chap. 4 techniques of circuit analysis

39
1 Chap. 4 Techniques of Circuit Analysis C o n t e n t s 4.1 Terminology 4.2 Introduction to the Node-Voltage Method 4.3 The Node-Voltage Method and Dependent Sources 4.4 The Node-Voltage Method: Some Special Cases 4.5 Introduction to the Mesh-Current Method 4.6 The Mesh-Current Method and Dependent Sources 4.7 The Mesh-Current Method: Some Special Cases 4.8 The Node-Voltage Method Versus the Mesh-Current Method 4.9 Source Transformations 4.10 Thévenin and Norton Equivalents 4.11 More on Deriving a Thévenin Equivalent 4.12 Maximum Power Transfer 4.13 Superposition Objective s 1. 了了了了了了了了了了了了了了了了2. 了了了了了了了了了了了了了了了了3. 了了了了了了了了了了了了了了了了了了了了了了了了了了了了了了了4. 了了了了了了 了了了了了了了了了了了了 ,。 5. 了了了了了了了了了了了了了了 了了了了了了了了了了了了了 ,。 6. 了了了了了了了了了了了了了了了 了了了了了了了了了了了了了了了了 ,。

Upload: yuval

Post on 29-Jan-2016

57 views

Category:

Documents


0 download

DESCRIPTION

Chap. 4 Techniques of Circuit Analysis. C ontents. 4.1 Terminology 4.2 Introduction to the Node-Voltage Method 4.3 The Node-Voltage Method and Dependent Sources 4.4 The Node-Voltage Method: Some Special Cases 4.5 Introduction to the Mesh-Current Method - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chap. 4 Techniques of Circuit Analysis

1

Chap. 4 Techniques of Circuit Analysis

Contents

4.1 Terminology4.2 Introduction to the Node-Voltage Method 4.3 The Node-Voltage Method and Dependent Sources4.4 The Node-Voltage Method: Some Special Cases4.5 Introduction to the Mesh-Current Method4.6 The Mesh-Current Method and Dependent Sources4.7 The Mesh-Current Method: Some Special Cases4.8 The Node-Voltage Method Versus the Mesh-Current Method4.9 Source Transformations4.10 Thévenin and Norton Equivalents4.11 More on Deriving a Thévenin Equivalent4.12 Maximum Power Transfer4.13 Superposition

Objectives

1. 了解並能夠使用節點電壓法求解電路。2. 了解並能夠使用網目電流法求解電路。3. 對於特定電路能夠決定節點電壓法或網目電流法何者是較佳的求解方式。4. 了解電源轉換,並能夠使用它來求解電路。5. 了解戴維寧和諾頓等效電路的觀念,並能針對電路建立等效電路。6. 了解電阻負載最大功率轉移之情況,並能計算滿足此情況之負載電阻值。

Page 2: Chap. 4 Techniques of Circuit Analysis

2

Realistic Resistors

Page 3: Chap. 4 Techniques of Circuit Analysis

3

4.1 Terminology節點必要節點路徑

分支必要分支

迴路

網目平面電路

Node

Essential node

Path

Branch

Essential branch

Loop

Mesh

Planar circuit

A point where two or more circuit elements join

A node where three or more circuit elements join

A trace of adjoining basic elements with no elements included more than once

A path that connects two nodes

A path which connects two essential nodes without passing through an essential node

A path whose last node is the same as the starting node

A loop that does not enclose any other loops

A circuit that can be drawn on a plane with no crossing branches

Nonplanar

Planar

Page 4: Chap. 4 Techniques of Circuit Analysis

4

EX 4.1 Identifying Node, Branch, Mesh and Loop

Node

Essential node

Branch

Essential branch

Mesh

a, b, c, d, e, f, and g.

b, c, e, and g.

v1, v2, R1, R2, R3, R4, R5, R6, R7, and I .

v1 –R1 , R2 –R3 , v2 –R4 , R5, R6, R7, and I .

v1 –R1 –R5 –R3 –R2 , v2 –R2 –R3 –R6 –R4 , R5 –R7 –R6 , and R7 –I .

Find two paths that not loops or essential branches.

Find two loops that not meshes.

Page 5: Chap. 4 Techniques of Circuit Analysis

Essential

nodes:

KCL

Meshes: KVL

5

Simultaneous Equations—How Many?

電路中未知電流數 = 分支數 b 。

若節點數 = n ,分支數 = b ,則可套用 KCL 於 (n-1) 個節點上,或 KVL 於 b-(n-1) 個迴路或網目上,以列出方程式來求解。

若必要節點數 = ne ,必要分支數 = be ,亦可套用 KCL 於 (ne -

1) 個必要節點上,或 KVL 於 be -(ne -1) 個迴路或網目上,以列出較少方程式來求解。

b:

c:

e:

節點電壓法使用 (ne -1) 條 KCL方程式,而網目電流法使用 be -(ne -1) 條 KVL方程式來描述電路。

Page 6: Chap. 4 Techniques of Circuit Analysis

1. 找出必要節點。2. 選取有最多分支的節點為參考點。3. 定義節點電壓。4. 套用 KCL ,針對非參考點之節點列出方程式。

6

4.2 Introduction to the Node-Voltage Method

節點電壓法之求解步驟:

節點電壓 (node voltage) 為自參考點到非參考節點的電壓升。

▼: reference node

Node 1:

Node 2:

R

vi

101

Page 7: Chap. 4 Techniques of Circuit Analysis

EX 4.2 Using the Node-Voltage Method

Node 1:

Branch currents:

a)

b)

7

1

Page 8: Chap. 4 Techniques of Circuit Analysis

8

4.3 The Node-Voltage Method and Dependent Sources

當有相依電源時,需補上相依電源控制變數的限制方程式。

Node 1:

Node 2:

EX 4.3 A Circuit with Dependent Source

1 2

相依電壓源控制變數之限制方程式 :

Page 9: Chap. 4 Techniques of Circuit Analysis

9

4.4 The Node-Voltage Method: Some Special Cases

Node 2:

當節點電壓值 v1 = 100 V 時,其 KCL 方程式不需列出,

只需節點 2 之 KCL 方程式。

Case A.

Page 10: Chap. 4 Techniques of Circuit Analysis

4.4 Case B

10

Node 2:

Case B. 1 2 3

當電壓源兩端為必要節點且皆非參考點時,可引進一自定未知電流(如圖中之 i ),然後於方程式求解過程中將它消去。

Node 3: ( +

Supernode (超節點 )

The Concept of a Supernode

當電壓源兩端為必要節點且皆非參考點時,可將其兩端節點合併為超節點,而此超節點也符合克希荷夫電流定律 (KCL) 。

Page 11: Chap. 4 Techniques of Circuit Analysis

4.4 Case B Contd.

11

電壓源限制 :

Supernode:

相依電源控制變數 :

Supernode

Node 1:

Page 12: Chap. 4 Techniques of Circuit Analysis

Node-Voltage Analysis of the Amplifier Circuit

12

Node a:

Supernode:

CCa Vv

電壓源限制 : BE

CB iβ-

R

vi 相依電源控制變數 :

Page 13: Chap. 4 Techniques of Circuit Analysis

13

4.5 Introduction to the Mesh-Current Method

網目電流法可用 be - (ne -1) 條 KVL 方程式來描述電路。

網目電流 (mesh current) : 只存在於網目周圍的假想電流,可能無法以安培計量測。 實際的分支電流可由網目電流加減組合表示而成。

1. 定義網目電流。2. 套用 KVL 於各網目上建立 be - (ne -1) 個聯立方程式。3. 求解網目電流。4. 由網目電流求解分支電流。

網目電流法之求解步驟:

[7-(4-1)] = 4

Page 14: Chap. 4 Techniques of Circuit Analysis

完全相同

14

Evolution of the Mesh-Current Technique

KCL:

KVL:

將 (ne -1) 條 KCL 方程式帶入 be - (ne -1) 條 KVL 方程式

可去除 (ne -1) 個分支電流未知數

指定網目電流,直接列出 be - (ne -1) 條 KVL 方程式

網目 KVL方程式

以網目電流表示分支電流:

Page 15: Chap. 4 Techniques of Circuit Analysis

EX 4.4 Using the Mesh-Current Method

Mesh a:

b)

15

a)

b-(n-1)=7-(5-1)=3

Mesh b:

Mesh c:

Page 16: Chap. 4 Techniques of Circuit Analysis

16

4.6 The Mesh-Current Method and Dependent Sources

當有相依電源時,需補上相依電源控制變數的限制方程式。

相依電源控制變數 :

Mesh 1:

Mesh 2:

Mesh 3:

b-(n-1)=6-(4-1)=3

EX 4.5 A Circuit with Dependent Source

Find the power dissipated in the 4 resistor.

Page 17: Chap. 4 Techniques of Circuit Analysis

17

4.7 The Mesh-Current Method: Some Special Cases

Case A.

當電流源僅有一個網目電流通過時,其 KVL 方程式不需列出,直接指定該網目電流。

Mesh 1:

Mesh 2:

Mesh 3: A163 -i

062330 1211 i-iii-

02458 122322 -iii-iii

032-11 21 ii

-80192- 21 ii

A -4 ;2A 21 ii

W7222212Ω -iip

Page 18: Chap. 4 Techniques of Circuit Analysis

4.7 Case B

18

Mesh a:

Case B.

當電流源有兩個網目電流通過時,可引進一自定未知電壓(如圖中之 v ),然後於方程式求解過程中將它消去。

Mesh c: ( +

The Concept of a Supermesh

當電流源有兩個網目電流通過時,可將其兩網目合併為超網目,而此超網目也符合克希荷夫電壓定律 (KVL) 。

Page 19: Chap. 4 Techniques of Circuit Analysis

4.7 Case B Contd.

19

Supermesh:

Case B.

Mesh b:

電流源限制 :

Page 20: Chap. 4 Techniques of Circuit Analysis

Mesh-Current Analysis of the Amplifier Circuit

20

Mesh b:

Supermesh:

電流源限制 :

相依電源控制變數 :

Page 21: Chap. 4 Techniques of Circuit Analysis

21

4.8 The Node-Voltage Method Versus the Mesh-Current Method

網目電流法 :

ne-1 = 4-1 = 3

◆ 何者聯立方程式數目較少?◆ 有超節點嗎?考慮節點電壓法。◆ 有超網目嗎?考慮網目電流法。◆ 要求解的電路部分適用何者解法?

使用節點電壓法或網目電流法考慮因素:

Find the power dissipated in the 300 resistor in the following circuit.

節點電壓法 :

be-(ne-1) = 8-(4-1) = 5

Page 22: Chap. 4 Techniques of Circuit Analysis

EX 4.6 Understanding the Node-Voltage Method v.s. Mesh-Current Method

Supernode: b)

22

a)

電壓源限制式與相依電源控制變數 :

Node 2:

Node a:

Node b & 相依電源控制變數 :

Node c:

3002300 acΩ -vvp

Page 23: Chap. 4 Techniques of Circuit Analysis

EX 4.7 Comparing the Node-Voltage and Mesh-Current Methods

Node o:

b)

23

a)

Node a:

Supermesh:

2個電流源限制式與相依電源控制變數 :

ne-1 = 4-1 = 3節點電壓法 :

網目電流法 :

be-(ne-1) = 6-(4-1) = 3

Node b:

相依電源控制變數 :

Page 24: Chap. 4 Techniques of Circuit Analysis

24

4.9 Source Transformations

電源轉換法 (source transformation) :電壓源子電路可與電流源子電路互換。

LL RR

vi

SL

L iRR

Ri

R

vi

Riv

SS

SS

LRLi

LRLi

Page 25: Chap. 4 Techniques of Circuit Analysis

EX 4.8 Using Source Transformations to Solve a Circuit

25absorbing

Page 26: Chap. 4 Techniques of Circuit Analysis

26

Special Source Transformation Techniques

對端點 a, b 而言,並聯於電壓源之電阻 Rp 以及串聯於電流源之電阻 Rs 是沒有作用的。

Page 27: Chap. 4 Techniques of Circuit Analysis

EX 4.9 Using Special Source Transformation Techniques

27

a) Use source transformations to find the voltage vo.b) Find the power developed

by the 250-V source.c) Find the power developed

by the 8-A source.

a)

b)

c)

Si

(參考原圖 )

(參考原圖 )

(supplied 2800W)

-480W8(-60)P8A

Sv+

-

(supplied 480W)

Page 28: Chap. 4 Techniques of Circuit Analysis

28

4.10 Thévenin and Norton Equivalents

戴維寧 (Thévenin) 和諾頓 (Norton) 等效 (Equivalent) 電路適用於任何線性 (Linear) 電路。

戴維寧等效電路 (Thévenin equivalent circuit):一個獨立電壓源 VTh 串聯一個電阻 RTh ,用以取代任何由電源和電阻器構成之電路。

Thévenin equivalent circuit

求解 VTh :令 a, b 端點開路,求出由 a, b 端看進去的電壓值。求解 RTh :令 a, b 端點短路,求出流經 a, b 端電流 isc ,而 RTh = VTh / isc 。另解 RTh :令所有獨立電壓源短路,所有獨立電流源開路,求解由 a, b 端點看進去的等效電阻值。

Page 29: Chap. 4 Techniques of Circuit Analysis

Finding a Thévenin Equivalent

29

a, b 端開路,求解 VTh = v1 = vab。

a, b 端短路,求解 isc。

Page 30: Chap. 4 Techniques of Circuit Analysis

30

The Norton Equivalents

諾頓等效電路 (Norton equivalent circuit):一個獨立電流源 IN 並聯一個諾頓等效電阻 RN ,用以取代任何由電源和電阻器構成之電路。

諾頓等效電路可直接從戴維寧等效電路,施以電源轉換求得。

即 IN = isc= VTh / RTh , RN= RTh 。

注意電流方向與電壓極性

Page 31: Chap. 4 Techniques of Circuit Analysis

EX 4.10 Finding the Thévenin Equivalent of a Circuit with a Dependent Source

31

Page 32: Chap. 4 Techniques of Circuit Analysis

32

4.11 More on Deriving a Thévenin Equivalent

求解 RTh 亦可先將所有獨立電源拿掉(電壓源短路且電流源開路),然後由端點往回看求出等效電阻值。

若電路有相依電源,首先拿走所有獨立電源,然後在 a, b 端掛上一個測試用電壓源或電流源,該測試電源之電壓除以電流就是 RTh 。

Page 33: Chap. 4 Techniques of Circuit Analysis

EX 4.11 Finding the Thévenin Equivalent Using a Test Source

33

vT 為測試電壓源,vT / iT 就是 RTh。

Page 34: Chap. 4 Techniques of Circuit Analysis

34

Using the Thévenin Equivalent in the Amplifier Circuit

Page 35: Chap. 4 Techniques of Circuit Analysis

35

4.12 Maximum Power Transfer

The derivative is zero andp is maximized when

CONDITION FOR MAXIMUM POWER TRANSFER( 最大功率轉移時的條件 )

最大功率轉移量

Page 36: Chap. 4 Techniques of Circuit Analysis

EX 4.12 Calculating the Condition for Maximum Power Transfer

36

Also,The percentage of the source power delivered to the load is

Page 37: Chap. 4 Techniques of Circuit Analysis

37

4.13 Superposition

重疊原理 (superposition) :在線性系統中,將各別獨立電源造成之響應相加,就可以得到總響應。

1)

Page 38: Chap. 4 Techniques of Circuit Analysis

38

4.13 Contd.

2)

將電壓源驅動之電流 i’和電流源驅動之電流 i”相加,可得總電流。

v3 v4

Page 39: Chap. 4 Techniques of Circuit Analysis

EX 4.13 Using Superposition to Solve a Circuit

39

01040 ΔΔΔ 'v'v.-'v

24V "v'vv ooo

1)

2)