJA, Bowen P. Tensile properties of particulate reinforced metal matrix

composites. Composites Part A 1996;27 A:655–65.

[27] Bindumadhavan PN, Chia TK, Chandrasekaran M, Wah Heng Keng, Lam Loh Nee,

Prabhakar O. Effect of particle-porosity clusters on tribological behavior of cast

aluminum alloy A356- SiCp metal matrix composites. Mater Sci Eng A 2001;315(1–

2): 217–26.

[28] Hong SJ, Kim HM, Huh D, Suryanarayana C, Chun BS. Effect of clustering on the

mechanical properties of SiC particulate reinforced aluminium alloy 2024 metal

matrix composites. Mater Sci Eng 2003; A347:198–204.

[29] Llorca J. Fatigue of particle- and whisker-reinforced metal-matrix composites. Progr

Mater Sci 2002; 47(3):283–353.

[30] Manoharan M, Lewandowski JJ. Crack initiation and growth toughness of an

aluminum metal-matrix composite. Acta Metall et Mat 1990;38(3):489–96.

[31] Vasudevan AK, Sandananda K. Fatigue crack growth in metal matrix composites.

Int J Fatigue 1994;16(3):227–332.

[32] Mason JJ, Ritchie RO. Fatigue crack growth resistance in SiC particulate and

199

whisker reinforced P/M 2124 aluminum matrix composites. Mater Sci Eng A

1997;231(1–2):170–82.

[33] Vaidya AR, Lewandowski JJ. Effects of SiCp size and Vol. fraction on the high

cycle fatigue behavior of AZ91D magnesium alloy composites. Mater Sci Eng A

1996;220(1–2):85–92.

[34] Klimowicz TF. The large scale commercialisation of aluminiummatrix composites.

JOM 1994;46(11):49–53.

[35] Ferry M, Munroe PR. Hot working behaviour of Al-Al2O3 particulate reinforced

metal matrix composite. Mater Sci Technol 1995;11(7):633–40.

[36] Zhi-guo YANG, Shi-guo LONG, Damage analysis for particle reinforced metal

matrix composite by ultrasonic method, Transactions of Nonferrous Metals Society

of China, Volume 16, Supplement 2, June 2006, Pages s652-s655

[37] A.M. Samuel, H. Liu, F.H. Samuel, On the castability of Al-Si/SiC particle-

reinforced metal-matrix composites: Factors affecting fluidity and soundness,

Composites Science and Technology, Volume 49, Issue 1, 1993, Pages 1-12

[38] Radhakrishna Bhat BV, Mahajan YR, Roshan HMd, Prasad YVRK. Processing map

for hot working of 6061 Al-10vol% Al2O3 metal matrix composite. Mater Sci

Technol 1995;11(2):167–72.

[39] Radhakrishna Bhat BV, Mahajan YR, Prasad YVRK. Effect of volume fraction of

SiCp reinforcement on the processing maps for 2124 Al matrix composites. Metall

Mater Trans 2000;31A(3):629–39.

[40] Ferry M, Munroe PR. Microstructure and kinetics of recrystallisation of hot

deformed Al-nano Al2O3 particulate reinforced metal matrix composite. Mater Sci

200

Technol 1995;11(8):734–40.

[41] Xia X, Sakaris P, McQueen HJ. Hot deformation, dynamic recovery and

recrystallisation behaviour of aluminium 6061-SiCp composite. Mater Sci Technol

1994;10(6):487–96.

[42] Styles CM, Sinclair I, Gregson PJ, Flitcroft SM. Effect of microstructure on

mechanical properties of thermomechanically processed 2124-SiCp metal matrix

composite. Mater Sci Technol 1994;10(6):475–80.

[43] Zong BY, Derby B. Characterization of microstructural damage during plastic strain

of a particulate-reinforced metal matrix composite at elevated temperature. J Mater

Sci 1996;31:297–303.

[44] Kosar Iqbal, Shafi-Ullah Khan, Arshad Munir, Jang-Kyo Kim, Impact damage

resistance of CFRP with nanoclay-filled epoxy matrix,

Composites Science and Technology, Volume 69, Issues 11–12, September 2009,

Pages 1949-1957

[45] K. Majeed, M. Jawaid, A. Hassan, A. Abu Bakar, H.P.S. Abdul Khalil, A.A. Salema,

I. Inuwa, Potential materials for food packaging from nanoclay/natural fibres filled

hybrid composites, Materials & Design, Volume 46, April 2013, Pages 391-410

[46] Xu H, Palmiere EJ. Particulate fracture during the thermomechanical processing of

a SiCp/Al metal matrix composite. Mater Sci Forum 1996;217–222(2):1091–6.

[47] Vedani M, Pozzi M, Tuissi A. Microstructural and damage behaviour of Al-

6061/Al2O3P composites during hot and cold rolling. In: Proceedings of the

international conference Euromat 2001. Rimini: AIM publisher; 2001. p. 411.

[48] Kim WJ, Lee YS, Moon SJ, Hong SH. High strain rate superplasticity in powder

201

metallurgy aluminium alloy 6061 + 20 vol% SiCp composite with relatively large

particle size. Mater Sci Technol 2000;16(6):675–80.

[49] G.M. Zhao, Y.Q. Yang, W. Zhang, X. Luo, B. Huang, Y. Chen, Microstructure and

grain growth of the matrix of SiCf/Ti–6Al–4V composites prepared by the

consolidation of matrix-coated fibers in the β phase field

Composites Part B: Engineering, Volume 52, September 2013, Pages 155-163

[50] Ko B-C, Park G-S, Yoo Y-C. The effects of SiC particle volume fraction on the

microstructure and hot workability of SiCp/AA 2024 composites. J Mater Process

Technol 1999;95:210–5.

[51] Vedani M, Gariboldi E. Hot forming related properties of Al6061/Al2O3 and Al

2618/Al2O3 composites. In: Proceedings of the international Conference Limat

2001, Centre for Advanced Aerospace Materials, Pohang University of Science and

Technology, Pusan; 2001. pp. 375–80.

[52] Prasad YVRK, Sasidhara S. Hot working guide – a compendium of processing

maps. ASM International Publisher; 1997.

[53] Narayana Murty SVS, Nageswara Rao B. Instability map for hot working of 6061

Al-10 vol% Al2O3 metal matrix composite. J Phys D 1998;31:3306–11.

[54] Narayana Murty SVS, Nageswara Rao B, Kashyap BP. Processing map for hot

working of powder metallurgy 2124 Al-20vol.% SiCp metal matrix composite. Adv

Compos Lett 2000;9(2):147–51.

[55] L.C. Pathak, D. Bandyopadhay, S. Srikanth, S. Kumar, P. Ramahandraarao, Effect of

heating rates on synthesis of Al2O3–SiC composite by the self-propagating high-

temperature synthesis (SHS) technique, J. Am. Ceram. Soc. 84 (5) (2001) 915–920.

202

[56] C.Wei, P.F. Becher, Development of SiC whisker reinforced ceramics, Am. Ceram.

Soc. Bull. 64 (2) (1985) 298–304.

[57] T.N. Tieges, P.F. Becher, Sintered Al2O3–SiC whisker composites, Am. Ceram.

Soc. Bull. 66 (2) (1987) 339–342.

[58] J. Homeny, W.L. Vaughn, Silicon carbide whisker–alumina composites; effect of

whiskers surface treatment on fracture toughness, J. Am. Ceram. Soc. 73 (2) (1990)

394–402.

[59] J. Zhao, L.C. Steans, M.P. Harmer, H.M. Chan, G.A. Miller, R.F. Cook, Mechanical

behavior of alumina–silicon carbide nanocomposites, J. Am. Ceram. Soc. 76 (2)

(1993) 503–510.

[60] L.S. Aboyon, H.H. Nersisyan, S.L. Kharatyan, R. Orru, R. Saiu, G. Cao, D. Zedda,

Synthesis of alumina–silicon carbide composites by chemically activated self-

propagating reactions, Ceram. Int. 27 (2001) 163–169.

[61] Y.J. Lin, C.-P. Tsang, The effect of starting precursors on the carbothermal synthesis

of SiC powders, Ceram. Int. 29 (2003) 69– 75.

[62] A.K. Samanta, K.K. Dhargupta, S. Ghatak, Near net shape SiC–mullite composites

from a powder precursor prepared through an intermediate Al-hydroxyhydrogel,

Ceram. Int. 27 (2001) 195–199.

[63] T.J. Whalen, Processing and properties of structural silicon carbide, Ceram. Eng.

Sci. Proc. 7 (7–9) (1986) 1135–1143.

[64] G.C.Wei, P.F. Beher, Improvement in mechanical properties in SiC by addition of

TiC particle, J. Am. Ceram. Soc. 647 (8) (1984) 571–574.

[65] M.A. Janney, Microstructural development and mechanical properties of SiC and

203

SiC–TiC composites, Am. Ceram. Soc. Bull. 65 (2) (1986) 357–362.

[66] W.H. Gu, K.T. Faber, R.W. Steinbreech, Microcracking and R-curve behavior in

SiC–TiB2 composites, Acta Metall. Mater. 40 (11) (1992) 3121–3128.

[67] M.A. Janney, Mechanical properties and oxidation behaviour of a hot pressed SiC–

15% vol. TiB2 composites, Am. Ceram. Soc. Bull. 66 (2) (1987) 322–324.

[68] P. Chantikul, G.R. Anatis, B.R. Lawn, D.B. Marshall, A critical evaluation of

indentation technique for measuring fracture toughness. II. Strength method, J. Am.

Ceram. Soc. 64 (9) (1981) 539–543.

[69] M.I. Osendi, B.A. Bender, D. Lewis III, Microstructure and mechanical properties of

mullite–silicon carbide composites, J. Am. Ceram. Soc. 72 (6) (1989) 1049–1054.

[70] J.W. Milewski, Efficient use of whisker in the reinforcement of ceramics, Adv.

Ceram. Mater. 1 (1) (1986) 36–41

[71] S. Wu, N. Claussen, Fabrication and properties of low-shrinkage reaction-bonded

mullite, J. Am. Ceram. Soc. 74 (1991) 2460–2463.

[72] A.K. Samanta, K.K. Dhargupta, S. Ghatak, Retention of SiC during development of

SiC–MxSi yOz composites {M = Al, Zr, Mg} by reaction bonding in air, J. Eur.

Ceram. Soc. 20 (12) (2000) 889–1894

[73] McLeod, A.D. in „Proc. Int. Conf. on Fabrication of Particulates Reinforced Metal

Composites‟ (EdsJ. Masounave and F.G. Hamel), ASM International, Metals Park,

OH, 1990, pp. 17-21

CHAPTER - 3 : BIBLIOGRAPHY

[1] Torralba JM, da Costa CE, Velasco F. P/M aluminum matrix composites: an

overview. J Mater Process Technol 2003;133:203–6

204

[2] Zebarjad SM, Salladi SA. Dependency of physical and mechanical properties of

Mechanical alloyed Al–Al2O3 composite on milling time. Mater Des

2007;28:2113– 20.

[3] Wlodarczyk - Fligier A, Dobrazanski LA, Kremzer M, Adamiak M.

Manufacturing of aluminum matrix composite materials reinforced by Al2O3

particles. J Achi Mater Manuf Eng 2008;27:99–102.

[4] Prabhu B, Suryanarayana C, An L, Vaidyanathan R. Synthesis and

characterization of high volume fraction Al–Al2O3 nanocomposite powders by

high-energy milling. Mater Sci Eng A 2006;425:192–200.

[5] Lindroos VK, Talvitie MJ. Recent advances in metal matrix composites. J Mater

Process Technol 1995;53:273–84.

[6] Kaczmar JW, Pietrzak K, Wlosinski W. The production and application of metal

matrix composite materials. J Mater Process Technol 2000;106:58–67.

[7] Harrigan Jr WC. Commercial processing of metal matrix composites. Mater Sci

Eng A 1998;244:75–9.

[8] Chen XF, Baburai EG, Froes FH, Vassel A. Ti–6Al–4V/SiC composites by

Mechanical alloying and hot isostatic pressing. Proc Adv Part Mater Process

1997:185–92

[9] Urtiga Filho SL, Rodriguez R, Earthman JC, Lavernia EJ. Synthesis of diamond

reinforced Al–Mg nanocrystalline composite powder using ball milling. Mater

Sci Forum 2003;416–418:213–8.

[10] Groza JR. Sintering of nanocrystalline powders. Int J Powder Metallurgy

1999;35:59–66.

205

[11] Kang YC, Chan SL. Tensile properties of nanometric Al2O3 particulate

Reinforced aluminum matrix composites. Mater Chem Phys 2004;85: 438–43.

[12] Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci 2001;46:1184.

[13] Razavi Hesabi Z, Hafizpour HR, Simchi A. An investigation on the

compressibility of aluminum/nano-alumina composite powder prepared by

blending and mechanical milling. Mater Sci Eng A 2007;454:89–98.

[14] Park BG, Crosky AG, Hellier AK. Fracture toughness of microsphere Al2O3 Al

particulate metal matrix composites. Composites B 2008;39: 1270–9.

[15] Zebarjad SM, Sajjadi SA. Microstructure evaluation of Al–Al2O3 composite

produced by mechanical alloying method. Mater Des 2006;27:684–8.

[16] Razavi Hesabi Z, Simchi A, Seyed Reihani SM. Structural evolution during

Mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix

composites. Mater Sci Eng A 2006;428:159–68.

CHAPTER - 4 : BIBLIOGRAPHY

[1] Dmitrii Volkov-Bogorodsky, Anatolii Leontiev, Elias Aifantis, Eshelby’s inclusion

problem in the gradient theory of elasticity: Applications to composite materials,

International Journal of Engineering Science, Volume 49, Issue 12, December 2011,

Pages 1517-1525, Sergey Lurie,

[2] Xu Wang, Ernian Pan, Two-dimensional Eshelby’s problem for two imperfectly bonded

piezoelectric half-planes, International Journal of Solids and Structures, Volume 47,

Issue 1, 1 January 2010, Pages 148-160

[3] Wennan Zou, Qichang He, Mojia Huang, Quanshui Zheng, Eshelby's problem of non-

206

elliptical inclusions Journal of the Mechanics and Physics of Solids, Volume 58, Issue

3, March 2010, Pages 346-372.

CHAPTER - 5 : BIBLIOGRAPHY

[1] Boccaccini, A. R., Ponton, C. B., and Chawla, K. K. “Development and Healing of

Matrix Microcracks in Fibre Reinforced Glass Matrix Composites: Assessment by

Internal Friction,” Materials Science and Engineering, Vol. A241, 1998, pp. 141–

150.

CHAPTER - 6 : BIBLIOGRAPHY

[1] Wolfenden, A. and Kinzy, J. E., “Measurements of the Dynamic Young‟s Modulus

and Damping of a Chemical-Vapor Infiltrated SiC/SiC Composite,” Journal of

Materials Science Letters, Vol. 16, 1997, pp. 708–711.

[2] Wolfenden, A., “Measurement and Analysis of Elastic and Anelastic Properties of

Alumina and Silicon Carbide,” Journal of Materials Science, Vol. 32, 1997, pp.

2275–2282.

[3] Xu, Z. R., Chawla, K. K., Wolfenden, A., Neuman, A., Liggett, G. M., and Chawla,

N., “Thermal Cycling Induced Damage in Alumina Fiber/Magnesium Alloy

Composite,” Material Science & Engineering, A, Vol. A203, 1995, pp. 75–84.

[4] R.K. Everett, R.J. Arsenault, Metal Matrix Composites: Mechanisms and Properties,

Academic Press, Boston, 1991.

[5] D Tabor, „Future directions of research in adhesion and friction: status of

understanding‟, Tribology in the 80‟s, vol. 1, Cleveland, Ohio, 18_-21 April 1983,

National Aeronautics and Space Administration, pp. 119_/142, 1984.

207

[6] Zhang Z, Zhang J, Mai YW. Wear behaviour of SiCp-Al-Si composites. Wear

1994;176:231–237.

[7] Modi OP, Prasad BK, Yegnewaran AH, Vaidya ML. Dry sliding wear behaviour of

squeeze cast aluminium alloy-silicon carbide composites. Mater Sci Eng A

1992;151:235 –244.

[8] Jiang J-Q, Tan R-S, Ma A-B. Dry sliding wear behaviour of Al2O3 –Al composites

produced by centrifugal force infiltration. Mater Sci Technol 1996;12:483 –488

[9] Ma ZY, Liang YN, Zhang YZ, Lu YX, Bi J. Sliding wear behaviour of SiCp

reinforced 2024 Al alloy composites. Mater Sci Technol 1996;12:751 –756.

[10] Sahin Y. The mechanical and wear behaviour of metal matrix composites. Ph.D.

Thesis. UK: Aston University in Birmingham, 1994.

[11] Alpas AT, Zhang J. Wear transition in cast aluminium-silicon alloys reinforced with

SiC particles. Scr Met Mater 1992;26:505 –509

[12] Akbulut H, Durman M, Yilmaz F. Dry wear and friction properties of d-Al2O3

short fibre-reinforced Al–Si alloy. Wear 1998;215:170 –176.

[13] Skolianos S, Kattamis TZ. Tribological properties of SiCp reinforced Al–4.51Cu–

1.51Mg alloy composites. Mater Sci Eng A 1993;163:107 –112

[14] Sahin Y, Kok M, Celik H. Tool wear and surface roughness of Al2O3 reinforced

aluminium alloy composites. J Mater Process Technol 128(1–3):280–291.

[15] Sergio Bocchini, Hasmukh A. Patel, Alberto Frache, One-pot synthesis of

hexadecyl modified layered magnesium silicate and polyethylene based

nanocomposite preparation, Applied Clay Science, Available online 18 June 2013

[16] T.M. Payne, S.A. Dillich, Hardness and indentation fracture toughness of carbides

208

in implantation-modified carbide-metal composite surfaces, Surface and Coatings

Technology, Volume 35, Issues 3–4, November 1988, Pages 299-308

[17] Prasad BK, Jha AK, Modi OP, Das S, Yegneswaran AH. Abrasive wear

characteristics of Zn–37.2Al–2.5Cu–0.2 Mg alloy dispersed with SiC particles.

Mater Trans JIM 1995;36:1048 –1057.

[18] Prasad BK. Abrasive wear characteristics of a zinc based alloy and zinc alloy SiC

composite. Wear 1996;252(3–4):250 –263

[19] Prasad BK, Das S, Jha AK, Modi OP, Dasgupta R, Yegneswaran AH. Factors

controlling the abrasive wear response of a zinc-based alloys silicon carbide particle

composite. Composites 1997;28A:301 –308.

[20] Lee GY, Dharan CK, Ritchie RO. A physically-based abrasive wear model for

composite materials. Wear 2002;252(3–4):322 –331.

[21] Axen N, Jacobson S. A model for the abrasive wear resistance of multiphase

materials. Wear 1994;174:187 –199.

[22] M.Fired C., Horsfall I.,.Luxton S.D, and Young R.J., Mat. Technology group,

Royal Military College of Science, Swindon Wilts S+N68LA. England.

[23] H.Akbulut, M.Durman, F.Yilmaz, “Higher temperature Young‟s modul of

aluminium short fibre reinforced Al-Si MMCs produced by liquid infiltration”, Mat.

Sci. & Tech., 14,(2001).299-305

[24] I.Dutta, D.L.Bourell, “A theoretical and experimental study of Aluminum alloy

6061-SiC metal matrix composite to identify the operative mechanism for

accelerated aging.” Mater. Sci. and Eng, 112 (1989) 67-77

[25] Zener And Snoek-Koester Effects In The Pd/Pt/H System J. Phys. Colloques 48, C8-

209

269-C2-274 (1987).

[26] A.S. Nowick, B.S. Berry, The zener relaxation as a distribution of relaxation times,

Acta Metallurgica, Volume 10, Issue 4, April 1962, Pages 312-318

[27] A.V. GRANATO, K. LÜCKE The Vibrating String Model of Dislocation Damping,

Physical Acoustics, Volume 4, Part A, 1966, Pages 225-276

[28] Clarence Zener, Relaxation phenomena in metals, Physica, Volume 15, Issues 1–2,

April 1949, Pages 111-118

[29] Ke Liu, Hitoshi Takagi, Ryosuke Osugi, Zhimao Yang, Effect of lumen size on the

effective transverse thermal conductivity of unidirectional natural fiber composites,

Composites Science and Technology, Volume 72, Issue 5, 8 March 2012, Pages 633-

639

[30] Joseph E. Bishop, Vikram K. Kinra, Elastothermodynamic damping in laminated

composites, International Journal of Solids and Structures, Volume 34, Issue 9,

March 1997, Pages 1075-1092

[31] Bruzzi, M.S., McHugh, P.E., O‟Rourke, F., Linder, T., Micromechanical modelling

of the static and cyclic loading of an Al 2124-SiC MMC. Int. J. Plasticity 17 (2001.)

(4), 565–599.

[32] Chaboche, J.L., Kruch, S., Maire, J.F., Pottier, T.,. Towards a

micromechanics based inelastic and damage modeling of composites. Int. J.

Plasticity 17 (4), (2001) 411–439.

[33] S.B. Jamaludin, Z. Yusoff, K.R. Ahmad, Comparative Study of Corrosion

Behavior of AA2014/15 Vol%Al2O3p and AA2009/20 Vol% SiCw,

Portugaliae Electrochimica Acta 26 (2008) 291-301

210

[34] M C Chu and K Ando, A FRACTURE AND SEVERITY ANALYSIS OF

COMPOSITE CERAMICS, Fatigue & Fracture of Engineering Materials &

Structures ;Volume 16, Issue 3, pages 335–350, March 1993

[35] Shu, J.Y., Barlow, C.Y., Strain gradient effects on microscopic strain field in

a metal matrix composite. Int. J. Plasticity 16 (5), 2000.563–591.

[36] Wickowski, Z.,. Dual finite element methods in homogeniAltion for elastic-

plastic fibrous composite material. Int. J. Plasticity 16 (2), 2000, 199–221.

[37] O. Acher, S. Dubourg, A generalization of Snoek‟s law to erromagnetic films

and composites, CEA Le Ripault, BP16, 37260 Monts, France

[38] N Chawla, K.K Chawla, M Koopman, B Patel, C Coffin, J.I Eldridge,

Thermal-shock behavior of a Nicalon-fiber-reinforced hybrid glass-ceramic

composite Composites Science and Technology, Volume 61, Issue 13,

October 2001, Pages 1923-1930

[39] R.U. Vaidya, R. Venkatesh, K.K. Chawla, Thermal expansion of a PRD-166

fibre-reinforced glass-matrix composite Composites, Volume 25, Issue 4,

April 1994, Pages 308-313

[40] S. Skirl, M. Hoffman, K. Bowman, S. Wiederhorn, J. Rödel, Thermal

expansion behavior and macrostrain of Al2O3/Al composites with

interpenetrating networks, Acta Materialia, Volume 46, Issue 7, 10 April

1998, Pages 2493-2499

[41] Duosheng Xu, Suong V. Hoa, R. Ganesan, Buckling analysis of tri-axial

woven fabric composite structures. Part II: parametric study––uni-directional

211

loading Composite Structures, Volume 72, Issue 2, February 2006, Pages 236-

253

[42] Denoath, Ramnarayan, K. Pradeep, and Rohatgi: Jour. of Mat. Sci. Vol. 1024,

1981, pp.3026.

[43] Dellis E.J.Lavernia, J.Zhang, R.J.Perez “Damping behaviour and Mechanism in

Particulate reinforced Metal Matrix Composites Processed Using Spray Atomization

and Deposition” Key Engineering Materials Trans Tech Publications, Switzerland,

104-107(1995) 691-728.

[44] I.M. HUTCHINGS, S. WILSON, A.T. ALPAS, Wear of Aluminum-based

Composites, Comprehensive Composite Materials, Volume 3, 2000, Pages 501-519

[45] Clyne, T. and P. Withers, J, An Introduction to Metal Matrix Composites, in

Cambridge Solid State Science Series, E.A. Davis and I.M. Ward, Editors. 1995,

Cambridge University Press: New York. p. 334-340.

[46] Suh Wolfenden, A. and J.M. Wolla, Dynamic Mechanical Properties, in Metal

Matrix Composites: Mechanisms and Properties, R.K. Everett and R.J. Arsenault,

Editors. 1991, Academic Press Inc: San Diego. p. 287-328.

[47] Nowick, A.S. and B.S. Berry, Anelastic relaxations in crystalline solids. 1997, New

Yord: Academy Press. 436-61.

[48] Granato, A. and K. Lücke, Theory of Mechanical Damping due to

Dislocations.Journal of Applied Physics, 1956. 27(6): p. 583-593

[49] Granato, A. and K. Lücke, Application of Dislocation Theory to Internal Friction

PHenomena at High Frequencies. Journal of Applied Physics, 1956. 27(6): p.789-

805.

212

[50] Ke, T.S., Experimental Evidence of the Viscous Behavior of Grain Boundaries in

Metals. Phys. Rev., 1947. 71: p. 533-546.

[51] Bowles, R. R., Macini, D. L. and Toaz, M. W. In Advanced Composites-The Latest

Developments (Eds P. Beardmore and C. F. Johnson), Proceedings of the Second

Conference on Advanced Composites, Michigan, 1990, p. 21 (American Society for

Testing and Materials, Philadelphia, Pennsylvania).

[52] B.S. Shabel, D.S. Granger, U. Truckner, Friction and wear of Al_/Si alloys, in: ASM

Handbook, vol. 18, ASM International, 1992, pp. 785-794.

[53] Lansdown and Price D Tabor, „Future directions of research in adhesion and friction:

status of understanding‟, Tribology in the 80‟s, vol. 1, Cleveland,