chap8 lie brackets

3
     c            A     m      i      t     a      b      h     a      L     a      h      i     r      i     :      L     e     c      t     u     r     e      N     o      t     e     s     o     n      D      i      f      f     e     r     e     n      t      i     a      l      G     e     o     m     e      t     r     y      f     o     r      P      h     y     s      i     c      i     s      t     s      2      0      1      1 Chapter 8 Lie brackets A vector eld  v  is a linear map  C (M)  →  C (M) since it is basi- cally a derivation at each point,  v  :  f    v (f ) .  In other words, given a smooth function  f , v(f ) is a smooth function on M .  Suppose we consider two vector elds  u ,v .  Then  u(v(f )) is also a smooth func- tion, linear in  f .  But is  uv   u ◦  v  a vecto r eld? To nd out, we consider u(v(f g)) = u(f v(g) + v (f )g) =  u(f )v(g) + f u(v(g)) + u(v(f ))g + v(f )u(g) .  (8.1) We reorder the terms to write this as uv(f g) = f uv(g) + uv(f )g + u(f )v(g) + v(f )u(g) ,  (8.2) so Leibniz rule is not satised by  uv .  But if we also consider the combination v u ,  we get vu(f g) = f (vu(g) + vu(f )g + v (f )u(g) + u(f )v(g) .  (8.3) Thus (uv − vu)(f g) = f (uv − vu)(g) + ( uv − vu)(f )g ,  (8.4) which means that the combination [u , v] := uv  − vu  (8.5) is a vector eld on  M ,  with the product  uv  signifying successive operation on any smooth function on M . 28

Upload: hammoudeh13

Post on 05-Oct-2015

214 views

Category:

Documents


0 download

DESCRIPTION

lie bracket

TRANSCRIPT

  • c AmitabhaLahiri:

    LectureNotes

    onDifferentialG

    eometry

    forP

    hysicists2011

    Chapter 8

    Lie brackets

    A vector field v is a linear map C(M) C(M) since it is basi-cally a derivation at each point, v : f 7 v(f) . In other words, givena smooth function f , v(f) is a smooth function on M . Suppose weconsider two vector fields u , v . Then u(v(f)) is also a smooth func-tion, linear in f . But is uv u v a vector field? To find out, weconsider

    u(v(fg)) = u(fv(g) + v(f)g)

    = u(f)v(g) + fu(v(g)) + u(v(f))g + v(f)u(g) . (8.1)

    We reorder the terms to write this as

    uv(fg) = fuv(g) + uv(f)g + u(f)v(g) + v(f)u(g) , (8.2)

    so Leibniz rule is not satisfied by uv . But if we also consider thecombination vu , we get

    vu(fg) = f(vu(g) + vu(f)g + v(f)u(g) + u(f)v(g) . (8.3)

    Thus

    (uv vu)(fg) = f(uv vu)(g) + (uv vu)(f)g , (8.4)which means that the combination

    [u , v] := uv vu (8.5)

    is a vector field on M , with the product uv signifying successiveoperation on any smooth function on M .

    28

  • c AmitabhaLahiri:

    LectureNotes

    onDifferentialG

    eometry

    forP

    hysicists2011

    29

    This combination is called the commutator or Lie bracket ofthe vector fields u and v . 2

    In any chart around the point P M , we can write a vectorfield in local coordinates

    v(f) = vif

    xi, (8.6)

    so that

    u(v(f)) = uj

    xj

    (vif

    xi

    )= uj

    vi

    xjf

    xi+ ujvi

    2f

    xjxi,

    v(u(f)) = vjui

    xjf

    xi+ ujvi

    2f

    xjxi. (8.7)

    Subtracting, we get

    u(v(f)) v(u(f)) = uj vi

    xjf

    xi vj u

    i

    xjf

    xi, (8.8)

    from which we can read off the components of the commutator,

    [u , v]i = ujvi

    xj vj u

    i

    xj(8.9)

    The commutator is antisymmetric, [u , v] = [v , u] , and satisfiesthe Jacobi identity

    [[u , v] , w] + [[v , w] , u] + [[w , u] , v] = 0 . (8.10)

    The commutator is useful for the following reason: Once we have a

    chart, we can use

    {

    xi

    }as a basis for vector fields in a neighbour-

    hood.Any set of n linearly independent vector fields may be chosen as

    a basis, but they need not form a coordinate system. In a coordinatesystem, [

    xi,

    xj

    ]= 0 , (8.11)

    because partial derivatives commute. So n vector fields will form acoordinate system only if they commute, i.e., have vanishing commu-tators with one another. Then the coordinate lines are the integral

  • c AmitabhaLahiri:

    LectureNotes

    onDifferentialG

    eometry

    forP

    hysicists2011

    30 Chapter 8. Lie brackets

    curves of the vector fields. For analytic manifolds, this condition issufficient as well.

    A simple example is the polar coordinate system in R2 . The unitvectors are

    er = ex cos + ey sin

    e = ex sin + ey cos , (8.12)

    with ex =

    xand ey =

    ybeing the Cartesian coordinate basis

    vectors, and

    cos =x

    r, sin =

    y

    r, r =

    x2 + y2 (8.13)

    Using these expressions, it is easy to show that [er , e] 6= 0 , so{er, e} do not form a coordinate basis.