ceramic heat pipe for high temperature heat recovery

11
Heat Recovery Systems Vol. 2. No. 2. pp. 189-199, 1982. 0198 -7593 820 201 89-1 150 3.00 0 Printed in Grea t Britain Perga mon Press Lid CERAMIC HEAT PIPES FOR HIGH-TEMPERATURE HEAT RECOVERY HA L J. STRUMPF AiResearch Manufacturing Company, 2525 West 190th Street, Torrance, CA 90509, U.S.A. Abstract--This paper summarizes the results of a conceptual design study for ceramic heat pipe recuperators conducted by the AiResearch Manufacturing Company, a division of The Garrett Corporation , for the University of California Los Alamos Scientific Laboratory. The function of the recuperator is to preheat combustion air with industrial furnace exhaust gases, thus effecting a substantial fuel saving as compared with unrecuperated, non-preheated furnaces. The proposed recuperator system consists of two heat exchanger units: a high-tempera- ture ceramic heat pipe recuperator using sodium as the working fluid and a low-temperature metallic plate-fin recuperator. Systems were designed for three furnace applications. The ceramic unit consists of a bundle of individual heat pipes acting in concert, with a partition separating the air and exhaust gas flow streams. The overall flow configuration is counterflow. The metallic unit is of a crossflow configuration, and is similar to AiResearch designs used for other applications. Potential fuel savings are in the 40-50% range. Calculated simple payback periods, based on potential fuel cost savings and estimated system costs, are less than six months for all designs, exclusive of specific retrofitting and high-temperature burner costs. INTRODUCTION A STUDY has been conducted by the AiResearch Manufacturing Company, a division of The Garrett Corporation, for the University of California Los Alamos Scientific Labora- tory (LASL) investigating the use of heat pipes made of ceramic material for the recovery of heat from the flue gases of high-tem perature industrial furnaces. This waste heat recovery results in a reduction in fuel consumption by the furnace. Typical industrial furnaces operate with unheated combustion air or low-effectiveness recuperation. Thus, a substantial portion of the fuel is required to heat the air to the furnace operating temperature, which can be in the 2000° to 2500°F (1100°-1400°C) range. The hot products of combustion (flue gases) are exhausted to the atmosphere and the energy content lost. A more efficient approach is to preheat the combustion air to high temperature with the hot flue gases, thus utilizing som e of the available energy. A heat exchanger or recuperator can be used to effect this energy transfer. State-of-the-art, high-temperature, stainless steel heat exchangers have a metal tem- perature limitation in the 1400 ° to 1500°F (760°-820°C) range. Thus, the hot gas inlet temperature to a stainless steel recuperator is limited to about 1550°F (840°C). With this temperature limitation the hot furnace gases need to be diluted with cold air prior to recuperation. For a maximum gas temperature of 1550°F (840°C), the air preheat tem- perature is essentially limited to about 1400°F (760°C). The required recuperator would have an effectiveness of about 0.90. To further increase fuel savings, air preheat temperatures must be increased above 1400°F (760°C). Ceramic heat exchangers offer the potential for preheating air to within 150°-200°F (80°-110°C)of the furnace gas temperature, limited only by heat exchanger size and by high-temperature burner development. If a larger air preheat-to-furnace gas temperature difference is desired, a substantial reduction in heat exchanger effectiveness is possible. The influence of effectiveness on the heat exchanger size is such that a ceramic heat exchanger required to heat a given flow rate of com bustion air to 1600°F (870°C) ~vith 2100°F (1150°C) gas is only about one-third the size of the m etallic heat exchanger required to heat the same air flow rate to 1400°F (760°C) with 1550°F (840°C) gas. This illustrates the advantages of the ceramic heat exchanger approach: increased fuel savings are provided by a smaller, lower-effectiveness recuperator. 1 89 H.x.s. 2~2

Upload: chander-prakash-kamra

Post on 07-Apr-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ceramic Heat Pipe for High Temperature Heat Recovery

8/4/2019 Ceramic Heat Pipe for High Temperature Heat Recovery

http://slidepdf.com/reader/full/ceramic-heat-pipe-for-high-temperature-heat-recovery 1/11

Heat Recovery Systems V o l . 2 . N o . 2 . p p . 1 8 9 - 1 9 9 , 1 9 8 2 . 0 1 9 8 - 7 5 9 3 8 2 0 2 0 1 8 9 - 1 1 5 0 3 . 0 0 0

P r i n t e d i n G r e a t B r i t a i n P e r g a m o n P r e s s L i d

C E R A M I C H E A T P I P E S F O R

H I G H - T E M P E R A T U R E H E A T R E C O V E R Y

HA L J . S T R U M P F

A i R e s e a r c h M a n u f a c t u r i n g C o m p a n y , 2 5 2 5 W e s t 1 9 0 t h S t r e e t, T o r r a n c e , C A 9 0 5 09 , U .S .A .

A b s t r a c t - - T h i s p a p e r s u m m a r i z e s t h e r e s ul ts o f a c o n c e p t u a l d e si g n s t u d y f o r c e r a m i c h e a t p i p er e c u p e r a t o r s c o n d u c t e d b y t h e A i R e s e a rc h M a n u f a c t u r i n g C o m p a n y , a d i v is i o n o f T h e G a r r e t tC o r p o r a t i o n , f o r t h e U n i v e r s i t y o f C a l i fo r n i a L o s A l a m o s S c ie n t if i c L a b o r a t o r y .

T h e f u n c t i o n o f t h e r e c u p e r a t o r i s to p r e h e a t c o m b u s t i o n a i r w i t h in d u s t r i a l f u rn a c e e x h a u s tg a s e s , t h u s e f fe c t in g a s u b s t a n t i a l f ue l s a v i n g a s c o m p a r e d w i t h u n r e c u p e r a t e d , n o n - p r e h e a t e df u r n a c e s . T h e p r o p o s e d r e c u p e r a t o r s y s t e m c o n s i s t s o f t w o h e a t e x c h a n g e r u n i t s : a h i g h - t e m p e r a -t u r e c e r a m i c h e a t p i p e r e c u p e r a t o r u s i n g s o d i u m a s t h e w o r k i n g fl u id a n d a l o w - t e m p e r a t u r em e t a l l i c p l a te - f in r e c u p e r a t o r . S y s t e m s w e r e d e s i g n e d f o r t h r e e f u r n a c e a p p l i c a ti o n s .

T h e c e r a m i c u n i t c o n s i s t s o f a b u n d l e o f i n d i v i d u a l h e a t p i p e s a c t in g i n c o n c e r t , w i t h a p a r t i t i o ns e p a r a t i n g t h e a i r a n d e x h a u s t g a s f l o w s t r e a m s . T h e o v e r a l l f l o w c o n f i g u r a t i o n i s c o u n t e r f l o w .

T h e m e t a l l i c u n i t i s o f a c r o s s f lo w c o n f i g u r a t i o n , a n d i s s i m i l a r t o A i R e s e a r c h d e s i g n s u s e d f o ro t h e r a p p l i c a t i o n s .P o t e n t i a l fu e l s a v i n g s a r e in t h e 4 0 - 5 0 % r a n g e . C a l c u l a t e d s i m p l e p a y b a c k p e r i o d s , b a s e d o n

p o t e n t i a l fu e l c o s t s a v i n g s a n d e s t i m a t e d s y s t e m c o s t s , a r e l e ss t h a n s i x m o n t h s f o r a l l d e s ig n s ,

e x c l u si v e o f s p e ci fi c r e t r o f i tt i n g a n d h i g h - t e m p e r a t u r e b u r n e r c o s t s .

I N T R O D U C T I O N

A STU DY h a s b e e n c o n d u c t e d b y t h e A i R e s e a r c h M a n u f a c t u r i n g C o m p a n y , a d i v i si o n o f

T h e G a r r e t t C o r p o r a t i o n , f o r t h e U n i v e r s i t y o f C a l i fo r n i a L o s A l a m o s S c i e n ti fi c L a b o r a -

t o r y ( L A S L ) in v e s t ig a t i n g t h e u s e o f h e a t p i p e s m a d e o f c e r a m i c m a t e r i a l f o r t h e r e c o v e r y

o f h e a t f r o m t h e fl u e g a s e s o f h i g h - t e m p e r a t u r e i n d u s t r i a l f u r n a c e s. T h i s w a s t e h e a tr e c o v e r y r e s u l t s i n a r e d u c t i o n i n f u e l c o n s u m p t i o n b y t h e f u r n a c e .

T y p i c a l i n d u s t r i a l f u r n a c e s o p e r a t e w i t h u n h e a t e d c o m b u s t i o n a i r o r l o w - e f f e c t i v e n e s s

r e c u p e r a t i o n . T h u s , a s u b s t a n t i a l p o r t i o n o f t h e fu e l i s r e q u i r e d t o h e a t t h e a i r t o t h e

f u r n a c e o p e r a t i n g t e m p e r a t u r e , w h i c h c a n b e i n t h e 2 0 0 0 ° t o 2 5 0 0 ° F ( 1 1 0 0 ° - 1 4 0 0 ° C )

r a n ge . T h e h o t p r o d u c t s o f c o m b u s t i o n ( fl ue ga s e s) a r e e x h a u s t e d t o t h e a t m o s p h e r e a n d

t h e e n e r g y c o n t e n t l o s t . A m o r e e f f ic i en t a p p r o a c h i s t o p r e h e a t t h e c o m b u s t i o n a i r t o

h i g h t e m p e r a t u r e w i t h th e h o t f l u e g a s e s , t h u s u t i l i zi n g s o m e o f t h e a v a i l a b l e e n e r g y . A

h e a t e x c h a n g e r o r r e c u p e r a t o r c a n b e u s e d t o e f fe c t t h i s e n e r g y t r a n s fe r .

S t a t e - o f - t h e - a r t, h i g h - t e m p e r a t u r e , s t a i n le s s st e e l h e a t e x c h a n g e r s h a v e a m e t a l t e m -

p e r a t u r e l i m i t a t i o n i n t h e 1 4 0 0 ° t o 1 5 0 0 ° F ( 7 6 0 ° - 8 2 0 ° C ) ra n g e . T h u s , t h e h o t g a s i n l e t

t e m p e r a t u r e t o a s t a i n l e s s s t e e l r e c u p e r a t o r i s l i m i t e d t o a b o u t 1 5 5 0 ° F ( 8 4 0 ° C ) . W i t h t h i st e m p e r a t u r e l i m i t a t i o n t h e h o t f u r n a c e g a s e s n e e d t o b e d i l u t e d w i t h c o l d a i r p r i o r t o

r e c u p e r a t i o n . F o r a m a x i m u m g a s t e m p e r a t u r e o f 1 55 0 ° F (8 40 °C ), t h e a ir p r e h e a t t e m -

p e r a t u r e i s e s s e n t i a l l y l i m i t e d t o a b o u t 1 4 0 0 ° F (7 6 0° C ). T h e r e q u i r e d r e c u p e r a t o r w o u l d

h a v e a n e f fe c t i ve n e s s o f a b o u t 0 .9 0 .

T o f u r t h e r i n c r e a s e f u e l s a v i n g s , a i r p r e h e a t t e m p e r a t u r e s m u s t b e i n c r e a s e d a b o v e

1 4 0 0 ° F ( 76 0 °C ). C e r a m i c h e a t e x c h a n g e r s o f f e r t h e p o t e n t i a l f o r p r e h e a t i n g a i r t o w i t h i n

1 5 0 ° - 2 0 0 ° F (8 0 ° - 1 1 0 ° C ) o f t h e f u r n a c e g a s t e m p e r a t u r e , l im i t e d o n l y b y h e a t e x c h a n g e r

s iz e a n d b y h i g h - t e m p e r a t u r e b u r n e r d e v e l o p m e n t . I f a l a r g e r a i r p r e h e a t - t o - fu r n a c e g a s

t e m p e r a t u r e d i f fe r e n c e i s d e s i r e d , a s u b s t a n t i a l r e d u c t i o n i n h e a t e x c h a n g e r e f fe c t iv e n e s si s p o s s i b l e . T h e i n f lu e n c e o f e f fe c t iv e n e s s o n t h e h e a t e x c h a n g e r s i ze i s s u c h t h a t a c e r a m i c

h e a t e x c h a n g e r r e q u i r e d t o h e a t a g i v e n f l o w r a t e o f c o m b u s t i o n a i r t o 1 6 0 0 ° F ( 87 0 °C )

~ vi th 2 1 0 0 ° F ( 11 5 0° C ) g a s i s o n l y a b o u t o n e - t h i r d t h e s i z e o f th e m e t a l l i c h e a t e x c h a n g e r

r e q u i r e d t o h e a t t h e s a m e a i r f l o w r a t e t o 1 4 0 0 ° F ( 7 6 0 °C ) w i t h 1 5 5 0 ° F ( 8 40 ° C ) g a s . T h i s

i l lu s t ra t e s t h e a d v a n t a g e s o f t h e c e r a m i c h e a t e x c h a n g e r a p p r o a c h : i n c re a s e d f ue l sa v i n g s

a r e p r o v i d e d b y a s m a l l e r , l o w e r - e f fe c t i v e n e s s r e c u p e r a t o r .

189H.x.s. 2~2

Page 2: Ceramic Heat Pipe for High Temperature Heat Recovery

8/4/2019 Ceramic Heat Pipe for High Temperature Heat Recovery

http://slidepdf.com/reader/full/ceramic-heat-pipe-for-high-temperature-heat-recovery 2/11

190 HAL J. SI"RUMPF

REFRACTORYMETAL LINER ANDWICK~

CERAMCENDPLUG

EVAPORATOREND GRAVITY CONDENSERND

Fi g . 1 . C e ra m i c h e a t p i p e s c h e m a t i c .

O n e t y p e o f c e r a m i c h e a t e x c h a n g e r t h a t c a n b e u s e d f o r h e a t r e c o v e r y i s a r e c u p e r a t o r

c o m p o s e d o f c e r a m i c h e a t p ip e s . T h e h e a t p i p e s t h e m s e l v e s a r e l o n g c e r a m i c t u b e s c a s t

w i t h e x t e r n a l r a d i a l fi ns . T h e f i n s a i d i n th e h e a t t r a n s f e r a n d r e d u c e t h e n u m b e r o f p i p e s

r e q u i r e d f o r a p a r t i c u l a r t a s k . T h e i n s i d e o f e a c h p i p e i s c o a t e d w i t h a t h i n r e f r a c t o r y

m e t a l l a y er . T h i s la y e r h a s a d u a l p u r p o s e : t h e m e t a l a c t s a s a w i c k t o t r a n s p o r t t h e h e a t

p i p e w o r k i n g f l u i d a n d a l s o p r o t e c t s t h e c e r a m i c f r o m t h e w o r k i n g fl ui d, w h i c h i s a l i q u i d

m e t a l s u c h a s s o d i u m o r l i t h i u m . T h e s e h e a t p i p e e l e m e n t s a r e b e i n g d e v e l o p e d a t

L A S L [ 1 ] . A s c h e m a t i c o f t h e h e a t p i p e i s s h o w n i n F i g . 1 . N o t i c e t h a t t h e h e a t p i p e i s

t i l t e d t o a i d i n t h e c o n d e n s a t e r e t u r n .

T h e h e a t p i p e s a r e b u n d l e d t o g e t h e r t o f o r m a t u b e b a n k , s i m i l a r i n a p p e a r a n c e t o a

c o n v e n t i o n a l f i n n e d - t u b e h e a t e x c ha n g e r . H o w e v e r , b o t h t h e fl ue g a s a n d t h e c o m b u s t i o n

a i r f l o w o u t s i d e t h e t u b e s , w i t h t h e g a s s tr e a m s s e p a r a t e d b y a p a r t i t i o n . T h e o v e r a l l f l o w

c o n f i g u r a t i o n i s c o u n t e r f l o w . T h e h e a t p i p e w o r k i n g f l ui d t r a n s f e rs h e a t f r o m t h e g a s

s t r e a m t o t h e a i r s t r e a m . T h e a r r a n g e m e n t i s s h o w n i n F i g . 2 . S u c h a h e a t e x c h a n g e r

IN

¢

AIR

FINS

F ig . 2 . H e a t p i p e h e a t e x c h a n g e r c o n f i g u r a t i o n .

Page 3: Ceramic Heat Pipe for High Temperature Heat Recovery

8/4/2019 Ceramic Heat Pipe for High Temperature Heat Recovery

http://slidepdf.com/reader/full/ceramic-heat-pipe-for-high-temperature-heat-recovery 3/11

HOT FLUID

C e r a m i c h e a t p i p e s f o r h e a t r e c o v e r y

HOT EXCHANGERt h 1 t h 2

COUPLING FLUID

C PUHP

C

19 1

t L 1

tc 2 w, COLD EXCHANGER a tc l

Cc

COLD FLUID

F i g . 3. L i q u i d - c o u p l e d i n d i r e c t - t r a n s f e r t y p e h e a t e x c h a n g e r s y s t e m u s e d a s a m o d e l f o r t h ea n a l y s i s o f h e a t p i p e r e c u p e r a t o r s .

c o n f i g u r a t i o n h a s a d i s t i n c t s i z e a d v a n t a g e c o m p a r e d t o a c o n v e n t i o n a l a i r - t o - g a s h e a te x c h a n g e r . F o r t h e t u b e s iz e r e q u i r e d f o r t y p i c a l i n d u s t r i a l p r o c e s s e s , t h e t h e r m a l r e s i s t-

a n c e i n s i d e t h e t u b e s i s c o n s i d e r a b l y l a r g e r t h a n t h a t o u t s i d e t h e t u b e s . T h u s , t h e i n s i d es u r f a c e ' c o n t r o l s ' t h e d e s i g n o f c o n v e n t i o n a l u n it s . W i t h h e a t p i p e s , h o w e v e r , b o t h a i r a n dg a s f lo w o v e r t h e l o w e r - r e s i s t a n c e o u t s i d e s u r f ac e , t h u s m a k i n g p o s s i b le a s i g n i fi c a n t siz er e d u c t i o n . T h e h e a t p i p e r e s i s t a n c e i n s i d e t h e t u b e s i s q u i t e s m a l l d u e t o t h e h i g h h e a t

t r a n s f e r c o e f fi c ie n t s a s s o c i a t e d w i t h t h e p h a s e c h a n g e o f t h e h e a t p i p e f l ui d a n d t h e s m a l l

t e m p e r a t u r e c h a n g e b e t w e e n t h e e v a p o r a t o r a n d c o n d e n s e r s e ct io n s . In a d d i t i o n t o t h e

s iz e a d v a n t a g e , t h e h e a t p i p e r e c u p e r a t o r o f fe r s d e c r e a s e d s e a li n g a n d m a n i f o l d in g c o m -

p l e xi ty c o m p a r e d t o a c o n v e n t i o n a l h e a t e x c h a n g e r.

H E A T E X C H A N G E R A N A L Y S I S

C o n t r a r y t o s e v e ra l r e c e n t p r e s e n t a t io n s i n t h e l i te r a t u r e l : 2 , 3 ] a h e a t p i p e r e c u p e r a t o rc a n n o t , i n g e n e r a l , b e c o n s i d e r e d a s i n g l e c o u n t e r f l o w h e a t e x c h a n g e r w i t h a n o v e r a l l

a i r - t o - g a s t h e r m a l r e s i s t a n c e a n d a n o v e r a l l a i r - t o - g a s l o g a r i t h m i c m e a n t e m p e r a t u r e

d i f fe r e n c e ( L M T D ) . T h i s a p p r o a c h n e g l e c t s t h e f a c t th a t t h e h e a t p i p e f lu i d is a t a ne s s e n t i a l l y c o n s t a n t t e m p e r a t u r e i n a n y i n d i v i d u a l h e a t p i p e . B e c a u s e o f t h i s f a c t , t h e

a c t u a l i n t e g r a t e d t e m p e r a t u r e p o t e n t i a l fo r a h e a t p i p e i s s m a l l e r t h a n t h e o v e r a l l L M T D .T h i s i s t r u e e v e n i f t h e t h e r m a l r e s i s t a n c e o n t h e h e a t p i p e s i d e is v a n i s h i n g l y s m a l l. I t i so n l y i n t h e l i m i t o f a l a r g e n u m b e r o f t u b e r o w s i n t h e a i r / g a s f l o w d i r e c t i o n t h a t t h i s

o v e r a ll a p p r o a c h b e c o m e s c o r r e c t.T h e a p p r o a c h u s e d f o r t h e p r e s e n t s t u d y c o n s i d e r s e a c h h e a t p i p e ( i n t h e f lo w d i r e c -

t i o n ) s e p a r a t e l y . I n d e e d , e a c h p i p e i s a s s u m e d t o b e t w o s e p a r a t e h e a t e x c h a n g e r s :g a s - t o - h e a t p i p e f lu i d a n d h e a t p i p e f l u i d - to - a i r . T h i s a p p r o a c h i s s i m i l a r t o t h a t s t u d i e d

b y L o n d o n a n d K a y s C 4l a n d e x p a n d e d u p o n b y E a s t w o o d [ 5 ] f o r l i q u id - c o u p l e di n d i r e c t - t r a n s f e r h e a t e x c h a n g e r s . T h i s c o n f i g u r a t i o n is s h o w n s c h e m a t i c a l l y i n F i g . 3 .T h e s y m b o l s in F i g . 3 a r e l a r g e l y s e l f - e x p l a n a t o r y ; t r e p r e s e n t s t e m p e r a t u r e , q r e p r e s e n t st h e h e a t l o a d ( e q u a l f o r b o t h e x c h a n g e r s ) , a n d C r e p r e s e n t s t h e c a p a c i t y r a t e , w h i c h i s

t h e p r o d u c t o f t h e fl o w r a t e a n d t h e m e a n h e a t c a p a c i ty . F o r t h e h e a t p i pe s c o n s i d e r e di n t h e p r e s e n t s t u d y t h e h o t e x c h a n g e r a n d c o l d e x c h a n g e r r e p r e s e n t r e s p e c ti v e ly t h e g a s

a n d a i r p o r t i o n s o f t h e p i p e . T h e c o u p l i n g f l ui d is t h e s e a l e d h e a t p i p e f lu i d w i t h t h e h e a t

p i p e w i c k i n g s y s t e m a c t i n g a s t h e p u m p .F o r a l i q u i d - c o u p l e d a p p l i c a t i o n , t h e c o u p l i n g f lu i d r e m a i n s i n t h e l iq u i d p h a s e ; h e a t i s

t r a n s f e r re d b y a c h a n g e i n t h e t e m p e r a t u r e o f th i s fl ui d. T h e p u m p i n g r a t e is u s u a l l y

a d j u s t e d s o t h a t t h e c o u p l i n g f l u i d c a p a c i t y r a t e , CL, i s s i m i l a r to t h e a i r a n d g a s c a p a c i t y

ra t e s (Co an d Ch re spec t ive ly ).

Page 4: Ceramic Heat Pipe for High Temperature Heat Recovery

8/4/2019 Ceramic Heat Pipe for High Temperature Heat Recovery

http://slidepdf.com/reader/full/ceramic-heat-pipe-for-high-temperature-heat-recovery 4/11

192 HAL J. STRUMPF

For the heat pipe application, the heat pipe fluid changes phase and the temperature

change is usually very small; in effect t L l = t L : . This means that the heat pipe fluid

capacity rate, CL, is very large.

A numerical example serves to illustrate the difference between the coupled approach

and the overall resistance approach. Using the nomenclature of Fig. 3, assume the

following temperatures for a particular heat pipe (customary engineering units are used

exclusively in this example): th , = 1500°F, th2 = 1420°F, to, = 1300°F~ tel = 1200°F.These temperatures indicate a capacity rate ratio, C c / C h , of 0.8, which is reasonable for a

recuperator. The thermal conductances (TC) are assumed to be equal for the hot and

cold sides. Using the overall resistance approach, the LMTD is 209.8°F and the overall

thermal conductance, considering only the air- and gas-side resistances, is (0.5) (TC).

Thus, the total heat transferred, q, is (104.9) (TC).

The coupled approach yields for hot side:

1500 -- 1420L MTDh - (1)

1500 - t Lin

1420 - t L

and for the cold side:

1300- 1200LMTD~ - (2)

In t t - - 1200 "

t L -- 1300

Since the thermal conductances are equal, LMTDh = LMTD,. Combining equations

(1) and (2) and solving for the heat pipe fluid temperature yields tL = 1356.5°F and

LM TD = 98.1°F, Thus, q = (98.1) (TC), which is smaller by 7% than the value arrived atusing the overall resistance approach. This error will increase with the fluid temperature

change across a single row of tubes and will decrease with the temperature difference

between the two fluid streams. The error thus will decrease with the total number of

rows in the air/gas flow direction of the recuperator for a given overall temperature differ-

ence.

To aid in conducting the study, a detailed heat pipe heat exchanger design computer

program was written. The program performs tube-by-tube heat transfer calculations

based on the indirect-coupled heat exchanger technique described above. At each tube,

the heat balance and thermal conductance equations are solved simultaneously to yield

the outlet conditions. The calculations continue row-by-row through the heat exchanger

until the desired temperature conditions are attained. These heat transfer calculations areiterated with pressure drop calculations, with the heat exchanger frontal area being

varied until both the heat transfer and pressure drop requirements are satisfied. Actually,

calculations need not be performed for every tube in the heat exchanger. Since the overall

recuperator configuration is counterflow, tubes in any given 'no-flow' row operate at

essentially identical conditions. Thus, a row-by-row calculation in the air/gas flow direc-

tion will suffice.

The thermal conductances and pressure drops on the air and gas sides are determined

using correlations for finned tube Colburn modulus and friction factor. Also included are

the resistances associated with the tube wall, the heat pipe fluid phase changes, and the

heat pipe fluid vapor transport. The vapor transport resistance, which is equal to the

fluid temperature change divided by the heat pipe heat load, is related to the pipegeometry and heat pipe fluid properties by the use of the Clausius-Clapeyron equation

and analytical expressions for the vapor flow pressure drop. Local heat pipe fluid proper-

ties are used. The computer program is described and illustrated in more detail in

Strumpf and Miller [6].

Page 5: Ceramic Heat Pipe for High Temperature Heat Recovery

8/4/2019 Ceramic Heat Pipe for High Temperature Heat Recovery

http://slidepdf.com/reader/full/ceramic-heat-pipe-for-high-temperature-heat-recovery 5/11

C e r a m i c h e a t p i p e s f o r h e a t r e c o v e r y

T a b l e 1 . D e s i g n c o n d i t i o n s t

A p p l i c a t i o n

S te e l A l u m i n u m G l a s ss o a k i n g r e m d t m e l t in g

p i t f u r n a c e f u r n a c e

A i r S i d e

F l o w r a t e , l b / s 5 . 45 6 .5 5 4 . 5 0I n l e t t e m p e r a t u r e , ° F 1 0 0 1 0 0 1 0 0O u t l e t t e m p e r a t u r e , ° F 1 6 00 1 6 00 2 0 0 0I n l e t p r e s s u re , p s i a 1 4 .9 2 1 5 . 16 1 5 .1 6P re s s u re d ro p , i n . H 2 0 6 .1 1 2 . 75 1 2 .7 5

F l u e g a s s i d e

Flo w ra t e , l b /s 5 .75 6 .91 4 .75I n l e t t e m p e r a t u r e , ° F 2 1 25 2 1 0 0 2 5 00I n l e t p r e s s u re , p s i a 1 4 .7 0 1 4 .7 0 1 4 .7 0P r e s s u r e d r o p , i n . H 2 0 8 .7 5 4 0 . 5 0 1 8 .5 0

t Co nv er s io n fac to rs : kg/s = (0 .4536) ( lb /s) ; °C = (°F-32) /(1 .8);k P a = ( 6. 8 95 ) (p s i a ) ; k P a = ( 0 .2 4 9 1 ) ( i n . H 2 0 ) .

193

D E S I G N C O N S I D E R A T I O N S

T h r e e s p e c if ic i n d u s t r i a l p r o c e s s e s w e r e s e l e c te d fo r t h e s t u d y : a s t e el s o a k i n g p i t, a n

a l u m i n u m r e m e l t f u r n a c e , a n d a g la s s m e l t i n g f u r n a ce . E a c h p r o c e s s i n v o lv e s t h e c o m -b u s t i o n o f f ue l, t h e t r a n s f e r o f s o m e o f t h e r e l e a s e d e n e r g y t o t h e p r o c e s s l o a d , a n d t h e

l o ss o f t h e r e m a i n d e r o f th e e n e r g y a s e x h a u s t e d h i g h - t e m p e r a t u r e fl ue g as . T h e d e s ig nc o n d i t i o n s s p e c i f ie d fo r e a c h p r o c e s s a r e g i v e n in T a b l e 1 .

T h e k e y p a r a m e t e r i s p e r h a p s t h e a i r p r e h e a t ( o ut le t ) t e m p e r a t u r e . S i n c e t h is r e p r e s e n t st h e c o m b u s t i o n a i r t e m p e r a t u r e , t h e b u r n e r s m u s t b e a b l e t o o p e r a t e a t t h i s t e m p e r a t u r e .

T h e 1 6 00 °F ( 87 0 °C ) l e v el w a s s e l e c t e d a s r e p r e s e n t a t i v e o f t h e l i m i t i n c u r r e n t b u r n e r

t echno logy . The 2000°F (1090°C) l eve l was se l ec t ed t o i nves t i ga t e the fue l sav ingsp o s s ib l e w i th a d v a n c e d b u r n e r d e v e l o p m e n t .

I t is r e a d i l y a p p a r e n t t h a t a s i n g l e h e a t p i p e w o r k i n g f l u i d c a n n o t b e u s e d o v e r t h e

e n t i r e t e m p e r a t u r e r a n g e r e q u i r e d to h e a t c o l d a i r t o h i g h t e m p e r a t u r e s . R a t h e r t h a n u s e

d i f f e re n t h e a t p i p e f lu id s , i t w a s d e c i d e d t o u s e a c o n v e n t i o n a l m e t a l l i c h e a t e x c h a n g e r t oh e a t t h e c o m b u s t i o n a i r t o a t e m p e r a t u r e s u f fi c ie n t f o r e f fi c ie n t o p e r a t i o n o f a s in g le -

w o r k i n g f l u i d h e a t p i p e h e a t e x c h a n g e r . S t a t e - o f - t h e - a r t s t a i n l e s s s t e e l h e a t e x c h a n g e r sc a n h a n d l e h o t g a s e s u p t o a b o u t 1 5 00 °F ( 82 0 °C ). A b o v e t h is l e ve l, t h e h e a t p i p e s c a n a l lo p e r a t e u s i n g s o d i u m a s t h e w o r k i n g f lu id .

I t s h o u l d b e p o i n t e d o u t t h a t t h e m e t a l l i c h e a t e x c h a n g e r r e q u i r e d i s o f q u i t e l o we f f e c t i v e n e s s - - m u c h s m a l l e r th a n a u n i t r e q u i r e d t o p r e h e a t a i r t o 1 4 00 °F ( 7 60 °C ) w i th

1 5 00 °F ( 82 0 °C ) g a s . F o r e x a m p l e , t h e m e t a l l i c u n i t r e q u i r e d f o r t h e s t ee l s o a k i n g p i t h e a t sthe co ld a i r t o 835°F (446°C) and has a n e f fec t iveness o f on ly 0 .53 .

W i t h t h is l o w e f f e ct iv e n e s s , a s i n g l e -p a s s c r o s s f l o w c o n f i g u r a t i o n i s a d e q u a t e f o r t h e

m e t a l l ic u n it . T h is i s a m u c h l e ss c o m p l e x a r r a n g e m e n t t h a n t h e c o u n t e r f lo w o r m u l t i-

p a s s c r o s s f l o w c o n f i g u r a t i o n s r e q u i r e d f o r h i g h e r - e f f e ct i v e n e s s h e a t e x c h a n g e r s . A p l a t e -f i n h e a t e x c h a n g e r h a s b e e n s e l e c t e d f o r t h e m e t a l l i c r e c u p e r a t o r . P l a t e - f i n h e a t

e x c h a n g e r s c o n s i s t o f l a y e r s o f c o r r u g a t e d s h e e t s t o c k ( fi ns ) w h i c h a r e s e p a r a t e d b y p l a te s .T h e f i n s , p l a t e s , a n d e d g e b a r s a r e s t a c k e d i n a f i x t u r e a n d b r a z e d t o f o r m a n i n t e g r a t e d

c o r e a s s e m b l y. A l te r n a t e p a s sa g e s f o r m e d b y t h e p l a t e s a n d b a r s a r e a l l o c a te d t o e a c hf lu i d . T h e p a s s a g e s c a n b e a l i g n e d s o t h a t t h e f lo w p a t h s a r e p a r a l l e l (c o u n t e r f l o wa r r a n g e m e n t ) o r p e r p e n d i c u l a r ( c r os s fl o w a r r a n g e m e n t ) . T h e c r o ss f lo w c o n f i g u r a ti o n

s e l e c t e d f o r t h e p r e s e n t d e s i g n i s s h o w n s c h e m a t i c a l l y i n F i g . 4. N o t i c e t h a t t h e f l o w p a t hi s i n t e r r u p t e d b y a f i n o f f s e t . T h i s a i d s i n d i s r u p t i n g t h e f l u i d b o u n d a r y l a y e r a n di n c r e a s e s t h e f l u id h e a t t r a n s f e r c o e f f i c ie n t ( a n d p r e s s u r e d r o p g

T h e a i r a n d g a s f lo w s th r o u g h t h e m e t a l li c r e c u p e r a t o r a r e i n s e ri es w i t h t h o s e t h r o u g ht h e h e a t p i p e u n i t . T h e p r o p o s e d o v e r a l l c o n f i g u r a t i o n i s s h o w n i n F i g . 5 .

Page 6: Ceramic Heat Pipe for High Temperature Heat Recovery

8/4/2019 Ceramic Heat Pipe for High Temperature Heat Recovery

http://slidepdf.com/reader/full/ceramic-heat-pipe-for-high-temperature-heat-recovery 6/11

194 HAL J. STRUMPF

GASSURFAI

Fig . 4 . Crossflow plate-fin heat exchanger construction.

I n g en e r al , th e m i n i m u m o p e r a t in g t e m p e r a t u r e f o r a l i q u i d - m e t a l h e a t p i p e i s a

func ti on of the axi al he at f l ux. F o r d i ffe re nt tem pe r atur e r ange s a nd he at pi pe s i ze s ,

d i f fe r e nt mod e s of he at tr anspor t ac t as the l i mi t i ng fac tor s . D e pe nd i ng on the c on-

d i t i o n s , t h e h e a t f l o w c o u l d b e l i m i t e d b y v i s c o u s , s o n i c , e n t r a in m e n t , c a p i ll a r y ( w i c k i n g ) ,

o r b o i l i n g c o n s i d e r a t i o n s , a s i n d i c a t e d i n F i g . 6 .

A l l the d e s i gns c onsi d e r e d e ntai l ope r ati on of the he at pi pe s i n a gravi ty-ass i st m od e :i n t h i s m o d e , t h e c a p i l l a r y p u m p i n g r e s t r i c t i o n s d o n o t c o n s t i t u t e l i m i t i n g c o n d i t i o n s f o r

t h e v a l u e s o f h e a t f l u x e s e n c o u n t e r e d i n t h e p r e s e n t s t u d y . T h e e n t r a i n m e n t l i m i t s f o r

HETALLIC

PLATE FIN HEAT PIPESHEAT EXCHANGER (CONDENSING SECTION)

l •FLUE GAS OUT

AIRIN

HEAT PIPES(EVAPORATOR SECTION)

Fig . 5 . Ceram ic heat pipe f lue gas heat recovery sy stem.

Page 7: Ceramic Heat Pipe for High Temperature Heat Recovery

8/4/2019 Ceramic Heat Pipe for High Temperature Heat Recovery

http://slidepdf.com/reader/full/ceramic-heat-pipe-for-high-temperature-heat-recovery 7/11

Ceramic heat pipes for heat recovery 195

T

i 7OUS L li~lT

TEMPERATURE

Fig. 6. Axial heat flux limits.

s o d i u m h e a t p i p e s o p e r a t i n g i n a g r a v i t y - a s s i s t m o d e a r e h i g h e r t h a n t h e h e a t f l u x e s

e n c o u n t e r e d i n t h e p r e s e n t d e s i g n s a n d c o u l d b e i n c r e a s e d , i f n e c e s sa r y , t h r o u g h t h e u s eo f c o n d e n s a t e r e t u r n p a s sa g e s. T h e b o i l in g l im i t i s s e l d o m e n c o u n t e r e d w i t h l i qu i d - m e t a lw o r k i n g f lu i d s, e s p e c i a l ly w h e n t h e h e a t t r a n s f e r t o t h e p i p e i s c o n t r o l l e d b y o u t s i d e f il mc o e f f ic i e n ts t y p i c a l o f t h o s e o b t a i n a b l e w i t h e x t e r n a l g a s f lo w s .

F o r t h e t u b e s iz es c o n s i d e r e d i n t h e s t u d y , t h e v is c o u s l im i t i s o v e r r i d d e n b y t h e s o n i cl i m i t a t a t e m p e r a t u r e o f a b o u t l l 0 0 ° F ( 59 0 °C ), w h i c h is w e l l b e l o w a n y h e a t p i p e

o p e r a t i n g t e m p e r a t u r e s . T h u s , t h e o n l y h e a t p i p e p e r f o r m a n c e l i m i t i n g c r i t e r i o n c o n -s i d e r e d i s t h e s o n i c li m i t. T h i s e s t a b l is h e s a n a x i a l h e a t f l ux l im i t f o r t h e c o l d e s t h e a t p i p ed u e t o t h e a t t a i n m e n t o f s o n i c v e lo c i ty b y t h e l o w - d e n s i t y s o d i u m v a p o r .

T h e s e l e c te d c e r a m i c t u b e m a t e r i a l w a s s i l i co n i z e d s i li c o n c a r b id e . T h e r e i s a r e a s o n -

a b l e a m o u n t o f e x p e r i e n c e i n t h e f a b r i c a t i o n o f l o n g , f in n e d t u b e s o f t hi s m a t e r i a l .

T e m p e r a t u r e c a p a b i l i t y is in e x c e s s o f 2 5 0 0 ° F ( 1 37 0 °C ). A s u r v e y o f c e r a m i c fa b r i c a t o r si d e n ti fi e d a m a x i m u m t u b e l e n g t h o f a b o u t 8 f t (2 .4 m ) a s a r e a s o n a b l e p r o d u c t i o n l i m i t.

T h e c e r a m i c f a b r i c a t o r s a l s o i d e n t i f i e d a m a x i m u m f i n p a c k i n g o f 5 f i n s / i n . ( 2 . 0f in s / e ra ) . The f i n s wou ld l i ke ly be t ape red (a s shown in F ig . 1 ) and have an ave rage

t h i c k n e s s o f a b o u t 0 . 0 7 5 i n. ( 1 .9 1 m m ) . A m i n i m u m t u b e w a l l t h i c k n e s s o f 0 . 1 2 5 i n.(3 .18 m m ) was a l so e s t ab l i shed .

T h e l o c a t io n o f t h e p a r t i t io n s e p a r a t i n g t h e a i r a n d g a s s id e s is a n i m p o r t a n t d e s i g nc o n s i d e r a t io n . I n g e n e r a l , h e a t e x c h a n g e r s iz e c a n b e m i n i m i z e d b y b a l a n c i n g t h e a i r a n d

g a s t h e r m a l c o n d u c t a n c e s . F o r h e a t e x c h a n g e r s w i t h s i m i la r c a p a c i ty r a t e s o n e i th e r s i d e

( as i s t h e c a s e f o r t h e p r e s e n t r e c u p e r a t o r ) , t h e r e is a r e l a t i v e ly w i d e r a n g e o f c o n d u c t a n c er a t io s w h i c h r e s u lt in a p p r o x i m a t e l y m i n i m u m s iz e so l u ti o n s. I n d e e d , t h e L o n d o n - K a y s

c r i t e r i o n f o r o p t i m i z i n g a l i q u i d - c o u p l e d i n d i r e c t - t r a n s f e r r e c u p e r a t o r l - 4 ] i s 0 . 7 5<(UA),/(UA)h < 2 . 0 , w h e r e t h e UAs a r e t h e o v e r a ll t h e r m a l c o n d u c t a n c e s .

T h e r m a l c o n d u c t a n c e b a l a n c i n g i s u se f ul fo r n o n - c o n s t r a i n e d a i r - a n d g a s - si d e p re s s-

u r e d r o p s . H o w e v e r , f o r f i x e d p r e s s u r e d r o p s , t h e m i n i m u m s iz e r e c u p e r a t o r is e s s e n t ia l l y

t h a t w h i c h u s e s u p t h e a v a i l a b l e p r e s s u r e d r o p o n b o t h s id e s, r e g a r d l e s s o f t h e t h e r m a lc o n d u c t a n c e r a t i o . F o r t h e d e s i g n c o n d i t i o n s g i v e n in T a b l e 1 , t h e o p t i m a l p a r t i t i o nl o c a t i o n i s a t t h e c e n t e r o f t h e h e a t p i p e f o r t h e s t e e l s o a k i n g p i t a n d g l a s s m e l t i n gf u r n a c e d e s i g n s a n d a t 6 0 % c o n d e n s e r ( a i r - s i d e ) l e n g t h f o r t h e a l u m i n u m r e m e l t f u r n a c e .

SPECIFIC DESIGNS

A d e t a i le d p a r a m e t r i c s t u d y w a s c o n d u c t e d f o r e a c h f u r n a c e a p p l ic a t io n , a t t e m p t i n g t oo p t i m i z e t h e h e a t p i p e h e a t e x c h a n g e r a n d m e t a l l i c r e c u p e r a t o r b y v a r y i n g t h e h e a te x c h a n g e r g e o m e t r ie s . T h e d e v e l o p e d h e a t p i p e d e s i g n c o m p u t e r p r o g r a m a l o n g w i t h a ne x i s t i n g p l a t e - f i n c o m p u t e r p r o g r a m w e r e u s e d . D e t a i l s o f t h e s t u d y a r e n o t p r e s e n t e dh e r e d u e t o s p a c e l i m i t at io n s , b u t c a n b e f o u n d i n S t r u m p f a n d M i l le r [6 ] .

Page 8: Ceramic Heat Pipe for High Temperature Heat Recovery

8/4/2019 Ceramic Heat Pipe for High Temperature Heat Recovery

http://slidepdf.com/reader/full/ceramic-heat-pipe-for-high-temperature-heat-recovery 8/11

196 HAL J. STRUMPF

T a b l e 2 . H e a t p i p e r e c u p e r a t o r d e s i g n s ~

P a r a m e t e r

S te e l A l u m i n u m G l a s ss o a k i n g r e m e l t m e l t i n g

p i t f u r n a c e f u r n a c e

N u m b e r o f t u b e s 1 8 0 1 7 6 2 2 0T u b e l e n g t h , i n . . 9 6 9 6 9 6Tu b e O D / I D , i n . 1 / 0. 7 5 1 / 0. 7 5 1 / 0. 7 5Fin he ig h t , i n . 0 .25 0 .25 0 .25F i n s p a c i n g , i n . - 1 5 5 5Tra n s v e r s e t u b e s p a c i n g , i n . 1 .5 7 5 1 .5 7 5 1 .5 7 5L o n g i t u d i n a l t u b e s p a c i n g , i n . 1 . 36 4 1 . 36 4 1 . 36 4W e i g h t , l b 1 3 8 1 , 1 3 51 1 6 8 8F r a c t i o n c o n d e n s e r l e n g t h 0 . 5 0 0 .6 0 0 . 5 0Flow l eng th , i n . 8 .32 11 .05 13 .78No -f low l eng th , i n . 47 .99 35 .39 3 5 .40

N u m b e r o f f lo w r o w s 6 8 1 0N u m b e r o f n o - f lo w r o w s 3 0 2 2 22G a s - s i d e p r e s s u re d ro p , i n . H 2 0 5 . 11 5 2 2 . 96 0 6 .8 2 3A i r - s i d e p r e s s u re d ro p , i n . H 2 0 3 . 52 5 7 . 70 7 4 .7 4 7G a s i n l e t t e m p e r a t u r e , ° F 2 1 25 2 1 0 0 2 5 0 0

G a s o u t l e t t e m p e r a t u r e , ° F 1 4 94 1 4 95 1 4 99A i r i n l e t t e m p e r a t u r e , ° F 8 3 5 8 6 9 7 7 8A i r o u t l e t t e m p e r a t u r e , ° F 1 6 00 1 6 00 2 0 0 0

C o n v e r s i o n f a c t o r s : k g = ( 0 .4 5 3 6) ( I b ); m m = ( 0 . 0 39 4 ) (i n . ); k P a = ( 0 .2 4 9 1 )

( in , H20) ; °C = (°F-32) /1 .8 .

T h e h e at e x c h a n g e r s s e l ec t e d w e r e t h o s e r e su l t in g in m i n i m u m c o s t . T h e c o s t a s s u m p -

t i o n s a r e d i s c u s s e d i n a l a t e r s e c t i o n . T h e s e l e c t e d h e a t p i p e r e c u p e r a t o r d e s i g n s a r e

p r e s e n t e d i n T a b l e 2 a n d t h e m e t a l l i c r e c u p e r a t o r d e s i g n s a r e p r e s e n t e d i n T a b l e 3 . T h e

f in n o m e n c l a t u r e i s e x p l a i n e d i n F i g . 7 .

F U E L S A V I N G S

T h e r e d u c t i o n i n f l ue g a s e x h a u s t t e m p e r a t u r e r e s u l t i n g fr o m r e c u p e r a t i o n i m p r o v e s

t h e e f fi c ie n c y o f t h e p r o c e s s a n d s a v e s f u e l T h e l o w e r f u el u s a g e d e c r e a s e s t h e f l u e g a s

f low rate, res u lt in g in a fu rth er red u ct ion in en ergy los s es . T o es t im ate th e fu el s av in gs ,

T a b l e 3 . M e t a l li c r e ~ u p e r a t o r d e s i g n s §

P a r a m e t e r

S te e l A l u m i n u m G l a s ss o a k i n g r e m e l t m e l t i n g

p i t f u r n a c e f u r n a c e

G as- s id e f i n 3R-0 .55-0 .5(0)- 4R-0 .55-0 .5(0) - 4R-0 .55-0 .5(0) -0 . 0 1 0 0 . 0 1 6 0 , 0 1 6

Air -sid e f in 3R-0.55-0.5(0)- 6.5R-0.55-0.5(0)- 3R-0.55-0.5(0)-0.010 0.016 0.010

G a s f l o w l e n g t h , i n. 2 7 -0 2 6 .0 2 0 .0Ai r f l ow l eng th , i n . 31 .0 18 .5 30 .5N u m b e r o f g a s f in l a y e r s 3 0 3 4 2 0N u m b e r o f a i r f i n l a y e r s 3 1 3 5 2 1No -f low l eng th , i n . 35 .04 39 .63 23 .56C o r e w e i g h t , I b 8 1 3 8 6 9 4 9 3M a x i m u m c o r e t e m p e r a t u r e , ° F 1 3 9 2 1 3 98 1 3 75G a s i n l e t t e m p e r a t u r e , ° F 1 4 94 1 4 95 1 4 99G a s o u t l e t t e m p e r a t u r e , ° F 8 9 1 8 5 9 9 4 6

A i r i n l e t t e m p e ra t u r e , ° F 1 0 0 1 0 0 1 0 0A i r o u t l e t t e m p e r a t u r e , ° F 8 3 5 8 6 9 7 7 8G a s - s i d e p r e s s u r e d r o p , i n . H 2 0 3 .5 0 2 1 5 .8 8 6 6 .8 2 3A i r - s i d e p r e s s u re d ro p , i n . H 2 0 2 . 26 7 4 .7 4 7 4 .7 4 7

§ C o n v e r s i o n f a c t o r s : m m = ( 0 . 0 3 9 4 ) ( i n . ); k g - - ( 0 . 4 5 3 6 ) ( Ib ) ; ° C --- ( ° F -3 2 ) / 1 . 8 ; k P a • ( 0 . 2 4 9 1 ) ( i n . H 2 0 ) .

Page 9: Ceramic Heat Pipe for High Temperature Heat Recovery

8/4/2019 Ceramic Heat Pipe for High Temperature Heat Recovery

http://slidepdf.com/reader/full/ceramic-heat-pipe-for-high-temperature-heat-recovery 9/11

C e r a m i c h e a t p i p e s f o r h e a t r e c o v e r y 1 9 7

ty-

FLO~

DESIGNATION: nR - b - ~ - t

EXAMPLE: 6 .5R-O.550-0 .500(0)-O.016

Fi g . 7 . R e c t a n g u l a r o f f s e t f i n n o m e n c l a t u r e .

r e c u p e r a t e d a n d u n r e c u p e r a t e d f u r n a c e s a r e c o m p a r e d f o r t h e s a m e h e a t l o a d s . T h i s c a nb e d o n e b y c o n s i d e r i n g a h e a t b a l a n c e a r o u n d a f u r n a c e :

Q = W , , C~ , . (T , , - T b ) + I ' V / C p s ( T: - T b ) + I, s A H r - ( I V . + W s ) C p , ( T ¢ - T b ) ( 3)

a n d

Q l W s = ( W . I W : ) C , : ( T . - T b ) + C , , ( T s - T ~ ) + A H s - ( i + I ' V : I W : ) C , , . ( T ~ T ~ ) ( 4 )

w h e r e

Q i s t h e f u r n a c e h e a t l o a d , i n c l u d i n g i n s u l a t i o n a n d h e a t l e a k l o s s e s ;

I4 :. i s t h e c o m b u s t i o n a i r f l o w r a t e ;C p . i s t h e c o m b u s t i o n a i r a v e r a g e h e a t c a p a c i t y ;

T . is th e c o m b u s t i o n a i r f u rn a c e i n le t te m p e r a t u r e ;

T b i s t h e b a s e t e m p e r a t u r e a t w h i c h t h e f u e l h e a t i n g v a l u e i s k n o w n ;

W i s th e f u e l f l o w r a t e ;

C ps i s t h e f u e l a v e r a g e h e a t c a p a c i t y ;

T i s t h e f ue l f u r n a c e i n l e t te m p e r a t u r e ;

A H i s t h e fu e l n e t h e a t i n g v a l u e a t T b;

C p . i s t h e f l u e g a s a v e r a g e h e a t c a p a c i t y ;

Tg i s th e f l ue g a s o u t l e t t e m p e r a t u r e .

E q u a t i o n ( 4) c a n b e a p p l i e d s e p a r a t e l y to r e c u p e r a t e d ( s u b sc r ip t r ) a n d u n r e c u p e r a t e d( s u b s c r ip t u ) f u r n a c e s . S in c e t h e f u r n a c e h e a t l o a d i s a s s u m e d t o b e t h e s a m e f o r t h e

r e c u p e r a t e d a n d u n r e c u p e r a t e d c a s e s , d i v i d i n g t h e t w o h e a t b a l a n c e s y i e l d s t h e f u e l

u s a g e r a t i o :

~ , / i , ' v s . =

( ~ / W : ) . C , . . ( T o . - r ~ ) + C , t . ( r : . - r ~ ) + a H : - ( I + W . / ~ ) . C , , . ( T + . - r ~ )

(I , J W f ) , C , . . ( T ~ , - T b ) + C p ., . .( T Ir T ~ ) + A H f - ( ! + W . / W : ) , C , , , , ( T ~ , T ~ ) .

( 5 )

I f i t i s a s s u m e d t h a t t h e f l ue g a s t e m p e r a t u r e a n d t h e a i r -t o - f u e l r a t i o a r e t h e s a m e f o r

t h e r e c u p e r a t e d a n d u n r e c u p e r a t e d c a s e s a n d t h a t t h e f u e l i n l e t t e m p e r a t u r e i s T b ,

e q u a t i o n ( 5 ) c a n b e s i m p l i f i e d t o :

W I , / ~ . = ( W J W ~ ) C p . . (T . . - Tb) + A H - - (1 + W o / W ~ ) C , g ( T g - T b ) (6 )

( W , / W f ) C p ° . . ( T = . - T b ) + A H f - ( I + I / V . / W f ) C t , , ( T g - T b )

Page 10: Ceramic Heat Pipe for High Temperature Heat Recovery

8/4/2019 Ceramic Heat Pipe for High Temperature Heat Recovery

http://slidepdf.com/reader/full/ceramic-heat-pipe-for-high-temperature-heat-recovery 10/11

19 8 HAL J. STRUMPF

Table 4 . Fuel sav ings i i

P r o b l e m s t at e m e n t

F u e l P e r c e n t a g e C o s tsav ings fue l sav ings ,

l b / s s a v i n g s $ / y

Stee l soak ing p i t , 1600°F a i r p reh ea t 0 .234 43 .8 455 ,600Alu m inum rem el t furnace , 1600°F a i r p reh ea t 0 .277 43 .4 539 ,300Gla ss m el t ing furnace , 2000 °F a i r p reh ea t 0 .333 57 .1 648,300

r! Co nv ers ion facto rs kg /s = (0.4536) f ib/s); °C = (°F-32)/1.8.

Since IVy ,, Wf f W I , T~ ,, Tg, an d T~, a r e a l l ava i l ab le f rom the p rob lem s ta t e m en t s (Tab le 1 ),

s e lec t ion o f a fue l ne t he a t ing va lue i s su f f ic i en t f o r the ca lc u la t io n o f the f ue l sav ings . To

p e r f o r m t h e c a l c u l a t i o n , a n e t h e a t i n g v a l u e o f 20 ,0 0 0 B t u / l b ( 46 ,0 0 0 J / g ) a t 6 0 ° F (1 6 °C )

i s a s s u m e d . T h i s i s a r e p r e s e n t a t i v e v a l u e f o r n a t u r a l g a s e s a n d f u e l o i l s . B a s e d o n t h i s

va lue , the fue l s av ings (WI , - WI , f o r each o f the th r e e p ro ces s e s i s p r es e n ted in Tab l e 4 .

A ls o l i s t ed i s the pe rcen tage f ue l s av ings , de f ined as 100 ( W I . - WI,) /WI. . Th e co s t sav-

i n g s g i v e n i n T a b l e 4 a r e b a s e d o n 1 0 0~ o f u r n a c e u t i l i z a ti o n f o r 8 0 0 0 h / y a n d a fu e l c o s to f $3 .38 /106 BTU ($3 .21 /109 J ) bas ed on f ue l g ro s s hea t ing va lue .

I t c a n b e s e e n f r o m T a b l e 4 t h a t f l u e g a s r e c u p e r a t i o n o f f e r s s u b s t a n t i a l f u e l s a v i n g s

p o t e n ti a l. A d v a n c e d b u r n e r d e v e l o p m e n t m a y b e d e s ir a b l e t o m a x i m i z e t h e b e n e f it s o f

r e c u p e r a t i o n .

E C O N O M I C A N A L Y S I S

E c o n o m i c a n a l y s e s w e r e p e r f o r m e d t o d e t e r m i n e t h e p a y b a c k p e r i o d s f o r f l u e g a s

r e c u p e r a t i o n u s i n g t h e c e r a m i c h e a t p i p e a n d m e t a l l ic h e a t e x c h a n g e r d e s ig n s d e v e l o p e d .

T h e c o s t o f t h e r e c u p e r a t o r s i s o n l y a p o r t i o n o f t he t o t a l h e a t r e c o v e r y s y s te m c o s t . T h e

c o s t a s s u m p t i o n s a r e l i st e d b e l o w ; t h e a s s u m p t i o n s a r e b a s e d o n c e r a m i c v e n d o r i n fo r -m a t i o n , d i r e c t i o n f r o m L A S L , a n d A i R e s e a r c h e x p e r i e n c e o n o t h e r w a s t e h e a t r e c o v e r yin s ta l l a t ions .

1 . Ceram ic he a t p ip es : $2 5 /1b ($55 /kg ) f o r tub e p r od uc t ion ; $67 /1b ($148 /kg ) f o r r e f r ac -

to ry l ine r ; $20 /h f o r hea t p ipe a s s e m bly (2 .5 h pe r tube) .

2 . C e r a m i c e n d s u p p o r t s ( t u b e p la t e s ) a n d c e n t r a l p a r t i t i o n : $ 5 0/1 b ( $ 1 1 0 /k g ) p l u s $ 1 0 0

p a c k i n g c o s t .

3 . M e t a l l i c r e c u p e r a t o r : $ 1 0 / l b ( $ 2 2 /k g ) c o m p l e t e l y f a b r ic a t e d .

4 . A s s e m b l y l a b o r o n - s i t e : $ 1 8 / m a n - h o u r : 4 0 h f o r m e t a l l i c u n i t a n d 0 .5 h p e r h e a t p i p e

t u b e .

5 . T ran s i t ion duc t ing : $50 /f t 2 ($538 /m2) .

6. Ins ula t io n: $20/ft z ($215 /m 2) for 1600 °F (870°C) de s ign s ; $25/ft z ($269/m 2) for 20 00 °F

(1090°C) des igns .

7 . S u p p o r t s t r u c t u r e : $ 2 . 5 0 /i b ($ 5 .5 1 /k g ); w e i g h t e q u a l s o n e - h a l f r e c u p e r a t o r p l u s d u c t -

ing we igh t .

8 . F an s : $400 /a i r hp ($536/kW) .

9 . Co n t ro l s , i n s t rum en ta t ion , e tc . : $5000 / lb /s ($11 ,000 /kg / s ) to t a l f low ( a i r p lu s gas ).1 0. A & E f ee : 1 5 ~ o o f c o s t .

I t s h o u ld b e p o i n t e d o u t t h a t t h e c o s t a n a l y s is d o e s n o t i n c l u d e a n y b u r n e r r e p la c e -

m e n t c o s t s o r c o s t s a s s o c i a t e d w i t h r e t r o f i t t i n g t h e h e a t r e c o v e r y s y s t e m t o a s p e c i f i c

i n s t a l la t i o n . T h e s e c o s t s , i f a n y , a r e s i t e - sp e c i fi c a n d c a n n o t b e r e a d i l y g e n e r a li z e d . T h e

c a l c u l a t e d c o s t s a r e p r e s e n t e d i n T a b l e 5 .B a s e d o n t h e s e c o s t s a n d t h e f u e l s a v i n g s g i v e n i n T a b l e 4 , s i m p l e p a y b a c k p e r i o d s c a n

b e c a l cu l a te d . T h e s i m p l e p a y b a c k p e r i o d is t h e r a t io o f t h e t o t a l s y s t e m c o s t t o t h e f u e l

c o s t s a v in g s . T h e p a y b a c k p e r i o d s a r e 0 . 4 0 y e a r f o r t h e s t e e l s o a k i n g p i t, 0 . 4 4 y e a r f o r t h e

a l u m i n u m r e m e l t fu r n a c e , a n d 0 . 3 0 y e a r fo r t h e g la s s m e l t i n g f u r n a c e . T h e s e p a y b a c k

Page 11: Ceramic Heat Pipe for High Temperature Heat Recovery

8/4/2019 Ceramic Heat Pipe for High Temperature Heat Recovery

http://slidepdf.com/reader/full/ceramic-heat-pipe-for-high-temperature-heat-recovery 11/11

C e r a m i c h e a t p i p e s f o r h e a t r e c o v e r y 1 9 9

p e r i o d s d o n o t i n c l u d e a n y a l l o w a n c e f o r h i g h - t e m p e r a t u r e b u r n e r o r s p e c if ic r e t r o f i tt i n g

c o s t s . H o w e v e r , e v e n if t h e s e c o s t s e q u a l t h e s y s t e m c o s t s c a l c u l a t e d i n T a b l e 5 , t h e

p a y b a c k p e r i o d s w o u l d a l l s t i l l b e l e s s t h a n o n e y e a r .

T a b l e 5 . C o s t s u m m a r y f o r c e r a m i c h e a t p i p e s y s t e m s ( d o l l a r s )

I t e m

S t e el A l u m i n u m G l a s ss o a k i n g r e m e h m e l t i n g

p i t f u r n a c e f u r n a c e

C e ra m i c h e a t p i p e s 5 3 ,0 0 0 5 1 ,8 0 0 6 4 ,7 0 0C e r a m i c e n d s u p p o r t s a n d c e n t r a l b a f fl e 6 8 0 0 6 7 0 0 8 3 0 0M e t a l l i c r e c u p e r a t o r 8 1 0 0 8 7 0 0 4 9 0 0A s s e m b l y l a b o r

H e a t p i p e s 1 6 0 0 1 6 0 0 2 0 0 0M e t a l l i c r e c u p e r a t o r 7 0 0 7 0 0 7 0 0

T r a n s i t i o n d u c t i n g 7 7 0 0 6 6 0 0 6 6 0 0I n s u l a t i o n 3 1 0 0 2 6 0 0 3 3 00Su p p o r t s t ru c t u re 1 3 ,7 0 0 1 2 ,6 0 0 1 2 , 60 0Fa n s 9 6 0 0 4 9 ,6 0 0 1 7 , 80 0A d d i t i o n a l i t e m s 5 6 ,0 0 0 6 7 ,3 0 0 4 6 ,3 0 0

Su bto t a l 160 ,300 208 ,200 167,200A & E f e e 2 4 0 0 0 3 1 ,2 0 0 2 5 , 10 0

To ta l cos t 184 ,300 239 ,400 192 ,300

A cknow l edgem ent s - - Th i s w o r k w a s s u p p o r t e d b y t h e U n i v e r s i t y o f C a l i f o r n i a L o s A l a m o s S c ie n t if ic L a b o r a -t o r y u n d e r P u r c h a s e O r d e r 4 - L 2 9 - 5 5 5 - O K - I . W . S . M i l le r a n d M . V . G r e e v e n m a d e s i g n if ic a n t c o n t r i b u t i o n s t ot h e s t u d y .

N O M E N C L A T U R E

C = C a p a c i t y r a t eC p = H e a t c a p a c i t y a t c o n s t a n t p r e s s u r eQ = F u r n a c e h e a t lo a dq = H e a t t r a n s f e r r e d

T,t = T e m p e r a t u r e

U A = O v e r a l l t h e r m a l c o n d u c t a n c eW = F l o w r a t e

A H = N e t h e a t i n g v a l u e

Subscripts

a = A i rb = B a s e ( r e f e r e n c e )c = C o l d s i d e

f = Fu e l

g = G a sh = H o t s i d eL = C o u p l i n g f lu i d

r = R e c u p e r a t e du = U n r e c u p e r a t e d

R E F E R E N C E S

1 . E . S. K e d d y a n d W . A . R a n k e n , C e r a m i c p i p e s f o r f u r n a c e h e a t r e c o v er y . Chemical Engineering Progress 7 5 ,

3 5 -3 7 ( D e c . 1 9 7 9 ) .2 . K . T . F e l d m a n a n d D . C . L u , P r e l i m i n a r y d e s i g n s t u d y o f h e a t p i p e h e a t e x c h a n g e r s . 2 n d I n t . H e a t P i p e

C o n f . , B o l o g n a , I t a l y , 4 5 1 -4 6 2 ( 1 9 7 6 ) .3 . Y . W a k i y a m a , K . H a r a d a , S . I n o u e , J . F u j i t a a n d H . S u e m a t s u , Heat Transfer Jap. Res. 7 , 2 3 - 3 9 ( J a n .

1978).

4 . A. F . L o n d o n a n d W . M . K a y s , T h e l i q u i d - c o u p l e d i n d i r e c t - t r a n s f e r r e g e n e r a t o r f o r g a s - t u r b i n e p l a n t s ,Trans. Am. Soc. mech. Enors " /3 , 529-542 (1951) .

5 . J . C. E a s t w o o d , L i q u i d - c o u p l e d i n d i r e c t - t r a n s f e r e x c h a n g e r a p p l i c a t i o n t o t h e d i e s e l e n g i n e . J. Enong Pwr1 0 1 , 5 1 6 - 5 2 3 ( 1 9 7 9 ) .

6 . H . J. S t r u m p f a n d W . S. M i ll e r , C e r a m i c h e a t p i p e r e c u p e r a t o r s t u d y . R e p o r t N o . 7 9 -1 6 48 0 , A i R e s e a r c hM a n u f a c t u r i n g C o m p a n y ( M a y 1 9 8 0) .