cell metabolism assays for omics research - … · cell metabolism assays research for. genomics...

6
GENE-PROTEIN-METABOLISM LINKS OMICS Cell Metabolism Assays Research for

Upload: ngodung

Post on 14-Sep-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

GENE-PROTEIN-METABOlISM lINKS

OMICSCell Metabolism Assays

Research

for

Genomics Cells use gene expression to synthesize proteins and other products that are essential for various cellular functions. Gene expression levels, while associated with metabolism, cannot solely predict the functional impact on metabolism. This creates a gap in understanding the complex physiological relation between genes and metabolism. researchers are using XF Technology to link functional metabolism to gene expression for a complete picture. The XF Cell mito stress Test measures the key parameters of mitochondrial respiration: basal respiration, ATP-linked respiration, maximal respiration, and spare respiratory capacity. The XF Glycolysis stress Test measures the key parameters of glycolytic activity: glycolysis, glycolytic capacity, glycolytic reserve.

XF Assay reveals a link between histone deacetylase 9 (Hdac9) deletion and mitochondrial respiration correlating to a genetic and functional increase in T regulatory cells.

(beier uH et al., 2015. FAseb J.)

XF Cell Mito Stress Test predicts differentiation status in neuronal progenitor cells (NPCs) derived from patients with mutations causing mitochondrial encepharopathy and stroke-like episodes (MELAS) which correlates to gene expression.

(ma H et al., 2015. nature.)

stanDaRD paRameteRs oF Functional metabolism

Oxy

gen

Con

sum

ptio

n R

ate

(OC

R)

(pm

ol/m

in)

Basal Oligomycin FCCP

500

400

300

200

100

0basal oligomycin

*

OC

R (p

mol

/min

)

FCCP

Control Hdac9 deleted

Rel

ativ

e Ex

pres

sion

Lev

els

MELAS-IPS1

100000

10000

1000

100

10

1

0.1

0.01

0.001MELAS-IPS2 MELAS-IPS3

OCT4SOX1PAX6

NANOGNESTIN

Oxy

gen

Con

sum

ptio

n R

ate

(OC

R)

(pm

ol/m

in/µ

g pr

otei

n)

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

Basal respiration

P<0.054

3

2

1

0

3

2

1

0

3

2

1

0

6

4

2

0

P<0.05

P<0.05P<0.05

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

pmol

O2 p

er m

in p

er m

g pr

otei

n

pmol

O2 p

er m

in p

er µ

g pr

otei

n

pmol

O2 p

er m

in p

er µ

g pr

otei

n

pmol

O2 p

er m

in p

er µ

g pr

otei

n

Maximum respiration

ATP turnover

Oxidative reserveMaximal Respiration

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2Oxy

gen

Con

sum

ptio

n R

ate

(OC

R)

(pm

ol/m

in/m

g pr

otei

n)

Basal respiration

P<0.054

3

2

1

0

3

2

1

0

3

2

1

0

6

4

2

0

P<0.05

P<0.05P<0.05

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

pmol

O2 p

er m

in p

er m

g pr

otei

n

pmol

O2 p

er m

in p

er µ

g pr

otei

n

pmol

O2 p

er m

in p

er µ

g pr

otei

n

pmol

O2 p

er m

in p

er µ

g pr

otei

n

Maximum respiration

ATP turnover

Oxidative reserve

Basal Respiration

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

Oxy

gen

Con

sum

ptio

n R

ate

(OC

R)

(pm

ol/m

in/µ

g pr

otei

n)

Basal respiration

P<0.054

3

2

1

0

3

2

1

0

3

2

1

0

6

4

2

0

P<0.05

P<0.05P<0.05

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

pmol

O2 p

er m

in p

er m

g pr

otei

n

pmol

O2 p

er m

in p

er µ

g pr

otei

n

pmol

O2 p

er m

in p

er µ

g pr

otei

n

pmol

O2 p

er m

in p

er µ

g pr

otei

n

Maximum respiration

ATP turnover

Oxidative reserveSpare Capacity

Oxy

gen

Con

sum

ptio

n R

ate

(OC

R)

(pm

ol/m

in/µ

g pr

otei

n)

Time (min)

15

10

5

0

MELAS-iPS1 MELAS-iPS2 MELAS-iPS3

Oxy

gen

Con

sum

ptio

n R

ate

(pm

ol O

2 per

µg

prot

ein)

Oligomycin

1007550250

FCCP

Time (min)

Rotenone &antimycin A

MElAS-iPS1 MElAS-iPS2 MElAS-iPS3

Oligomycin FCCPRotenone &antimycin A

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2Oxy

gen

Con

sum

ptio

n R

ate

(OC

R)

(pm

ol/m

in/µ

g pr

otei

n)

Basal respiration

P<0.054

3

2

1

0

3

2

1

0

3

2

1

0

6

4

2

0

P<0.05

P<0.05P<0.05

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

MELAS-iPS1

MELAS-iPS3

MELAS-iPS2

pmol

O2 p

er m

in p

er m

g pr

otei

n

pmol

O2 p

er m

in p

er µ

g pr

otei

n

pmol

O2 p

er m

in p

er µ

g pr

otei

n

pmol

O2 p

er m

in p

er µ

g pr

otei

n

Maximum respiration

ATP turnover

Oxidative reserve

ATP Production

mouse T cells

Human neuronal progenitor cells

stanDaRD paRameteRs oF Functional metabolism

pRoteomics Advances in proteomic technology enables genome-wide data analysis, pinpointing specific proteins and expression levels. Proteomic data directly links to metabolism without requiring the regulatory mechanisms associated with mrnA expression and final protein expression. However, conclusions utilizing only these types of experiments are limited. XF Technology not only confirms proteomic data but also allows for further investigation of protein function.

XF Cell Mito Stress Test reveals that protein kinase A (PKA)- dependent changes in protein and gene expression

correlate with changes in ATP-linked respiration.(Wilderman A et al., 2015. J Cell biology.)

XF Glycolysis Stress Test reveals the increased glycolytic capacity of granulocyte-stimulated macrophages (M-BMM), confirming the

inherently higher glycolytic protein expression.(na Yr et al., 2015. mol Cell Proteomics.)

the WoRlD’s most aDVanceD metabolic analyZeRs

Microarray Fold Change2.0 + 1.50-1.99 0.71-1.49

0.51-0.70 0.5-

Not represented

200

150

100

50

0CPT-cAMP - + - +

*

WT PKA-deficient

ATP-

linke

d R

espi

ratio

n R

ate

(pm

ol O

2 /m

in/ 1

x105 c

ells

)

GM-BMM M-BMM

Time (min)

Glucose Oligomycin 2-DG

50

40

30

20

10

01 30 60 90 12

015

018

021

024

0

***

GM-BMM M-BMM

Time (min)

Glucose Oligomycin 2-DG

50

40

30

20

10

01 30 60 90 12

015

018

021

024

0

***

GM-BMM M-BMM

Time (min)

Glucose Oligomycin 2-DG

50

40

30

20

10

01 30 60 90 12

015

018

021

024

0

***

GM-BMM M-BMM

Time (min)

Glucose Oligomycin 2-DG

50

40

30

20

10

01 30 60 90 12

015

018

021

024

0

***

Extra

cellu

lar A

cidi

ficat

ion

Rat

e (E

CAR

)(m

pH/m

in)

GM-BMM M-BMM GO_BP:Glucose metabolic process

mRNA protein

relative expression levelGM-BMM/ M-BMM

0 1 2 3 10 12

RPIAPYGLPFKPLDHBGYS1

FABP5ENO1

ALDOC

Gene & Protein Expression Profile

mRNA protein

pRoVen technoloGy FoR cuttinG eDGe ReseaRch There are over 2,000 references utilizing XF Technology published in leading journals such as nature and Cell. scientists are embracing XF Technology to identify metabolic phenotypes and reprogramming to target metabolic pathways for therapeutic purposes.

I

II

III

IV

Lactate

Pyruvate

Glucose

murine bone-derived macrophagesmurine lymphoma cells

GLYCOLYSIS — ECAR (Extracellular Acidification Rate)

Cells generate ATP via glycolysis independent of oxygen, producing lactic acid and protons. XF Analyzers measure glycolysis by measuring the extracel-lular acidification rate (eCAr) of cells.

MITOCHONDRIAL RESPIRATION —

OCR (Oxygen Consumption Rate)

mitochondria consume oxygen when oxidizing fatty

acids or other substrates to generate ATP. XF

Analyzers measure mitochondrial respiration by measuring the oxygen

consumption rate (oCr) of cells.

Glucose

G6P/F6P

Fructose1,6-P

DHAP

1,3-PGlycerate

Glycerate3P

PEP

Pyruvate

Lactate

Glycerol3P

6PGluconate

G3P

Eryhrose4P

Sedoheptulose7P

Cis-Aconitate

Th1Th17Treg

Relative level normalized to naive(red line)

α-Ketoglutarate

Succinate

Fumarate

Malate

Oxaloacetate

Acetyl CoA

Citrate

1.5

0.50

1

1.5

0.50

1

1.5

0.50

1

3

10

2

6

20

4

15

50

10

6

2

0

4

2

0.51

0

1.5

2

0.51

0

1.5

15

50

10

5

2

0

43

1

5

2

0

43

1

5

2

0

43

1

5

2

0

43

1

25

10

0

2015

5

2.5

1

0

21.5

0.5

2.5

1

0

21.5

0.5

20

510

0

15

8

24

0

6

20

510

0

15

Glycolysis

Oxidative PPP

Nonoxidative PPP

TCA cycle

measuRinG the key paRameteRs oF Functional cell metabolismmetabolomics Techniques, such as mass spectrometry (ms) and nuclear magnetic resonance (nmr), enable the analysis of hundreds of metabolites in a given sample. However, the data from these techniques alone are not sufficient to assess functionality within a biological context. XF Technology provides real-time analysis of cellular response to stress or nutrients, and can direct metabolomics research, adding efficiency and direction to any area of research.

XF Glycolysis Stress Test predicts sensitivity to first-line EGFR inhibitors used in lung adenocarcinoma cells, and correlates to reduced metabolite levels.

(makinoshima H et al., 2014. J biol Chem.)

XF Glycolysis Stress Test and XF Cell Mito Stress Test reveal increased levels of mitochondrial respiration and glycolytic activity in TH17 (T cells) which correlate to changes in metabolite levels.

(Gerriets VA et al., 2015. J Clin invest.)

Extra

cellu

lar A

cidi

ficat

ion

Rat

e (E

CAR

) (m

pH/m

in)

Extra

cellu

lar A

cidi

ficat

ion

Rat

e (E

CAR

) (m

pH/m

in)

Time (min)

Time (min)

Oxy

gen

Con

sum

ptio

n R

ate

(OC

R)

(pm

ol/m

in)

ECAR

(mpH

/min

)

DM

SO GEF

ERLO

DMSO

120

60

0

****** ***

**

HCC827 PC9 H1975

GEF ERLO

DM

SO GEF

ERLO

DM

SO GEF

ERLO

1 2 3

350

175

0pmol

/106 c

ells

**

1 2 3

2,500

1,250

0

pmol

/106 c

ells

*

*

1 2 3

80

40

0pmol

/106 c

ells *

1 2 3

90

45

0pmol

/106 c

ells *

1 2 3

350

175

0pmol

/106 c

ells **

1 2 3

300

150

0pmol

/106 c

ells ***

***

1 2 3

350

175

0pmol

/106 c

ells * **

1 2 3

120

60

0pmol

/106 c

ells **

**

1 2 3

10,000

1,000

100

10pmol

/106 c

ells

****

1 2 3

50,000

25,000

0pmol

/106 c

ells

**

1 2 3

20,000

10,000

0pmol

/106 c

ells **

1 2 3

1,000

500

0pmol

/106 c

ells *

Glucose

GLUTsHKs

PKMsLDHs

PDHs

G6P 6PG

X5PF6P

FBP

DHAP

ATP

G3P 3PG

PEP

PyruvateLactate

Acetyl-CoA

E4P

Ru5P

R5P

60

50

40

30

20

10

00 25 50 75

Glucose Oligomycin 2-DGTh1 Th17 Treg

Extra

cellu

ar A

cidi

ficat

ion

Rat

e (E

CAR

)(m

pH/m

in)

100 125 150

Th1 Th17 Treg60

50

40

30

20

10

00 25 50 75

Glucose Oligomycin 2-DGTh1 Th17 Treg

Extra

cellu

ar A

cidi

ficat

ion

Rat

e (E

CAR

)(m

pH/m

in)

100 125 150

12001400

1000800600400200

00 25 50 75

Time (min)

FCCPOligomycinRotenone &antimycin A

Oxy

gen

Con

sum

ptio

n R

ate

(OC

R)

(pm

ol/m

in)

100 125 150

60

50

40

30

20

10

00 25 50 75

Glucose Oligomycin 2-DGTh1 Th17 Treg

Extra

cellu

ar A

cidi

ficat

ion

Rat

e (E

CAR

)(m

pH/m

in)

100 125 150

12001400

1000800600400200

00 25 50 75

Time (min)

FCCPOligomycinRotenone &antimycin A

Oxy

gen

Con

sum

ptio

n R

ate

(OC

R)

(pm

ol/m

in)

100 125 150

60

50

40

30

20

10

00 25 50 75

Glucose Oligomycin 2-DGTh1 Th17 Treg

Extra

cellu

ar A

cidi

ficat

ion

Rat

e (E

CAR

)(m

pH/m

in)

100 125 150

12001400

1000800600400200

00 25 50 75

Time (min)

FCCPOligomycinRotenone &antimycin A

Oxy

gen

Con

sum

ptio

n R

ate

(OC

R)

(pm

ol/m

in)

100 125 150

12001400

1000800600400200

00 25 50 75

Time (min)

FCCPOligomycinRotenone &antimycin A

Oxy

gen

Con

sum

ptio

n R

ate

(OC

R)

(pm

ol/m

in)

100 125 150

“With very little learning curve, XF Technology provides high-quality data. We generated publishable results within the first month.”

- researcher at Case Western

Reserve University

“When we decided to more closely investigate branched - chain amino acid metabolism, we chose to incorporate our XF Technology, knowing that it is a powerful tool for assessing mitochondrial function and metabolism.” - researcher at university of

California, san diego

“We were really surprised by the impact of measuring metabolism in our model system. This opens up new research avenues for us.” - researcher at rosalind Franklin

medical schoolGEF= Gefitinib ERlO= Erolotinib

What ouR customeRs aRe sayinG

Human lung adenocarcinoma cells

murine T cells

Functional metabolic assaysthe Genotype-phenotype link

The traditional paradigm encompassing the flow of information from gene to protein to function can be found in nearly every biology and biochemistry textbook. At the time, this discovery was thought to explain all of biology, health, and disease. However, only focusing on the expression of a single gene or protein neglects the multi-faceted consequences of that expression on metabolism, as well as overall cell and tissue health.

FullPicture of CellHealth

Gene Expression

FunctionalMetabolism

ProteinExpression

GLUCOSE

GLUTAMATE

FATTY ACID

FATTY ACIDLACTATE CITRATE

Acetyl-CoA

TCA

GLUTAMINEGLYCOLYSIS

(ECAR)

MITOCHONDRIAL RESPIRATION

(OCR)

GLUTAMATE

ETC

PYRUVATE

subsTrATes And meTAbolism

mitochondria are at the crux of cellular energy generation, intracellular signaling, and cell death and survival regulation. Compromised mitochondria can strain the expansive and intricate cellular metabolic network. There is increasing appreciation for the role of mitochondria in disease pathology, etiology, and cell health.

integrating processes that demonstrate the link amongst genes, proteins, and metabolism allows researchers to analytically answer their scientific questions. XF Technology provides researchers the necessary tools to measure the functional, metabolic impact of gene and protein expression, faster and easier using live cells.

PI3/AKT

GLUTAMINOLYSIS

PI3/AKT

HIF1

HIF1 LIPID SYNTHESIS

HIF1

p53

MYC

MYC

MYC

PYRUVATE

TCA

GLUCOSE

GLYCOLYSIS

Genes & meTAbolism linK

© 2015 All rights reserved. Seahorse Bioscience and the Seahorse logo are trademarks of Seahorse Bioscience Inc. The content in this brochure is for informational purposes only and may be subject to change without notice.

Corporate Headquarters

Seahorse Bioscience Inc.16 Esquire RoadNorth Billerica, MA 01862 USPhone: +1.978.671.1600 www.seahorsebio.com

European Headquarters

Seahorse Bioscience EuropeFruebjergvej 32100 Copenhagen DKPhone: +45 31 36 98 78

Asia-Pacific Headquarters

Seahorse Bioscience Asia199 Guo Shou Jing Rd, Suite 207Pudong, Shanghai 201203 CNPhone: 0086 21 33901768

XF Mito Fuel Flex Test Profile Mitochondrial Function

XF Glycolysis Stress Test Profile Glycolytic Function

05

1015202530354045

Extra

cellu

lar A

cidi

ficat

ion

Rate

(EC

AR)

(mpH

/min

)

Glucose

Glycolysis

Oligomycin 2-DG

Glycolytic Capacity

Glycolytic Reserve

0 10 20 30 40 50 60 70 80 90 100

Non-glycolytic Acidification

Time (minutes)

XF Cell Mito Stress Test Profile Mitochondrial Respiration

FCCPRotenone & antimycin A

Proton Leak

00

4080

120160200240280320360

10 20 30 40 50 60 70 80 90 100 110

Non-mitochondrial Oxygen Consumption

Time (minutes)

Oxy

gen

Con

sum

ptio

n Ra

te (O

CR)

(p

mol

/min

)

Spare Capacity

ATPProduction

Oligomycin

Maximal Respiration

Basal Respiration

XF Cell Energy Phenotype Test Metabolic Phenotype & Potential

Oxy

gen

Con

sum

ptio

n Ra

te (O

CR)

Extracellular Acidification Rate (ECAR)

Gold Standard metabolic aSSaySmeasuRinG the key paRameteRs oF cell metabolism

Extracellular Acidification Rate (ECAR)

Oxy

gen

Con

sum

ptio

n R

ate

(OC

R)

Glycolysis

XFp Cell Energy Phenotype Profile

Mito

chon

dria

l Res

pira

tion

Aerobic

Quiescent

Energetic

Glycolytic

BaselinePhenotype

StressedPhenotype

Metabolic Potentia

l

Glucose Pathway

% G

LC+G

LN+F

A Fu

el O

xida

tion

Glutamine Pathway Fatty Acid PathwayGlucose Pathway Glutamine Pathway Fatty Acid Pathway

% G

LC+G

LN+F

A O

xida

tion

XF Mito Fuel Flex Test ProfileMitochondrial Function

100

80

60

40

20

0

Capa

city

Capa

city

Capa

city

Flexibility

DependencyDependency

Dependency

Flexibility

Rev

1