cem.sc.mahidol.ac.th › franco_thai › conference › 30oct › saejung.pdf · constants and...

27
Constants and Normal Structure in Banach Spaces Satit Saejung Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand Franco-Thai Seminar in Pure and Applied Mathematics October 29–31, 2009

Upload: others

Post on 25-Feb-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Constants and Normal Structure in BanachSpaces

Satit Saejung

Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand

Franco-Thai Seminar in Pure and Applied MathematicsOctober 29–31, 2009

Page 2: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

This talk is based on the following papers:

◮ A. Jimenez-Melado, E. Llorens-Fuster and S. Saejung, Thevon Neumann-Jordan constant, weak orthogonality andnormal structure in Banach spaces, Proc. Amer. Math. Soc.134 (2006), no. 2, 355–364.

◮ S. Saejung, On James and von Neumann-Jordan constantsand sufficient conditions for the fixed point property. J. Math.Anal. Appl. 323 (2006), no. 2, 1018-1024.

◮ S. Saejung, Sufficient conditions for uniform normal structureof Banach spaces and their duals. J. Math. Anal. Appl. 330(2007), no. 1, 597–604.

Page 3: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

◮ S. Saejung, The characteristic of convexity of a Banach spaceand normal structure, J. Math. Anal. Appl., 337, (2008)123-129.

◮ E. Casini, P. L. Papini, and S. Saejung, Some estimates forthe weakly convergent sequence coefficient in Banach spaces,J. Math. Anal. Appl. 346 (2008) 177-182.

◮ J. Gao and S. Saejung, Normal structure and the generalizedJames and Zbaganu constants, Nonlinear Analysis Series A:Theory, Methods & Applications, 71(7-8) (2009), 3047-3052.

◮ J. Gao and S. Saejung, Some geometric measures of spheresin Banach spaces, Appl. Math Comp. 214 (2009) 102-107.

Page 4: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

This talk is organized as follows:

◮ Some definitions and historical remarks

◮ James and von Neumann–Jordan constants

◮ parameterized James and von Neumann–Jordan constants

◮ generalized James and von Neumann–Jordan constants

◮ Quantitative result

Page 5: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Let X be a Banach space.The research theme of this talk:

properties or conditions on a Banach space X

⇓normal structure of X

Page 6: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Recall that the Banach space X has normal structure1 if everynonempty bounded closed convex subset C of X, withdiam C > 0, contains a non-diametral point, that is, there existsx0 ∈ C such that

sup{‖x − x0‖ : x ∈ C} < diam C.

1Brodskiı, M. S.; Mil’man, D. P. On the center of a convex set. (Russian)Doklady Akad. Nauk SSSR (N.S.) 59, (1948). 837–840.

Page 7: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Kirk’s fixed point theorem2

X has normal structure and is reflexive

⇒ X has the fixed point property

Recall that X has the fixed point property if for every boundedclosed convex subset C of X and every nonexpansive self-mappingT : C → C, that is,

‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C,

there exists a point x0 ∈ C such that

x0 = Tx0,

that is, x0 is a fixed point of T .

2A fixed point theorem for mappings which do not increase distances.

Amer. Math. Monthly 72 (1965), 1004-1006.

Page 8: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Spaces with/without normal structure

Spaces with normal structure

◮ Finite dimensional spaces

◮ Uniformly convex spaces (Clarkson, 1936)

◮ Uniformly smooth spaces

Spaces without normal structure

◮ C[a, b] (the space of real-valued continuous functions on [a, b])

◮ Bynum spaces (Bynum, 1980)

To test whether a given Banach space has normal structure is notan easy task.

Page 9: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Two starting points:

Gao and Lau3 proved that

J(X) <3

2⇒ X has normal structure.

Kato, Maligranda, and Takahashi4 proved that

CNJ(X) <5

4⇒ X has normal structure.

Recall that

J(X) = sup{min{‖x + y‖, ‖x − y‖} : ‖x‖ = ‖y‖ = 1}

CNJ(X) = sup

{‖x + y‖2 + ‖x − y‖2

2‖x‖2 + 2‖y‖2: ‖x‖ + ‖y‖ 6= 0

}

.

3On two classes of Banach spaces with uniform normal structure. StudiaMath. 99 (1991), no. 1, 41–56.

4On James and Jordan-von Neumann constants and the normal structurecoefficient of Banach spaces. Studia Math. 144 (2001), no. 3, 275–295.

Page 10: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Some facts on J(X) and CNJ(X):

√2 ≤ J(X) ≤ 2

◮ X is a Hilbert space ⇒ J(X) =√

2

◮ 1 ≤ CNJ(X) ≤ 2

◮ X is a Hilbert space ⇔ CNJ(X) = 1

◮J(X)2

2 ≤ CNJ(X) ≤ J(X)

◮ J(ℓp) = J(Lp[a, b]) = 21/p if 1 < p ≤ 2

◮ CNJ(ℓp) = CNJ(Lp[a, b]) = 22/p−1 if 1 < p ≤ 2

Recall that

◮ ℓp = {(xn) ⊂ R :∑∞

n=1 |xn|p < ∞}◮ Lp[a, b] = {f : f is a real-valued function on [a, b] and

[a,b] |f |pdµ < ∞}

Page 11: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Let X be a Banach space.The research theme of this talk:

conditions on a Banach space X in terms of J(X) or CNJ(X)

⇓normal structure of X

Page 12: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

The strongest results so far:

J(X) <3

2⇒ J(X) <

1 +√

5

2≈ 1.615 ⇒ X has normal structure

CNJ(X) <5

4⇒ CNJ(X) <

1 +√

3

2≈ 1.366 ⇒ X has normal structure

5Dhompongsa, Keawkhao and Tasena, J. Math. Anal. Appl. 285 (2003),no. 2, 419–435.

6S. Saejung, J. Math. Anal. Appl. 323 (2006), no. 2, 1018-1024.

Page 13: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

The strongest results so far:

J(X) <3

2⇒ J(X) <

1 +√

5

2≈ 1.615 ⇒ X has normal structure

CNJ(X) <5

4⇒ CNJ(X) <

1 +√

3

2≈ 1.366 ⇒ X has normal structure

Remark: Both sufficient conditions cannot be applied for ℓp orLp[a, b] where p is near 1. In fact, it is known that all ℓp or Lp[a, b]where 1 < p < ∞ have normal structure and

J(ℓp) = J(Lp[a, b]) = 21/p if 1 < p ≤ 2;

CNJ(ℓp) = CNJ(Lp[a, b]) = 22/p−1 if 1 < p ≤ 2.

5Dhompongsa, Keawkhao and Tasena, J. Math. Anal. Appl. 285 (2003),no. 2, 419–435.

6S. Saejung, J. Math. Anal. Appl. 323 (2006), no. 2, 1018-1024.

Page 14: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Parameterized James and von Neumann–Joradan constants

We study these constants:7 for 0 ≤ t ≤ 1

J t(X) = sup{min{‖x + ty‖, ‖x − ty‖} : ‖x‖ = ‖y‖ = 1}

CtNJ(X) =

1

2(1 + t2)sup{‖x + ty‖2 + ‖x − ty‖2 : ‖x‖ = ‖y‖ = 1}.

Remark:

◮ J(X) = J1(X)

◮ CNJ(X) = sup{CtNJ(X) : 0 ≤ t ≤ 1}

7S. Saejung, Sufficient conditions for uniform normal structure of Banachspaces and their duals. J. Math. Anal. Appl. 330 (2007), no. 1, 597–604.

Page 15: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Better sufficient conditions:

J(X) <1 +

√5

2

(

⇔ J(X) < 1 +1

J(X)

)

⇒ J t(X) < 1 +t

J t(X) + 1 − tfor some 0 ≤ t ≤ 1

⇒ X has normal structure

Remark: If X = ℓp or X = Lp[a, b] where 1 < p < ∞, thenJ t(X) < 1 + t

Jt(X)+1−t for some 0 ≤ t ≤ 1.

Page 16: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Better sufficient conditions:

CNJ(X) <1 +

√3

2

⇒ (1 + t2)CtNJ(X) <

(1 + ts)2

2(1 + s2)CsNJ(X

∗) − (1 + s)2

for some 0 ≤ t, s ≤ 1

⇒ X has normal structure

Remark: If X = ℓp or X = Lp[a, b] where 1 < p < ∞, then

(1 + t2)CtNJ(X) < (1+ts)2

2(1+s2)Cs

NJ(X∗)−(1+s)2

for some 0 ≤ t, s ≤ 1.

Page 17: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Some improvement in terms of these constants

In 2006, Jimenez-Melado, Llorens-Fuster and Saejung8 proved thefollowing:

J(X) < 1 +1

µ(X)⇒ X has normal structure

CNJ(X) < 1 +1

µ(X)2⇒ X has normal structure

Recall that9

µ(X) = inf

r > 0 : lim supn ‖x + xn‖ ≤ r lim supn ‖x − xn‖for all x ∈ X and all weakly null sequences{xn} in X.

.

8Proc. Amer. Math. Soc. 134 (2006), no. 2, 355–364.9B. Sims, A class of spaces with weak normal structure, Bull. Austral.

Math. Soc. 50 (1994), 523-528.

Page 18: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

J(X) < 1 +1

µ(X)⇒ X has normal structure

CNJ(X) < 1 +1

µ(X)2⇒ X has normal structure

Note: Both results are sharp in the sense that there is a Banachspace X such that X fails to have normal structure and

J(X) = 1 +1

µ(X)and CNJ(X) = 1 +

1

µ(X)2.

Page 19: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

We can prove the following results10:

J(X) < 1 +1

µ(X)

⇒ J t(X) < 1 +t

µ(X)for some 0 ≤ t ≤ 1

⇒ X has normal structure

CNJ(X) < 1 +1

µ(X)2

⇒ CtNJ(X) <

(

1 + tµ(X)

)2

1 + t2for some 0 ≤ t ≤ 1

⇒ X has normal structure

10J. Gao and S. Saejung, Appl. Math Comp. 214 (2009) 102-107.

Page 20: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Generalized James and von Neumann–Joradan constants

Let BX = {x ∈ x : ‖x‖ ≤ 1}. Based on the Hexagonal Lemma ofGao and Lau,11 the following constants are introduced1213:

J(a,X) = sup{

min{‖x + y‖, ‖x − z‖} : x, y, z ∈ BX ,

‖y − z‖ ≤ a‖x‖}

CNJ(a,X) = sup{ ‖x + y‖2 + ‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2: x, y, z ∈ X,

‖x‖ + ‖y‖ + ‖z‖ 6= 0, ‖y − z‖ ≤ a‖x‖}

.

11On two classes of Banach spaces with uniform normal structure. StudiaMath. 99 (1991), no. 1, 41–56.

12Dhompongsa, Kaewkhao, and Tasena, J. Math. Anal. Appl. 285 (2003),no. 2, 419–435.

13Dhompongsa, Piraisangjun, and Saejung, Bull. Austral. Math. Soc. 67(2003), no. 2, 225–240.

Page 21: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

J(a,X) = sup{

min{‖x + y‖, ‖x − z‖} : x, y, z ∈ BX ,

‖y − z‖ ≤ a‖x‖}

CNJ(a,X) = sup{ ‖x + y‖2 + ‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2: x, y, z ∈ X,

‖x‖ + ‖y‖ + ‖z‖ 6= 0, ‖y − z‖ ≤ a‖x‖}

.

Remark:

◮ J(0,X) = J(X)

◮ CNJ(0,X) = CNJ(X)

Page 22: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Improved sufficient conditions:15

The following is an improvement of 14:

J(a,X) <3 + a

2for some 0 ≤ a ≤ 1

⇒ J(a,X) <1 − a +

(1 − a)2 + 4(1 + a)2

2for some 0 ≤ a ≤ 1

⇒ X has normal structure

Remark: For all 0 ≤ a < 1,

3 + a

2<

1 − a +√

(1 − a)2 + 4(1 + a)2

2.

14Dhompongsa, Kaewkhao, and Tasena, J. Math. Anal. Appl. 285 (2003),no. 2, 419–435.

15J. Gao and S. Saejung, Nonlinear Analysis Series A: Theory, Methods &Applications, 71(7-8) (2009), 3047-3052.

Page 23: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Remark: We also obtain an improvement for the generalizedNJ-constant.

Page 24: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

An answer of Llorens-Fuster’s question16

Llorens-Fuster proved that

CZ(X) <16

13⇒ X has normal structure,

where

CZ(X) = sup

{‖x + y‖‖x − y‖‖x‖2 + ‖y‖2

: ‖x‖ + ‖y‖ 6= 0

}

.

He asked this question:

“Is 16/13 sharp in this situation?”

Remark: CZ(X) ≤ CNJ(X) and there is a Banach space X suchthat CZ(X) < CNJ(X).

16E. Llorens-Fuster, Zbaganu constant and normal structure, Fixed PointTheory 9 (2008) 159–172.

Page 25: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

The main tool that Llorens-Fuster used in his paper is the modifiedHexagonal Lemma17. A careful application of this lemma gives thefollowing result:

CZ(X) <16

13≈ 1.23

⇒ CZ(X) <1 +

√3

2≈ 1.36

X has normal structure

Remark: It seems to be unknown whether 1+√

32 is sharp in this

situation.

17S. Saejung, J. Math. Anal. Appl. 330 (2007), no. 1, 597–604.

Page 26: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Quantitative results:

Bynum18 defined the weakly convergent sequence coefficient of Xby

WCS(X) = inf{ limk→∞ sup{‖xn − xm‖ : n,m ≥ k}

inf{

lim supn→∞ ‖xn − y‖ : y ∈ co({xn})}

}

where the infimum is taken over all weakly convergent sequences{xn} which are not norm convergent.It is clear that for reflexive spaces X

WCS(X) > 1 ⇒ X has normal structure.

18Normal structure coefficients for for Banach spaces. Pacific J. Math. 86

(1980), 427-436.

Page 27: cem.sc.mahidol.ac.th › franco_thai › Conference › 30Oct › Saejung.pdf · Constants and Normal Structure in Banach SpacesConstants and Normal Structure in Banach Spaces Satit

Suppose that a Banach space X fails the Schur property, that is,X contains a weakly convergent sequence which is not normconvergent. Then19

◮ WCS(X) ≥ 1

J(X)+ 1−√

5

2

.

◮ WCS(X) ≥ 1J(X)

(

1 + 1µ(X)

)

.

◮ WCS(X) ≥ 1CNJ(X)

(

1 + 1µ(X)2

)

.

In particular, X has normal structure if J(X) < 1+√

52 or

J(X) < 1 + 1µ(X) , or CNJ(X) < 1 + 1

µ(X)2 .

19E. Casini, P. L. Papini, and S. Saejung, J. Math. Anal. Appl. 346 (2008)177-182.