center for photonic communication and computinglaboratory for atomic and photonic technology...

81
ter for Photonic Communication and Computing Laboratory for Atomic and Photonic Techno L.A.P.T. L.A.P.T. L.A.P.T. L.A.P.T. Manifestation of General Relativity in Practical Experiments Selim M. Shahriar Laboratory for Atomic and Photonic Technology Northwestern University Evanston, IL [http://lapt.ece.northwestern.edu]

Post on 20-Dec-2015

230 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Manifestation of General Relativity in Practical Experiments

Selim M. Shahriar

Laboratory for Atomic and Photonic TechnologyNorthwestern University

Evanston, IL

[http://lapt.ece.northwestern.edu]

Page 2: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Page 3: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Page 4: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

GR-Relevant Terrestrial Experiments

SAGNAC EFFECT FOR SENSING OF LENSE-THIRRING ROTATION Using Fast-Light Interferometry Using Atomic Interferometry

ARTIFICAL BLACKHOLE USING SLOW LIGHT

GPS AND QUANTUM CLOCK-SYNCHRONIZATION

EQUIVALENCE PRINCIPLE AND SLOW-LIGHT

LIGO PROJECT FOR DETECTING GRAV. WAVES

FAST-LIGHT AND ATOMIC INTER. FOR DET. GRAV. WAVES

...

Page 5: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

GR-Relevant Terrestrial Experiments

SAGNAC EFFECT FOR SENSING OF LENSE-THIRRING ROTATION Using Fast-Light Interferometry Using Atomic Interferometry

ARTIFICAL BLACKHOLE USING SLOW LIGHT

GPS AND QUANTUM CLOCK-SYNCHRONIZATION

EQUIVALENCE PRINCIPLE AND SLOW-LIGHT

LIGO PROJECT FOR DETECTING GRAV. WAVES

FAST-LIGHT AND ATOMIC INTER. FOR DET. GRAV. WAVES

...

Page 6: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

GR-Relevant Terrestrial Experiments

SAGNAC EFFECT FOR SENSING OF LENSE-THIRRING ROTATION Using Fast-Light Interferometry Using Atomic Interferometry

ARTIFICAL BLACKHOLE USING SLOW LIGHT

GPS AND QUANTUM CLOCK-SYNCHRONIZATION

EQUIVALENCE PRINCIPLE AND SLOW-LIGHT

LIGO PROJECT FOR DETECTING GRAV. WAVES

FAST-LIGHT AND ATOMIC INTER. FOR DET. GRAV. WAVES

...

Page 7: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Quick Review of Lense-Thirring Effect

Page 8: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

• Rotation with respect to absolute space gives rise to centrifugal forces, as illustrated by the “bucket experiment“:

Page 9: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Inertia is a phenomenon that relates the motion of bodies to the

motion of all matter in the universe (“Mach‘s Principle“).

Page 10: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

w will later be called Thirring-Lense frequency.

The rotation of the earth should “drag“ (local) inertial frames.

verysmalleffect

very smallfrequency

Page 11: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

More convenient

than water buckets

are torque-free

gyroscopes...

Dragging = precession

of gyroscope axes

Page 12: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

• The interior of a rotating spherical matter shell is (approximately) an inertial frame that is dragged, i.e. rotates with respect to the exterior region:

(valid in the weak field approximation =linearized theory)

2

4 2

3 3SRG M

c R R

M = mass of the sphere

R = radius of the sphere

Page 13: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

• Dragging effects outside the shell:3

2

2

3

G M R

c R r

In the equatorial plane:

Page 14: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

• Dragging effects near a massive rotating sphere:

( )x ������������������������������������������

Page 15: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

• Dragging of the orbital plane:

Newtonian gravity General relativity

Page 16: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

• Magnitude of the effect:

dd = 0.13 cm ( = 0.886 cm)

Circular orbit of radius r :

2

2

4

5SE

Sat

R Rd

r

Earth satellite with close orbits:

0.26 arc-seconds/year

Angular frequency of the orbital plane:

SR

Page 17: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

• Useful analogy that applies for stationary (weak) gravitational fields:

“Newtonian“ part of the gravitational field “electric“ behaviour:

“Machian“ part of the gravitational field “magnetic“ behaviour

(sometimes called “gravimagnetism“):

1/r² attractive force

matter flow

Lense-Thirring frequency

Rotatingbody:Bothbehavioursapply!

Page 18: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Rotating charge distribution <-> rotating matter

Page 19: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

• George Pugh (1959), Leonard Schiff (1960)

Suggestion of a precision experiment using a gyroscope in a satellite

• I. Ciufolini, E. Pavlis, F. Chieppa, E. Fernandes-Vieira and J. Perez-Mercader: Test of general relativity and measurement of the Lense-Thirring effect with two Earch satellites

Science, 279, 2100 (27 March 1998)

Measurement of the orbital effect to 30% accuracy, using satellite data (preliminary confirmation)

• I. Ciufolini and E. C. Pavlis: A confirmation of the general relativistic prediction of the Lense-Thirring effect

Nature, 431, 958 (21 October 2004)

Confirmation of the orbital effect to 6% accuracy, using satellite data

• Gravity Probe B, 2005

Expected confirmation of gyroscope dragging to 1% accuracy

Sattelite-based Tests:

Page 20: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

• 2 satellites LAGEOS (NASA, launched 1976) andLAGEOS 2 (NASA + ASI, launched 1992)

• Original goal: precise determinationof the Earth‘s gravitational field

• Major semi-axes: 12270 km, 12210 km

• Excentricities: 0.004 km, 0.014

• Diameter: 60 cm, Mass: 406 kg• Position measurement by reflection

of laser pulses(accurate up to some mm!)

• Main difficulty: deviations from spherical symmetry of the Earth‘s gravity field

1a 2a

LAGEOS

LAGEOS 2

1 2

LAGEOS

LAGEOS 2

LAGEOS Project:

Page 21: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

• Improved model of the Earth‘sgravitational field:EIGEN-GRACE02S

• Evaluation of 11 years position data

• Improved choice of observables(combination of the nodes of bothsatellites)

Observed value = 99% 5% of the predicted value LAGEOS

LAGEOS 2

Page 22: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

• Satellite based experiment, NASA und Stanford University

• Goal: direct measurement of the dragging(precession) of gyroscopes‘ axesby the Lense-Thirring effect(Thirring-Schiff-effect)

• 4 gyroscopes with quartz rotors: theroundest objects ever made!

• Launch: 20 April 2004

• Orbital plane: Earth‘s center + north pole + IM Pegasi (guide star) Launch window: 1 Second!

• Expectation for 2005: Measurement of the Thirring-Lense frequency with an accuracy of 1%

Gravity Probe B:

Page 23: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Terrestrial Tests Using Precision Gyroscopes

VCO1

AOM1 AO

M2 VCO2

diff.

Las

er

?V1

beatdet

? f

diff

.

? V2

?VCO1VCO1

AOM1 AO

M2 VCO2VCO2

diff.diff.

Las

er

Las

er

?V1 ?V1V1

beatdet

? f

diff

.d

iff.

? V2? V2V2

?

Ring Laser Gyroscope Atom-Interferometric Gyroscope

Page 24: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Quick Look at Atom-Interferometry

Page 25: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

ATOM INTERFEROMETRY: BASIC IDEA

ATOM AS A dE Broglie WAVE

vv

= (h / m v)

Rb at 300o C:

= 0.0153 nm

2 Sin

ATOMIC INTERFERENCE FRINGES

Page 26: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

LASER-CONTROLLED SPIN EXCITATION

NB

Time

OFF-RESONANT

|B>

|E>

|A>

METHOD FOR ACHIEVING LARGE ANGLE:

Page 27: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

RF EXCITATION OF ATOMS

NB

Time

|B, p+k >

|E>

|A, p>

TRAVELLING WAVES

Page 28: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

LASER-CONTROLLED SPIN EXCITATION

NB

Time

|E>

EASY TO LOCALIZE

MUCH STRONGER

OFF-RESONANT

DECOHERENCE FREESTRONG RECOIL

|A, p>

|B, p+2k >

Page 29: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

LASER-CONTROLLED SPIN EXCITATION RECOIL

|E>

|A>

|B>

|E>

|A>

|B>

k

|E>

|A>

|B>

k

|E>

|A>

|B>

2k

Page 30: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

PUSHING TO THE RIGHT |E>

|A>

|B, 2k>

PUSHING TO THE LEFT

|E>

|A, p>

|B, -2k>

Page 31: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

SPLITTING ATOMIC WAVES USING LCSE

|A>

|B>

|A>

|B, 2k>

|B,- 2k >

|A, 4k>

Page 32: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

INTERFEROMETER IN ONE DIMENSION

100 k SPLITTING POSSIBLE

SYSTEM: 87RB

FRINGE SPACING: ~ 4 NM

Page 33: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Atomic Sagnac Interferometer

|a>

|b>

L L

d

vx

π/2 π

π/2

1 1 1

2 22

1

2

BCI

CI

|a>

|b>

x

z

|a>

|b>

L L

d

vx

π/2 π

π/2

11 11 11

22 2222

11

22

BCI

CI

|a>

|b>

x

z

3035 MHz

121 MHz

F=3

F=2

DOP

R1

R2

F’=4F’=3

1517.5 MHz

OP GALVOSCANNER

D

PM

T

R1

R2A

B

3035 MHz

121 MHz

F=3

F=2

DOP

R1

R2

F’=4F’=3

1517.5 MHz

3035 MHz

121 MHz

F=3

F=2

DOP

R1

R2

F’=4F’=3

1517.5 MHz

OP GALVOSCANNER

D

PM

T

R1

R2

OP GALVOSCANNER

D

PM

T

R1

R2AA

BB

Page 34: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Quick Look at Sagnac Effect

Page 35: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

General View of the Sagnac Effect

DetW

CW

CCW

Det

Wave-Source

W

CW

CCW

WAVE SOURCES:

Optical Waves

Matter Waves

Acoustic Waves

???

Page 36: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

General View of the Sagnac Effect

Det

CW

CCW

Det

Wave-Source

CW

CCW

Det

CW

CCW

Det

Wave-SourceWave-Source

CW

CCW

BS1 BS2

R

DEFINE:

CW(+)

CCW(-)

VP : Phase Velocity in Absence of Rotation

RV: Relativistic Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 T

Page 37: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

General View of the Sagnac Effect

BS1 BS2

R

CW(+)

CCW(-)

VP : Phase Velocity in Absence of Rotation

RV: Relativistic Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 T

2/1 oP

PR CvV

vVV

vTRL RVLT /

Page 38: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

BS1 BS2

R

CW(+)

CCW(-)

2/1 oP

PR CvV

vVV

vTRL RVLT /

General View of the Sagnac Effect

)1/(/2)1(

2 222

ooo

o

CvfortCAC

ATTt

VP : Phase Velocity in Absence of Rotation

RV: Relativistic Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 T

A : Area normal to

Page 39: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

BS1 BS2

R

CW(+)

CCW(-)

General View of the Sagnac Effect

)1/(/2)1(

2 222

ooo

o

CvfortCAC

ATTt

VP : Phase Velocity in Absence of Rotation

RV: Relativistic Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 T

A : Area normal to

NOTE:

This expression does not depend at all on the velocity of the wave It involves the free space velocity of light only, even if acoustic waves or matter waves are used

For optical waves, this results is independent of the refractive index

Page 40: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

BS1 BS2

R

CW(+)

CCW(-)

General View of the Sagnac Effect

)1/(/2)1(

2 222

ooo

o

CvfortCAC

ATTt

VP : Phase Velocity in Absence of Rotation

RV: Relativistic Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 T

A : Area normal to

)(/4 2 shiftphaseSagnacgenericCfAt o

Page 41: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

General View of the Sagnac Effect

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

BA

B

1

1

4

3

2

1

2

3

4

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

BA

B

A

B

A

B

A

B

A

B

A

B

A

BA

B

A

B

1

1

4

3

2

1

2

3

4

Result is independent of Axis of Rotation

Page 42: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

General View of the Sagnac Effect

)(/4 2 shiftphaseSagnacgenericCfAt o

OPTICAL SAGNAC PHASE SHIFT:

MATTER-WAVE SAGNAC PHASE SHIFT:

f=Co/o

)1/1/1(;/ 22oGoGo CVforCVhmCf

Relevant Frequency is the Compton Frequency:

Page 43: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Wrong View of the Sagnac Effect

Page 44: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Wrong View of the Sagnac Effect

Now a team led by Wolfgang Schleich at the University of Ulm in Germany have suggested a way to adapt the ring-laser gyros currently used to track rotation in aircraft and satellites…..

These devices fire laser beams in opposite directions around a fibre-optic ring. If a plane is turning, the laser beam travelling with the rotation has to travel further to catch up with its starting point, so it arrives later than the beam travelling against the rotation. When the beams meet, they create an interference pattern from which it is possible to work out the difference in the arrival times of the two beams, and hence the rate of rotation…..

Shleich points out that the same principle also works with cold atom beams, and because atoms move more slowly than light, the shift is more obvious. This should allow far slower rates of rotation to be measured.

Page 45: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

“Wrong” View of the Optical Sagnac Effect

This happens to be correct only when the index is unityThis line of reasoning gives the wrong result when n1

BS1 BS2

R

CW(+)

CCW(-)

vTRL RVLT /

VP : Phase Velocity in Absence of Rotation

RV: Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 T

A : Area normal to

oPR CVV

2/2 oCATTt )/(4 ooCA

Page 46: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

“Wrong” View of the Atomic Sagnac Effect

Page 47: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

“Wrong” View of the Atomic Sagnac Effect

Off by a factor of 2, but pretty close!

BS1 BS2

R

CW(+)

CCW(-)

vTRL RVLT /

VP : Phase Velocity in Absence of Rotation

RV: Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 T

A : Area normal to

COMPR VVV

2/2 COMVATTt

However, fundamentally wrong! VCOM does not influence the result

2/2COMmV hmA /2

Page 48: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Quick Look at Slow and Fast Light

Page 49: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Concept of Phase Velocity of a Monochromatic Wave

Monochromatic plane wave

Constant phase front moves a distance z in time t

tzk

Phase velocity n

c

kt

zvp

t

t 1 t 2

Phase front

t

z z 1= (c/n) t

1 z 2

vp > c does not contradict special theory of relativity

Dispersion relation

.c.ceEt,zE tzkio

Phase tzk

c

nk

Page 50: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Superposition of two single frequency plane waves

Group Velocity: Non-monochromatic Signal

tzkcostzkcosE2

tzkcostzkcosEE

o

2211o

envelope Rapidly oscillating term

2kkk,2

kv

2121

g

2,1i,c

nk,2kkk

,2

n

c

kv

ii21

21

p

Group velocity

Phase velocity

Vg

vp

Wave group

1

2

For non-dispersive mediumn

cvg

Page 51: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Pulse in a Dispersive MediumPulse

t

In a dispersive medium, n(), for no pulse distortion, frequency components add in phase at pulse peak

d

ndnnIndexGroup

kd

d

dnd

n

cvVelocityGroup

tvz,0tc

zn

c

z

d

nd0

d

d

c

nk,tzk

g

g

g

DispersionPhase Index

Slow & fast light effects make use of large dn/d

in the vicinity of material resonance

LightFastdispersionanomalous0d

nd

LightSlowdispersionnormal0d

nd

Page 52: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Dispersion and Slow Light using EIT in a -System

|+> |->

|2>

Dressed State Basis

2s

2p gg

Dark State

gp, probe field

gs, strong field

1

|1>

|3>

|2>

-type atomic system

2

= 021

4gii

iNi2s13122

132

21

Susceptibility to first order in probe field amplitude

For large amplitude of strong field and 1=0

2s

2210

g2s

1302

21

g

N2n,

g

iN4i

ng can be as large as O(107)

vg (< c) O(102) m/s

-- 31 is decoherence rate for ground states

-1.5 -1 -0.5 0 0.5 1 1.5

x 107

0.9995

1

1.0005

inde

x-1.5 -1 -0.5 0 0.5 1 1.5

x 107

0.5

1

1.5

2

x 10-3

abso

rp.

coef

f.

-1.5 -1 -0.5 0 0.5 1 1.5 2

x 107

-1

0

1

2

3

x 10-4

detuning (1)

mag

. of

gro

up in

dex

gs2/

normal dispersion

positive group index

Page 53: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Slow Light in Pr:YSO

Coupling

Probe

Repump

4.64.8

10.2

17.3 5/2

3/2

1/2

1/2

3/2 5/2

Energy Diagram

Experimental Setup

=605.977 nm(Site 1)

-- Repump refills the spectral holes burned by pump and probe fields or prevents persistent SHB due to long population life time of ground state sublevels (100s @ 5K)

-- Appropriate pulse sequences for the beams are generated using AOM switching

Page 54: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Observation of Slow Light in Pr:YSO

Measured group delay ~

100 s = 33 m/sec

Coupling beam switched on at –200 s

Input probebeam

No couplingbeam (x0.25)

Slowedlight

IncompleteProbe absorption

Pro

be tr

ansm

issi

on (

%)

Group delay

70 s

10 msec

R

C

P

1 msec

0.2 msec

Pulse sequence

Turukhin et. al. Phys. Rev. Lett. 88 (2002) 023601

Coupling

Probe

Repump

4.64.8

10.2

17.3 5/2

3/2

1/2

1/2

3/2 5/2

Energy Diagram

Page 55: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Fast Light Using Anomalous Dispersion

L.J. Wang, A. Kuzmich, and A. Dogariu, Nature, 406, 277 (2000).

Page 56: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Fast Light Using Anomalous Dispersion

L.J. Wang, A. Kuzmich, and A. Dogariu, Nature, 406, 277 (2000).

Inside pulse delayed by:

T=L/Vg-L/C=(ng-1)L/C

Inside pulse advanced by:

-T=(1-ng)L/C

Page 57: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Role of Fresnel Drag in Sagnac Effect

BS1 BS2

R

CW(+)

CCW(-)

2/1 oP

PR CvV

vVV

vTRL RVLT /

VP : Phase Velocity in Absence of Rotation

RV: Relativistic Phase Velocities Seen in an Inertial Frame

: time for the Phase Fronts to travel from BS1 t BS2 T

A : Area normal to

)1

1(;2n

vn

CV FF

oR same

FresnelDragCoefficient

Page 58: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Role of Fresnel Drag in Sagnac Effect

2/1 oP

PR CvV

vVV

vTRL RVLT /

)1

1(;2n

vn

CV FF

oR same

FresnelDragCoefficient

ooF ttnt )1(2

ooFn )1(2

Fresnel Drag Effect is Included in the Proper Description of the Sagnac Effect

Page 59: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Doppler Shift and Laub Drag in Sagnac Effect

No Doppler Effect if the Laser is stationery, but the stage rotates,with the no relative motion between the mirrors and the medium

Laser

Det

DetW DetDetW

CW

CCW

VM

VM

VM

VM

Clamp

FlexibleFiber

Laser

Det

DetLaser

stationary

C.

B.

A.

Frame & source stationary; medium rotating

Frame & source rotating; medium stationary

Page 60: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Doppler Shift and Laub Drag in Sagnac Effect

Laser and MZI frame are stationery, and the medium moves with a relative Velocity of VM.

Laser

Det

DetW DetDetW

CW

CCW

VM

VM

VM

VM

Clamp

FlexibleFiber

Laser

Det

DetLaser

stationary

C.

B.

A.

Frame & source stationary; medium rotating

Frame & source rotating; medium stationary

CW(+) and CCW(-) beams are Doppler shifted by equal and opposite amounts, given by:

oM CV /

The relativistic velocities are then given by:

;)1(

22 Fo

ogM

o

oF

oM

o

oF

oo

oR v

n

nnV

n

Cv

n

nV

n

Cv

n

nn

CV

Page 61: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Doppler Shift and Laub Drag in Sagnac Effect

Laser and MZI frame are stationery, and the medium remains stationery (or vice versa)

Laser

Det

DetW DetDetW

CW

CCW

VM

VM

VM

VM

Clamp

FlexibleFiber

Laser

Det

DetLaser

stationary

C.

B.

A.

Frame & source stationary; medium rotating

Frame & source rotating; medium stationary

Here VM=(-v)=-R, so that the relativistic velocities are then given by:

22

11;

o

og

oLL

o

oR n

nn

nv

n

CV

The LaubDrag Coefficient

G.A. Sanders and S. Ezekiel J. Opt. Soc. Am. B, 5, 674 (1988)

Page 62: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Doppler Shift and Laub Drag in Sagnac Effect

Laser and MZI frame are stationery, and the medium remains stationery (or vice versa)

22

11;

o

og

oLL

o

oR n

nn

nv

n

CV

Laser

Det

Det DetDet

CW

CCW

VM

VM

VM

VM

Clamp

FlexibleFiber

Laser

Det

DetLaser

stationary

C.

B.

A.

Frame & source stationary; medium rotating

Frame & source rotating; medium stationary

LaserLaser

Det

Det

Det

Det DetDet

CW

CCW

VM

VM

VM

VM

Clamp

FlexibleFiber

Laser

DetDetDetDet

CW

CCW

VM

VM

VM

VM

Clamp

FlexibleFiber

LaserLaser

Det

DetLaser

Det

DetLaser

Det

Det

Det

DetLaser

Laser

stationary

C.C.

B.B.

A.A.

Frame & source stationary; medium rotating

Frame & source rotating; medium stationary

;)1(2oL tnt oLn )1(2

;og tnt ogn

(For ng>>no)

EnhancementFactor

Page 63: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Optical Sagnac Effect in a Passive Ring Cavity

VCO1

AOM1 AO

M2 VCO2

diff.

Laser

V1

beatdet

f

diff

.

V2

S. R. Balsamo and S. Ezekiel, Applied Physics Letters, 30, 478 (1977)

Page 64: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Optical Sagnac Effect in a Passive Ring Cavity

VCO1

AOM1 AO

M2 VCO2

diff.

Las

er

V1

beatdet

f

diff

.

V2

VCO1VCO1

AOM1 AO

M2 VCO2VCO2

diff.diff.

Las

erL

aser

V1 V1V1

beatdet

f

diff

.di

ff.

V2 V2V2

P

N

n

C

o

oo

2No Rotation:

P

A

nCnC

RvVV

P

NV

oo

o

oo

ooRE

ooE

2

;;2

2

With Rotation:

Page 65: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.Enhancement of Sagnac Effect in a PRC using

Fast-Light

VCO1

AOM1 AO

M2 VCO2

diff.

Las

er

V1

beatdet

f

diff

.

V2

VCO1VCO1

AOM1 AO

M2 VCO2VCO2

diff.diff.

Las

erL

aser

V1 V1V1

beatdet

f

diff

.di

ff.

V2 V2V2

In general:P

NVEo

2

2

(here is considered a parameter whose amplitude is to be determined)

)(1

)( nC

v

n

CvVV

o

oRE

Page 66: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.Enhancement of Sagnac Effect in a PRC using

Fast Light

VCO1

AOM1 AO

M2 VCO2

diff.

Las

er

V1

beatdet

f

diff

.

V2

VCO1VCO1

AOM1 AO

M2 VCO2VCO2

diff.diff.

Las

erL

aser

V1 V1V1

beatdet

f

diff

.d

iff.

V2 V2V2

)(1

)( nC

v

n

CvVV

o

oRE

oooo

oE nnnn

nC

v

n

CV /]/[~;

2~1

P

NVEo

2

2

Self-Consistent Solution:g

oo

o

o

n

n

n

~1

Page 67: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.Enhancement of Sagnac Effect in a PRC using

Fast Light

VCO1

AOM1 AO

M2 VCO2

diff.

Las

er

V1

beatdet

f

diff

. V2

VCO1VCO1

AOM1 AO

M2 VCO2VCO2

diff.diff.

Las

erL

aser

V1 V1V1

beatdet

f

diff

.d

iff.

V2 V2V2

Constraint: 1~ nnn o

]1[//;;/1; 1 ooooo nnRvvnC

Critically Anomalous Dispersion (CAD):

oonn //

og

oo

o

o

n

n

n~1

Page 68: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.Enhancement of Sagnac Effect in a PRC using

Fast Light

VCO1

AOM1 AO

M2 VCO2

diff.

Las

er

V1

beatdet

f

diff

.

V2

VCO1VCO1

AOM1 AO

M2 VCO2VCO2

diff.diff.

Las

erL

aser

V1 V1V1

beatdet

f

diff

.d

iff.

V2 V2V2

Numerical Example for the Constraint:

]1[//;;/1; 1 ooooo nnRvvnC

Consider a ring cavity with R=1 meter, a rotation rate of ~73 micro-radian per second (earth rate), and no=1.5:

The enhancement factor can be as high as 1012 while still satisfying the constraints

og

oo

o

o

n

n

n~1

Page 69: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.Enhancement of General Purpose Interferometric

Sensing Using Fast Light

VCO1

diff.

Laser

V1

beatdet

f

V2

diff

.

AOM1

AOM2

VCO2

TestChamber

ReferenceChamber

Page 70: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.Enhancement of General Purpose Interferometric

Sensing Using Using Fast Light

VCO1

diff.

Las

er

V1

beatdet

f

V2

diff

.

AOM1

AOM2

VCO2

TestChamber

ReferenceChamber

VCO1VCO1

diff.

Las

erL

aser

V1 V1V1

beatdet

fbeatdet

f

V2 V2V2

diff

.d

iff.

diff

.d

iff.

AOM1

AOM2

VCO2VCO2

TestChamber

ReferenceChamber

}1];1[//{;)(: 1

g

oooo n

nnn

nnnregionref

},/{;)(:

oftindependenSnS

nS

nnnregiontest o

Model:

With no dispersion: oo

o Sn

With anomalous dispersion:

};1{; conditionCADthen

n

go

Page 71: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Slow-Light Enhanced Rotation Sensing: Experiment

DetDetD

yeL

aser

AOM

PBS

Pu

mp

Pro

be

SpinningSodium Vapor Cell

HW

P

S-p

olarized

PBS

Pump

Page 72: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Slow-Light Enhanced Rotation Sensing: Experiment

F=2

F=1

5S3/2

Probe

1.772 GHz

Pump

5P1/2

-5 -4 -3 -2 -1 0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Frequency (MHz)

Mag

nit

ude

(a.u

.)

photodiode outputlock-in-detection

-3 -2 -1 0 1 2 30

1

2

3

4

5

6

Frequency (GHz)

Mag

nitu

de (

a.u.

)

Saturated pump absorptionProbe absorption in EIT cell

~ 1.772 GHz

Page 73: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Anomalous Dispersion Enhanced Rotation Sensing: Experiment

AOM1 AO

M2

diff.

beatdet

f

diff

.

Rotation Stage

Clamp

PBS

PB

S

BF-Pump

BF-Pump

hwp

BFPG

Ti-

Sap

hL

aser

FlexibleFiber

Rb vapor Cell

(BPFG: Bi-frequencypump generator)

(PBS: polarizingbeam splitter)

AOM1

AOM2

AOM1 AO

M2

diff.diff.

beatdet

f

diff

.d

iff.

Rotation Stage

Clamp

PBS

PB

S

BF-Pump

BF-Pump

hwp

BFPG

Ti-

Sap

hL

aser

FlexibleFiber

Ti-

Sap

hL

aser

Ti-

Sap

hL

aser

FlexibleFiber

Rb vapor Cell

(BPFG: Bi-frequencypump generator)

(PBS: polarizingbeam splitter)

AOM1

AOM2

Bi-frequencypump

probe

|1>

|2>

|3>

Bi-frequencypump

probe

|1>

|2>

|3>

Page 74: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Anomalous Dispersion Enhanced Rotation Sensing: Experiment

Raman cell

Absorption cell

Off-resonantRaman pump

Probe (or seed)

Opticalpump

Single photondetector

Fabry-Perotfilter

PBS

PBS

WP

PBS

Experimental Set-Up: vapor-cells

Page 75: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Anomalous Dispersion Enhanced Rotation Sensing: Experiment

Experimental Set-Up: Trapped Atoms

Page 76: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Artificial Black-Hole Using Slow Light

Page 77: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Analogy Between Charged Particles in a Magnetic Field

AndPhotons in a Rotating Medium (Gravimagentism)

A (vector potential)

B

BB

B

(magnetic field)

chargedparticle

vForce

(effective magnetic field)

B

Aeff (effective vector potential)

Beff

photons

vForce

RotatingMedium (Vortex)

Beff

Beff

Beff

Beff

Page 78: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Artificial Blackhole with Slow-Lightin a Rotating Medium

(effective magnetic field)

Aeff (effective vector potential)

Beff

Slow-photons(1 cm/sec)

vForce

RotatingMedium (Vortex)

Beff

Beff

Beff

Beff

Page 79: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Artificial Blackhole with Slow-Lightin a Rotating Medium

U. Leonhardt and P. Piwnicki Physical Review A, December 1999 Volume 60, Number 6

Page 80: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

Artificial Blackhole with Slow-Lightin a Rotating Medium

OpticalSchwarzschildRadius

U. Leonhardt and P. Piwnicki Physical Review A, December 1999 Volume 60, Number 6

Page 81: Center for Photonic Communication and ComputingLaboratory for Atomic and Photonic Technology Manifestation of General Relativity in Practical Experiments

Center for Photonic Communication and Computing Laboratory for Atomic and Photonic Technology

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

L. A. P

. T.

GR-Relevant Terrestrial Experiments

SAGNAC EFFECT FOR SENSING OF LENSE-THIRRING ROTATION Using Fast-Light Interferometry Using Atomic Interferometry

ARTIFICAL BLACKHOLE USING SLOW LIGHT

GPS AND QUANTUM CLOCK-SYNCHRONIZATION

EQUIVALENCE PRINCIPLE AND SLOW-LIGHT

LIGO PROJECT FOR DETECTING GRAV. WAVES

FAST-LIGHT AND ATOMIC INTER. FOR DET. GRAV. WAVES

...