celerychallenge teacherpacket ch -...

20
PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 1 of 20 Last Updated 7/2013 Last Updated 7/2013 Premise: Many students know that plants require water to live, but fewer understand the processes by which plants take up, transport, and release water. Although plants and plant organs clearly have different structures, students are often surprised to learn that all plant cells are not the same. Understanding that plant cells have different structures and roles within in a plant, and that some cells cannot be fully functional until they are dead, is necessary to link an understanding of plant water use to plant structure. In this module, students work with celery to gain experiential understanding of osmosis, transpiration, and cell and tissue types in the context of questions relating to bending and water transport in this species. How the Celery Challenge Works: This module is framed as a challenge to cause and explain the most extreme bending in celery petioles (stalks), designed as two guided inquiries and an open inquiry with introductory and concluding class discussions. In the introductory discussion, students imagine a real world scenario about preparing celery the day before a party. Working in small teams, students observe and try to explain two phenomena: (1) the bending of celery stalks soaked in liquids and (2) the concentration of dye in certain cells within celery stalks placed in colored water. Exploring the forms and functions of different tissues and cells allows students to build an understanding of structure function relationships in biology and lays groundwork for asking and testing a research question in the openended inquiry. Options are offered for focusing inquiry on osmosis, transpiration, different cells structures, or combinations of these factors. The final discussion lets teams compare their bending achievements, share their findings, and come to a consensus of what factors cause stalk bending. Grade levels: High school biology classes are the ideal target for this module. Students at this level have a basic understanding of biology, but complex concepts such as osmosis are still novel and tricky. The module can nevertheless be adapted for middle school and college classes. Many elaborations are appropriate for AP Biology, Botany electives, or undergraduate biology classes. Class Time: The full investigation will take about two and a half weeks. The initial guided inquiries will take less than one week and can lead to an open inquiry extending at least another week. The concluding Storyboard Discussion requires two or three days, including team preparation time. Computer Access: ResearchBlogs are an integral component of the Celery Challenge. Ideally, teams should communicate online every other class session during guided inquiries and Storyboard Discussion, and daily during open inquiry. Minimally, teams should talk with their online mentors throughout the experience, from brainstorming to sensemaking. Team blogs require logins. Celery Challenge: Investigating Water Movement in Plants Teacher’s Guide Overview

Upload: others

Post on 15-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 1 of 20 Last Updated 7/2013 Last Updated 7/2013

 

   

   

       

Premise:    Many  students  know  that  plants  require  water  to  live,  but  fewer  understand  the  processes  by  which  plants  take  up,  transport,  and  release  water.    Although  plants  and  plant  organs  clearly  have  different  structures,  students  are  often  surprised  to  learn  that  all  plant  cells  are  not  the  same.    Understanding  that  plant  cells  have  different  structures  and  roles  within  in  a  plant,  and  that  some  cells  cannot  be  fully  functional  until  they  are  dead,  is  necessary  to  link  an  understanding  of  plant  water  use  to  plant  structure.    In  this  module,  students  work  with  celery  to  gain  experiential  understanding  of  osmosis,  transpiration,  and  cell  and  tissue  types  in  the  context  of  questions  relating  to  bending  and  water  transport  in  this  species.    

How  the  Celery  Challenge  Works:    This  module  is  framed  as  a  challenge  to  cause  and  explain  the  most  extreme  bending  in  celery  petioles  (stalks),  designed  as  two  guided  inquiries  and  an  open  inquiry  with  introductory  and  concluding  class  discussions.    In  the  introductory  discussion,  students  imagine  a  real  world  scenario  about  preparing  celery  the  day  before  a  party.    Working  in  small  teams,  students  observe  and  try  to  explain  two  phenomena:    (1)  the  bending  of  celery  stalks  soaked  in  liquids  and  (2)  the  concentration  of  dye  in  certain  cells  within  celery  stalks  placed  in  colored  water.    Exploring  the  forms  and  functions  of  different  tissues  and  cells  allows  students  to  build  an  understanding  of  structure-­‐function  relationships  in  biology  and  lays  groundwork  for  asking  and  testing  a  research  question  in  the  open-­‐ended  inquiry.    Options  are  offered  for  focusing  inquiry  on  osmosis,  transpiration,  different  cells  structures,  or  combinations  of  these  factors.    The  final  discussion  lets  teams  compare  their  bending  achievements,  share  their  findings,  and  come  to  a  consensus  of  what  factors  cause  stalk  bending.    

Grade  levels:    High  school  biology  classes  are  the  ideal  target  for  this  module.    Students  at  this  level  have  a  basic  understanding  of  biology,  but  complex  concepts  such  as  osmosis  are  still  novel  and  tricky.    The  module  can  nevertheless  be  adapted  for  middle  school  and  college  classes.    Many  elaborations  are  appropriate  for  AP  Biology,  Botany  electives,  or  undergraduate  biology  classes.      

Class  Time:    The  full  investigation  will  take  about  two  and  a  half  weeks.    The  initial  guided  inquiries  will  take  less  than  one  week  and  can  lead  to  an  open  inquiry  extending  at  least  another  week.    The  concluding  Storyboard  Discussion  requires  two  or  three  days,  including  team  preparation  time.    

Computer  Access:    ResearchBlogs  are  an  integral  component  of  the  Celery  Challenge.    Ideally,  teams  should  communicate  online  every  other  class  session  during  guided  inquiries  and  Storyboard  Discussion,  and  daily  during  open  inquiry.    Minimally,  teams  should  talk  with  their  online  mentors  throughout  the  experience,  from  brainstorming  to  sense-­‐making.    Team  blogs  require  logins.  

Celery  Challenge:    Investigating  Water  Movement  

in  Plants  

Teacher’s  Guide  

Overview  

Page 2: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 2 of 20 Last Updated 7/2013 Last Updated 7/2013

 

Crosscutting  Concepts  &  Practices  from  the  Next  Generation  Science  Standards:    

C  O  N  C  E  P  T  S   S  C  I  E  N  T  I  F  I  C      P  R  A  C  T  I  C  E  S  • Matter  is  transported  into,  out  of,  and  within  systems  (5-­‐LS1-­‐1)  

• A  system  can  be  described  in  terms  of  its  components  and  their  interactions  (5-­‐LS2-­‐1)  

• Phenomena  that  can  be  observed  at  one  scale  may  not  be  observable  at  another  scale  (MS-­‐LS1-­‐1)  

• Engineering  advances  have  led  to  important  discoveries  in  virtually  every  field  of  science,  and  scientific  discoveries  have  led  to  the  development  of  entire  industries  and  engineered  systems  (MS-­‐LS1-­‐1)  

• Complex  and  microscopic  structures  and  systems  can  be  visualized,  modeled,  and  used  to  describe  how  their  function  depends  on  the  relationships  among  its  parts;  therefore  complex  natural  and  designed  structures/systems  can  be  analyzed  to  determine  how  they  function  (MS-­‐LS1-­‐2)  

• Cause  and  effect  relationships  may  be  used  to  predict  phenomena  in  natural  or  designed  systems  (MS-­‐LS2-­‐1)  

• The  transfer  of  energy  can  be  tracked  as  energy  flows  through  a  natural  system  (MS-­‐LS2-­‐3)  

• Science  assumes  that  objects  and  events  in  natural  systems  occur  in  consistent  patterns  that  are  understandable  through  measurement  and  observation  (MS-­‐LS2-­‐3)  

• Models  (e.g.,  physical,  mathematical,  computer  models)  can  be  used  to  simulate  systems  and  interactions  –  including  energy,  matter,  and  information  flows  –  within  and  between  systems  at  different  scales  (HS-­‐LS1-­‐2;  HS-­‐LS1-­‐4)  

• Feedback  (negative  or  positive)  can  stabilize  or  destabilize  a  system  (HS-­‐LS1-­‐3)  

• Support  an  argument  with  evidence,  data,  or  a  model  (5-­‐LS1-­‐1)  

• Develop  a  model  to  describe  phenomena  (5-­‐LS2-­‐1;  MS-­‐LS2-­‐3)  

• Science  explanations  describe  the  mechanisms  for  natural  events  (5-­‐LS2-­‐1)  

• Conduct  an  investigation  to  produce  data  to  serve  as  the  basis  for  evidence  that  meet  the  goals  of  an  investigation  (MS-­‐LS1-­‐1)  

• Develop  and  use  a  model  to  describe  phenomena  (MS-­‐LS1-­‐2)  

• Analyze  and  interpret  data  to  provide  evidence  for  phenomena  (MS-­‐LS2-­‐1)  

• Develop  and  use  a  model  based  on  evidence  to  illustrate  the  relationships  between  systems  or  between  components  of  a  system  (HS-­‐LS1-­‐2)  

• Plan  and  conduct  an  investigation  individually  and  collaboratively  to  produce  data  to  serve  as  the  basis  for  evidence,  and  in  the  design:    decide  on  types,  how  much,  and  accuracy  of  data  needed  to  produce  reliable  measurements  and  consider  limitations  on  the  precision  of  the  data  (e.g.,  number  of  trials,  cost,  risk,  time),  and  refine  the  design  accordingly  (HS-­‐LS1-­‐3)  

• Scientific  inquiry  is  characterized  by  a  common  set  of  values  that  include:    logical  thinking,  precision,  open-­‐mindedness,  objectivity,  skepticism,  replicability  of  results,  and  honest  and  ethical  reporting  of  findings  (HS-­‐LS1-­‐3)  

• Use  a  model  based  on  evidence  to  illustrate  the  relationships  between  systems  or  between  components  of  a  system  (HS-­‐LS1-­‐4)  

     

Page 3: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 3 of 20 Last Updated 7/2013 Last Updated 7/2013

 

Disciplinary  Core  Ideas  from  the  Next  Generation  Science  Standards:  

T  R  A  N  S  P  I  R  A  T  I  O  N      &      O  S  M  O  S  I  S   C  E  L  L      &      T  I  S  S  U  E      T  Y  P  E  S  • Organization  for  Matter  and  Energy  Flow  in  Organisms  (5-­‐LS1.C)  o Plants  acquire  their  material  for  growth  chiefly  from  air  and  water  (5-­‐LS1-­‐1)  

• Cycles  of  Matter  and  Energy  Transfer  in  Ecosystems  (5-­‐LS2.B;  MS-­‐LS2.B)  o Matter  cycles  between  the  air  and  soil  and  among  plants,  animals  and  microbes  as  these  organisms  live  and  die.    Organisms  obtain  gases  and  water  from  the  environment,  and  release  waste  matter  (gas,  liquid,  or  solid)  back  into  the  environment  (5-­‐LS2-­‐1)  

o Transfers  of  matter  into  and  out  of  the  physical  environment  occur  at  every  level.    The  atoms  that  make  up  the  organisms  in  an  ecosystem  are  cycled  repeatedly  between  the  living  and  nonliving  parts  of  the  ecosystem  (MS-­‐LS2-­‐3)  

• Structure  and  Function  (MS-­‐LS1.A;  HS-­‐LS1.A)  o Within  cells,  special  structures  are  responsible  for  particular  functions,  and  the  cell  membrane  forms  the  boundary  that  controls  what  enters  and  leaves  the  cell  (MS-­‐LS1-­‐2)  

o Feedback  mechanisms  maintain  a  living  system’s  internal  conditions  within  certain  limits  and  mediate  behaviors,  allowing  it  to  remain  alive  and  functional  even  as  external  conditions  change  within  some  range.    Feedback  mechanisms  encourage  (through  positive  feedback)  or  discourage  (negative  feedback)  what  is  going  on  inside  the  living  system  (HS-­‐LS1-­‐3)  

• Interdependent  Relationships  in  Ecosystems  (MS-­‐LS2.A)  o Organisms,  and  populations  of  organisms,  are  dependent  on  their  environmental  interactions  both  with  other  living  things  and  with  nonliving  factors  (MS-­‐LS2-­‐1)  

• Structure  and  Function  (MS-­‐LS1.A,  HS-­‐LS1.A)  o All  living  things  are  made  up  of  cells,  which  is  the  smallest  unit  that  can  be  said  to  be  alive.    An  organism  may  consist  of  one  single  cell  (unicellular)  or  many  different  numbers  and  types  of  cells  (multicellular;  MS-­‐LS1-­‐1)  

o Multicellular  organisms  have  a  hierarchical  structural  organization,  in  which  any  one  system  is  made  up  of  numerous  parts  and  is  itself  a  component  of  the  next  level  (HS-­‐LS1-­‐2)  

• Growth  and  Development  of  Organisms  (HS-­‐LS1.B)  o Cellular  division  and  differentiation  produce  and  maintain  a  complex  organism,  composed  of  systems  of  tissues  and  organs  that  work  together  to  meet  the  needs  of  the  whole  organism  (HS-­‐LS1-­‐4)  

   

 

 

   

Page 4: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 4 of 20 Last Updated 7/2013 Last Updated 7/2013

 

 

 

 

 

   

Suggested  Schedule  of  Activities:    A  general  outline  for  implementing  this  module  is  shown  below.    None  of  the  individual  learning  activities  are  mandatory;  rather,  they  are  designed  for  you  to  adapt  to  your  classroom.    The  ScienceTalk  is  an  introductory  discussion  to  stimulate  student  thinking  about  water  movement  in  plants.    “Party  Preparations”  and  “Celery  Sucks!”  are  both  guided  inquiries,  with  the  former  focusing  on  osmosis  and  the  latter  on  transpiration  and  cell  types.    The  “Maximum  Bending  Challenge”  is  an  open  inquiry  that  may  focus  on  topics  your  students  are  curious  about  or  learning  goals  you  wish  to  emphasize.    Finally,  the  Storyboard  Discussion  is  a  sense-­‐making  activity  carried  out  at  team  and  classroom  levels,  doubling  as  a  summative  assessment.    Student  blogging  with  scientist  mentors  and  peers  is  encouraged  throughout  the  module.    

Section   Big  Question   Learning  Activities   Follow-­‐Up  

Blogging      

with      

Scientists      

&  Peers  

ScienceTalk   How  do  plants  move  water?  

Class  discussion  of  Juicy  Questions,  short  video(s).  

Student  reflections  on  class  discussion;  set  up  teams  and  ResearchBlogs.  

Party  Preparations  

How  does  salt  affect  the  bending  of  celery  petioles?  

Guided  experiment;  record  data  before  and  after  treatments.  

Summarize  findings  and  develop  research  questions.  

Celery  Sucks!   Do  all  cells  move  water  similarly?  

Set  up  experiments;  record  data  before  and  after  treatments.  

Summarize  findings  and  develop  research  questions.  

Maximum  Bending  Challenge  

What  factors  can  produce  the  greatest  bending  in  celery  petioles?  

Select  a  research  question,  develop  research  predictions  and  experimental  design,  gain  feedback,  and  carry  out  experiment.  

Analyze  data  and  begin  the  sense-­‐making  process  towards  storyboard  development.  

Storyboard  Discussion  

What  do  our  observations  say  about  the  biology  of  celery  bending?  

Teams  prepare  storyboards  and  explain  them  to  classmates.    Individual  teams  are  critiqued  and  can  refine  their  ideas.  

Develop  class  consensus  on  factors  involved  in  celery  petiole  bending.  

 

Assessment  Schema:    The  module  is  designed  to  assess  students  continuously  for  changes  in  understanding  and  reveal  alternate  conceptions.    Regular  online  dialogue  with  scientists,  posting  of  research  notebooks  and  data,  and  classroom  discussions  all  serve  as  embedded  assessment  tools.    Final  

Teacher’s  Guide  

Planner  

Celery  Challenge:    Investigating  Water  Movement  

in  Plants  

Page 5: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 5 of 20 Last Updated 7/2013 Last Updated 7/2013

 

class  presentations  and  discussions,  an  individual  reflection,  blogging  with  the  mentor,  and  the  post-­‐experience  survey  serve  as  summative  assessment  tools.    If  you  wish  to  use  an  exam  for  further  summative  assessment,  examples  of  appropriate  questions  might  include:  

• If  a  student  transfers  algae  cells  to  a  beaker  of  distilled  water,  will  the  algae  be  hypotonic,  hypertonic,  or  isotonic  compared  to  their  surroundings?    Explain  your  answer.  

• What  is  the  main  function  of  xylem  cells?    What  is  special  about  their  structure  that  helps  them  carry  out  this  function?  

• What  is  transpiration?    

Additional  Resources:    Celery  Challenge  Resources  contains  a  bibliography  of  online  videos,  websites,  and  peer-­‐reviewed  articles,  organized  by  media  type.    References  dealing  directly  with  osmosis  and  diffusion,  transpiration,  turgor,  and  plant  cell  and  tissue  types  are  available,  as  are  references  detailing  education  research  on  these  topics.    

Preparation:    A  minimum  of  two  and  a  half  weeks  is  needed  to  complete  the  full  schedule;  an  additional  week  may  allow  deeper  exploration  or  inclusion  of  an  additional  topic  for  open  inquiry.    We  recommend  that  two  inquiries,  either  both  guided,  or  one  guided  and  one  open,  be  completed  together  at  a  minimum.    However,  any  of  the  inquiries  could  be  conducted  as  a  stand-­‐alone  lesson,  and  either  guided  inquiry  could  be  simplified  to  a  demonstration.    

Please  let  your  scientist  mentor(s)  know:  • which  activities  you  will  be  implementing  • your  expected  start  and  end  dates  for  interacting  with  students  online  • how  frequently  your  students  meet  • how  often  students  will  have  computer  access  

 

Students  should  work  in  teams  of  2-­‐5.    Individual  team  members  are  encouraged  to  post  online.    The  image  at  left  indicates  key  opportunities  for  Team  Research  Blogging  in  the  sample  schedule  on  p.  6.    Students  may  blog  from  school  or  home,  but  providing  in-­‐class  time  has  advantages.  

     

Page 6: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 6 of 20 Last Updated 7/2013 Last Updated 7/2013

 

Suggested  plan  for  classes  that  meet  daily  (45  –  60  min  periods):  

  Mon   Tue   Wed   Thu   Fri  Week  1  

ScienceTalk:    How  do  plants  move  water?  (+video)  Form  teams  and  introduce  the  guided  inquiries  Party  Preparations  &  Celery  Sucks!  

Blog:    Register,  set  up  team  web-­‐site,  &  make  first  post  to  scientist.  

Scientist  Prompt:      What  have  you  learned  so  far  about  water  in  plants?  Teams  begin  Party  Preparations  inquiry.  Teams  begin  Celery  Sucks!  inquiry.  

Blog:    Reflect  on  the  Science  Talk  (assessment).  

Teams  collect  data  and  write  follow-­‐up  questions  for  Party  Preparations  inquiry.  Teams  collect  data  and  write  follow-­‐up  questions  for  Celery  Sucks!  inquiry.    

Teams  select  a  research  question,  develop  a  research  prediction,  &  write  up  a  research  plan  for  the  Maximum  Bending  Challenge.  

Blog:    Share  guided  inquiry  findings,  research  question,  predict-­‐tion,  and  plan  with  scientist.  

Blog:    Read  scientist’s  notes  &  feed-­‐back.  Teams  may  need  to  modify  the  research  plan  based  on  feedback.    Prepare  experimental  materials  and  practice  any  challenging  steps.    

Week  2  

Set  up  and  begin  experiments  for  the  Maximum  Bending  Challenge.  

Blog:    Upload  photos  &  initial  data  from  exper-­‐iment;  con-­‐tact  scientist  for  questions  or  troubleshooting.  

Make  observations  &  collect  data.  

Make  observations  &  collect  data.  

Blog:    Upload  photos  &  data  from  on-­‐going  exper-­‐iment;  contact  scientist  for  questions  or  troubleshooting.  

Make  observations  &  collect  data.  

Last  day  of  data  collection;  wrap  up  experiment.      

Blog:    Upload  photos  &  data  from  on-­‐going  exper-­‐iment;  contact  scientist  for  questions  or  troubleshooting.  

Week  3  

Summarize  data  from  all  inquiries  in  graphs,  drawings,  and  tables.    Work  as  a  team  to  make  sense  of  the  findings  from  all  inquiries.        

Prepare  Storyboard  presentation.  

Blog:    Wrap  up  with  re-­‐search  conclu-­‐sions  &  ideas  for  new  experiments  (summative).  

Present,  discuss,  and  critique  Storyboards  as  a  class.    Revise  conclusions  as  needed  to  build  a  class  working  model  of  factors  influencing  celery  bending  (summative).  

   

 

Page 7: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 7 of 20 Last Updated 7/2013 Last Updated 7/2013

 

   

 

 

   

 

GUIDED  &  OPEN  INQUIRIES  ON  OSMOSIS,  TRANSPIRATION,  &  CELL  TYPES    

GOALS & TIMELINE  

Goals:      • Generate  questions  and  predictions  about  

water  movement  and  bending  in  celery  • Record  accurate  qualitative  and  quantitative  

observations  relating  to  macro-­‐scale  effects  of  osmosis  and  transpiration    

• Identify  different  types  of  celery  cells  • Understand  that  water  moves  in  different  

ways  through  different  types  of  plant  cells  due  to  their  different  structures  and  functions  

• Form  coherent  explanations  about  celery  bending  using  evidence  from  multiple  sources  

• Form    coherent  explanations  about  celery  bending  integrating  concepts  of  osmosis,  transpiration  and  cell  type  

Sample  sequence:    • Day  1:  ScienceTalk;  create  teams;  set  up  team  

ResearchBlog  and  make  first  post    • Days  2-­‐3:  Carry  out  both  guided  inquiries;  

ResearchBlog  • Days  4-­‐5:  Develop  and  refine  research  

question  and  experimental  design;  ResearchBlog;  practice  tricky  methods  

• Days  5-­‐9:    Carry  out  experiment,  collect  data  regularly;  ResearchBlog    

• Days  10-­‐12:  Analyze  data;  develop  and  discuss  storyboards;  final  ResearchBlog  

Student  Handouts:    Celery  Challenge  Student’s  Guide  Brainstorming  Page  worksheet  About  our  Research  Question  worksheet  Experimental  Design  worksheet  Making  Sense  of  the  Data  worksheet  Student  Roadmap  through  an  Inquiry  (optional)  

Background:  Based  on  past  experience,  students  will  generate  ideas  about  water  movement  in  plants  and  petiole  bending  in  celery  and  translate  them  into  biologically  meaningful  conceptual  models.    Two  guided  inquiries  will  help  develop  student  thinking  and  lay  groundwork  for  a  team  project  to  achieve  and  explain  maximum  bending  in  celery  petioles.    Each  team  will  design  and  carry  out  an  experiment  to  answer  a  research  question,  then  draw  conclusions  from  the  data  to  refine  their  working  model  of  water  movement  and  celery  bending.    The  teacher’s  role  is  to  (a)  help  students  develop  an  experimental  design  clearly  addressing  a  testable  question,  (b)  guide  students  in  building  explanations  based  on  sound  reasoning  and  evidence,  while  also  (c)  building  connections  to  concepts  such  as  osmosis  and  to  scientific  practices  such  as  changing  ideas  based  on  evidence.  

 

   

plantingscience exploration

 What factors cause petiole bending in celery?

 What types of cells do plants contain?

How do plant cells move around water and solutes?  

Page 8: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 8 of 20 Last Updated 7/2013 Last Updated 7/2013

 

       

Very  briefly,  celery  bends  when  placed  in  a  liquid  solution  because  the  plant  organ,  a  leaf  petiole,  is  made  up  of  different  types  of  cells  and  tissues,  but  different  cell  types  respond  to  available  water  differently,  in  a  way  that  is  influenced  by  neighboring  cells.    Osmosis  is  the  driving  force,  but  physical  resistance  is  the  limiting  factor.    

The  Response  of  a  Single  Cell:  If  you  put  an  animal  cell,  which  is  bound  only  by  a  cell  membrane,  into  distilled  water,  the  water  will  diffuse  across  the  membrane  by  osmosis  from  the  region  of  higher  free  energy  (concentration)  of  water  to  the  region  of  lower  free  energy  in  the  cytoplasm.    As  a  result,  the  cell  swells,  the  membrane  stretches  and  starts  to  leak,  and  eventually  the  cell  bursts  as  the  cytoplasm  flows  out  of  the  cell  into  solution.    In  plant  cells,  however,  the  membrane  is  bound  to  a  cell  wall  outside  it.    The  cell  wall  is  not  necessarily  solid!    In  most  plant  cells,  the  cellulose  is  structured  in  cell  walls  like  the  plastic  mesh  in  produce  bags.    The  mesh  is  very  flexible  but  has  a  lot  of  tensile  strength  and  cannot  be  pulled  apart  very  easily.    The  mesh-­‐like  cell  wall  surrounds  the  membrane  the  way  a  mesh  bag  can  hold  a  plastic  bag  (Figure  1A).    Thus,  a  plant  cell  placed  into  distilled  water  will  still  take  up  water  and  swell,  but  it  will  be  restricted  by  the  outer  wall,  which  firmly  resists  swelling  (Figure  1B).    

 Figure  1.    Model  of  a  cell  membrane  (inner  plastic  bag)  and  cellulose  cell  wall  (mesh  bag).  

 

In  this  model,  the  mesh  bag  is  stretched  tight,  but  individual  filaments  do  not  stretch.    Cellulose  does  the  same  thing  in  the  plant  cell  wall.    The  orientation  of  how  the  cellulose  mesh  is  laid  down  lets  a  cell  regulate  which  way  it  can  stretch  when  the  cell  membrane  is  pressed  against  the  cell  wall  due  to  water  uptake.    As  more  water  pressure  builds  up  inside  the  cell  due  to  osmosis,  the  cellulose  walls  resist  stretching  more  forcefully  and  the  cell  becomes  firmer.    In  this  state,  we  say  the  cell  is  turgid;  turgor  pressure  is  the  force  opposing  membrane  expansion  due  to  increased  osmotic  pressure.    

Different  Cell  and  Tissue  Types  Respond  Differently:  Most  of  the  inside  of  a  celery  stalk  is  made  up  of  “ground  tissue”  or  parenchyma.    The  cells  are  large,  with  large  central  vacuoles  and  thin  cellulose  walls  very  similar  to  the  “two  bags”  model.    If  a  tissue  of  only  parenchyma  cells  was  placed  in  distilled  water,  the  entire  tissue  would  swell  evenly  as  all  of  the  individual  cells  took  up  water  and  became  turgid.    If  a  tissue  sample  contains  any  other  type  of  differentiated  cell,  the  positions  of  those  other  cells  may  change  the  shape  of  the  tissue  as  it  swells.        

Epidermal  cells:    Epidermis  is  a  modified  type  of  parenchyma.    Three  things  make  it  different.    First,  the  outer  wall  of  an  epidermal  cell,  which  faces  the  environment,  is  usually  thicker  than  its  other  walls.    Second,  a  tough,  waxy  cuticle  forms  on  the  outside  of  this  thicker  outer  wall  (Figure  2).    Third,  epidermal  

A                            B  

A  PlantingScience  Resource   Background for Teachers:

Why Does Celery Bend?

Page 9: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 9 of 20 Last Updated 7/2013 Last Updated 7/2013

 

cells  can  be  puzzle-­‐shaped,  with  adjacent  cells  interlocking  with  each  other  (Figure  3).    

Guard  cells,  a  further  specialization  of  epidermal  cells,  are  a  microcosm  of  bending  in  a  celery  stalk.    The  thick  cuticle  layer  acts  like  a  spring  and  keeps  the  cells  together  when  little  water  is  available,  closing  a  stomatal  pore.    When  guard  cells  take  up  water,  their  cytoplasm  and  vacuoles  swell.    The  thick  walls  can  only  bend,  while  the  thinner  walls  away  from  the  stomatal  pore  stretch.    As  a  result,  the  pore  opens.    

Collenchyma  cells:    A  cross  section  of  a  celery  stalk  will  be  smooth  and  “C”-­‐shaped  on  the  concave  side  and  ridged  on  the  convex  side.    Just  under  the  epidermis  beneath  each  ridge  is  a  dense  patch  of  collenchyma.    These  elongated  cells  overlap  with  each  other,  forming  a  flexible,  cable-­‐like  

structure.    Collenchyma  cells  are  alive  at  maturity  and  can  grow  longer  from  their  tips.    Their  cellulose  cell  walls  are  unevenly  thick  around  the  circumference  (Figure  4).    This  pattern  of  thickening  provides  good    tensile  strength,  like  steel  rods  placed  in  reinforced  concrete  pillars,  but  still  allows  for  flexibility,  like  a  wire  made  up  of  a  bundle  of  many  small  copper  strands.    In  an  unstained  section,  collenchyma  will  appear  silvery,  because  water  is  stored  between  the  mesh-­‐like  cellulose  fibrils  in  the  cell  wall.    

Vascular  bundles:    In  all  dicot  stems,  each  vascular  bundle  contains  sclerenchyma  cells,  a  type  of  cell  that  is  dead  at  maturity.    These  cells  have  very  thick  walls  in  which  the  space  between  cellulose  fibers  is  filled  with  a  hard  polymer  called  lignin.    Inside  the  vascular  bundle  is  mainly  a  type  of  sclerenchyma  called  xylem;  outside  the  bundle  is  phloem,  a  special  kind  of  parenchyma.    Many  bundles  also  have  a  bundle  cap  around  the  outside  of  the  phloem,  which  is  made  of  a  second  type  of  sclerenchyma  called  fiber  cells  (Figure  5).    The  arrangement  of  vascular  bundles  in  a  dicot’s  petioles  is  similar  to  that  in  its  stem.    Vascular  bundles  in  celery  petioles  are  found  on  the  ridged  side,  deeper  than  the  collenchyma.    Each  vascular  bundle  contains  a  set  of  xylem  cells,  with  phloem  cells  separated  from  the  collenchyma  by  the  bundle  cap  layer.    

Cell  type  and  flexibility:    Epidermis,  collenchyma,  and  vascular  cells  all  resist  stretching  more  than  parenchyma.    Epidermal  cells  are  more  flexible  than  collenchyma  cells,  which,  in  turn,  are  less  rigid  than  sclerenchyma.    Therefore,  a  strip  of  tissue  containing  one  or  more  of  these  cell  types  adjacent  to  each  other,  and  opposite  from  parenchyma,    will  allow  less  cell  swelling  than  on  the  parenchyma  side  of  the  strip  in  distilled  water,  and  less  cell  shrinkage  in  salt  water.    As  a  result,  the  strip  will  bend  away  from  the  parenchyma  in  the  former  case,  and  towards  it  in  the  latter  case.    This  is  also  described  more  briefly  in  the  inquiries’  Explanation  sections  later  in  this  packet.    

Figure  2.    These  specialized  epidermal  cells,  called  guard  cells,  

happen  to  have  especially  thick  cuticles.     Figure  3.    Dark,  puzzle-­‐like  

lines  outline  epidermal  cells  on  a  leaf.  

 

C        P                              

E  

Figure  4.    A  cross  section  through  a  celery  stalk  ridge  consists  of  an  outer  epidermis  (E),  one  layer  of  parenchyma  (P),  and  a  patch  of  collenchyma  (C).    The  greenish-­‐yellow  color  between  collenchyma  cells  indicates  their  cell  walls.  

Page 10: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 10 of 20 Last Updated 7/2013

 

Beyond  Cell  Differentiation:  Other  factors  such  as  tissue  age,  environmental  conditions,  width,  source  position,  and  relative  proportions  of  different  cell  types  can  all  influence  the  amount  of  bending  in  a  celery  stick.    The  concepts  of  osmosis,  transpiration,  and  cell  differentiation  are  key  to  the  overall  understanding  of  celery  bending,  and  students  often  find  it  challenging  to  make    

connections  between  them.    The  possible  variables  to  test  in  the  open  inquiry  is  large  enough  that  even  a  class  lecture  on  osmosis  and  distinct  cell  types  will  not  prevent  students  from  coming  up  with  new  ideas  for  experiments  that  can  build  their  knowledge  well  beyond  this  background  information.    

Figure  5.    A  cross  section  of  a  mint  stem  shows  a  ring  of  vascular  bundles  

surrounding  parenchyma.    Cutting  this  in  half  lengthwise  would  produce  a  similar  structure  to  that  of  a  celery  petiole’s  ridges.  

Page 11: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 11 of 20 Last Updated 7/2013

 

 

ACTIVITY 1: ScienceTalk (Allow 20 min to half a class period)

Juicy  Questions:  • What  is  happening  when  a  plant  wilts?  • How  does  water  enter  and  move  in  a  plant?  • Does  water  move  the  same  way  in  all  parts  of  a  plant?      • Can  plants  grow  in  salt  water?  • How  does  winter  road  salting  affect  plants  during  spring  

melting?  • What  makes  young  stems  and  leaf  petioles  stiff  enough  to  

stand  upright  or  hold  a  leaf  towards  light?  • Do  plants  move?    If  so,  how?  

o What  is  happening  inside  the  “jaws”  of  a  Venus  fly  trap  when  they  close  or  open?  

o What  is  happening  inside  leaves  or  flowers  that  allow  them  to  close  at  night  and  open  in  daytime?  

o How  does  sensitive  plant  close  its  leaves  when  touched?  

o Are  these  movements  related?  • Are  all  parts  of  a  plant  the  same?    All  cells  in  a  plant?  

Video  Resources:    http://www.youtube.com/watch?v=w6f2BiFiXiM    (3  min)  Water  Transport  in  a  Plant  describes  the  challenge  tall  plants  face  in  transporting  water  and  traces  the  path  of  a  water  molecule  through  a  tree.    Narrated  by  Sir  David  Attenborough.  http://www.youtube.com/watch?v=bm8q5chFyU0    (1.5  min)  Mimosa  Pudica  (Wild,  with  Thorns)  shows  what  happens  when  the  leaflets  of  wild  Mimosa  pudica,  or  sensitive  plant,  are  touched.    The  response  is  due  to  changes  in  osmotic  potential,  and  thus  turgor  pressure,  in  cells  called  pulvini.  

Key  Features  of  and  Suggestions  for  the  ScienceTalk:  Beyond  the  Juicy  Questions,  the  key  features  of  a  ScienceTalk  are  shown  below  in  red.    Suggestions  for  implementation  are  shown,  but  feel  free  to  develop  your  own  approach  to  fit  your  classroom.    

1. Engage  and  explore  prior  knowledge:  • Probe  for  prior  knowledge  using  the  Juicy  Questions  or  ones  similar  to  them.  • Directly  or  indirectly  introduce  the  concepts  of  osmosis,  transpiration,  and  cell  differentiation.  

o Student  discussion  of  ideas  in  their  own  words  is  important,  so  key  terms  may  be  introduced  after  students  construct  the  relevant  knowledge.  

o Demonstrating  diffusion  by  having  students  in  different  parts  of  the  room  release  air  from  balloons  containing  different  scents  can  be  a  prelude  to  discussing  osmosis.  

• Connect  the  topic  to  everyday  life  and  its  relevance  to  society.  o The  scenario  in  the  Celery  Challenge  Student’s  Packet  introduces  the  first  guided  inquiry.  o You  could  demonstrate  osmosis  by  blowing  up  a  long  balloon  and  adding  or  releasing  air.  

Taping  one  side  of  the  balloon  before  inflation  can  show  how  bending  occurs  when  different  parts  of  a  plant  tissue  differ  in  flexibility.  

o Connecting  turgor  pressure  to  plant  movements,  such  as  the  Venus  fly  trap  “jaws”  closing  around  prey,  taps  into  a  common  interest  in  carnivorous  plants.  

o Discussing  water  movement  in  redwoods  taps  into  student  interest  in  “biggest”  things  and  shows  that  transpiration  moves  more  water  in  plants  than  osmosis  or  capillary  action.  

o Linking  transpiration  to  climate  change  or  food  production  adds  an  ecology  perspective.    

2. Introduce  scientific  inquiry  concepts:  • A  discussion  of  what  it  means  for  water  to  be  transported  or  celery  to  bend  will  help  students  

begin  developing  working  models  for  these  processes.  o This  is  a  prelude  to  figuring  out  how  to  recognize  these  processes  during  an  inquiry.      

Page 12: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 12 of 20 Last Updated 7/2013

 

o Questions  about  good  measures  of  these  processes  will  support  experimental  design.  • Brainstorm  factors  that  influence  water  transport  or  plant  bending  by  thinking  about  

conditions  around  a  plant  when  they  wilt  or  “perk  up.”  o This  is  a  prelude  to  working  out  what  good  control  and  treatment  conditions  might  be.  o Asking  if  some  kinds  of  plants  or  tissues  are  more  likely  to  wilt  hints  at  cell  differentiation.  

• Introduce  the  essential  components  of  research.  o Discuss  the  inquiry  process  in  the  context  of  designing  experiments,  highlighting  

dependent  and  independent  variables.  o Data  skills  include  careful  observing,  note  taking,  data  recording,  and  summarizing  data.  o Social  skills  include  teamwork,  sharing  and  building  on  ideas,  and  explaining  results.  

GUIDED INQUIRIES

Purpose:    Activities  2  and  3  aim  to  spur  student  interest  and  introduce  the  concepts  of  osmosis,  transpiration,  and  cell  differentiation.    The  activities  can  be  carried  out  in  tandem  or  implemented  over  three  or  four  days,  in  either  order.    Each  can  be  carried  out  as  a  guided  inquiry  or  as  a  demonstration;  if  desired,  one  activity  can  be  dropped.    As  guided  inquiries,  each  uses  team  observations  to  introduce  a  different  aspect  of  cell  biology  contributing  to  celery  petiole  bending.    Both  include  a  final  brainstorming  exercise  to  stimulate  questions  that  may  later  become  research  questions  tested  in  the  open  inquiry.  

ACTIVITY 2: Party Preparations (Allow two or three half-class periods)

Overview:    Students  observe  osmosis  and  how  it  influences  rigidity  of  celery  cells  and  tissues.    The  research  question  for  guided  inquiry  is  “What  causes  a  plant  to  bend  or  move?”    Students  will  add  cut  pieces  of  celery  to  containers  of  water  containing  different  amounts  of  salt.    Each  piece  of  celery  will  be  measured,  weighed,  and  qualitatively  observed,  both  before  and  after  soaking  in  its  container  overnight.    After  discussing  their  observations  and  what  they  think  may  be  going  on,  students  record  questions  based  on  what  they  have  learned.    Explanation:    Tap  water  is  hypotonic  relative  to  living  cells,  so  celery  sticks  soaked  in  it  will  swell,  increasing  their  dimensions,  mass,  and  firmness.    Depending  on  its  concentration,  salt  water  will  likely  be  hypertonic  relative  to  the  celery  cells.    Celery  sticks  soaked  in  it  will  lose  water,  making  them  flexible  or  rubbery  and  reducing  dimensions  and  mass  overall.    Changes  will  be  negatively  proportional  to  salt  concentration,  so  the  saltiest  solution  will  yield  the  greatest  decrease.    

Petiole  bending  relates  to  both  cell  type  and  osmosis.    Most  of  a  celery  stalk  is  made  up  of  parenchyma.    These  cells  have  large  central  vacuoles  and  thin,  flexible  cellulose  walls.    If  a  piece  of  tissue  made  only  of  parenchyma  was  placed  in  distilled  water,  the  entire  tissue  would  swell  evenly  as  the  cells  took  up  water  and  became  turgid.    Other  types  of  cells  have  reduced  flexibility,  and  will  thereby  alter  the  tissue  swelling  pattern.    Epidermal  cell  walls  contain  a  waxy  layer  that  

does  not  readily  stretch;  sclerenchyma  cells  such  as  xylem  contain  lignin,  limiting  their  flexibility.    In  a  hypotonic  solution  like  tap  water,  parenchyma  swells  more  than  epidermis  or  sclerenchyma,  so  the  parenchyma  forms  the  convex  side  of  the  curve.    In  a  hypertonic  solution  like  salt  water,  parenchyma  shrinks  more,  forming  the  concave  side.  

Epidermis  &  Sclerenchyma            

Parenchyma  

Page 13: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 13 of 20 Last Updated 7/2013

 

Materials (per team) Logistics

• Enough  celery  for  each  team  member  to  cut  three  10-­‐15  cm  celery  sticks    

• Three  containers  deep  enough  to  float  or  cover  celery  with  water  

• Tap  water  • Table  salt  or  lab-­‐grade  sodium  

chloride  • Balance  and  weighing  paper  • A  single-­‐edge  razor  blade,  scalpel,  

or  paring  knife    • Metric  ruler    • (Optional)  Vernier  calipers  • (Optional)  Protractor  • (Optional)  Digital  camera  • (Optional)  Access  to  a  refrigerator  

Detailed  procedures  for  carrying  out  experiments  and  considerations  of  lab  safety  are  described  in  the  Celery  Challenge  Student’s  Guide.    

Students  should  form  teams  of  2-­‐4  that  can  work  together  throughout  the  rest  of  the  module.    Each  student  should  have  a  research  journal  to  record  their  ideas  and  observations.    As  they  use  their  journals,  students  will  reveal  their  thinking  and  conceptual  models.    Throughout  the  module,  ensure  that  your  students:  1. Journal  and  collect  data  regularly,    2. Post  related  information  on  their  team  blog,  and    3. Communicate  with  scientists  and  peers  regularly.      

 

Time  Required:    Both  days  will  require  about  20  min  for  student  work.    Additional  time  (~15  min)  will  be  necessary  for  class  discussion  of  the  results.  

Technical Notes   What To Expect  

Salt  Solutions:    Students  may  use  any  salt  concentration,  as  long  as  the  salt  dissolves  entirely.    “Making  Chemical  Solutions”  in  Working  with  Chemicals  may  help  students  quantify  the  salt  concentration  in  their  solutions.    

Temperature:    A  refrigerator  is  not  absolutely  needed  for  this  inquiry.    Temperature  will  affect  the  rate,  but  not  extent,  of  bending.    Bending  will  occur  fastest  near  25oC  and  may  be  measureable  within  1-­‐2  hours.    A  full  day  of  treatment  is  long  enough  to  eliminate  temperature  differences  as  long  as  the  celery  was  not  hot  enough  to  be  killed.    

Measuring  Width:    Width  may  be  difficult  to  measure,  as  celery  petioles  get  narrower  with  height.    Sample  width  will  also  vary  based  on  how  students  made  their  longitudinal  cuts.    A  common  approach  is  to  use  the  minimum  width  along  the  axis,  regardless  of  whether  it  is  in  the  “middle”  of  the  length  or  skewed  towards  one  end.    Older  students  may  use  calipers  to  measure  celery  diameters.  

Qualitative  Data:    Most  students  have  poor  observational  skills  that  can  be  improved  by  encouraging  thorough  descriptions  of  qualitative  data.    For  older  students,  a  short  paragraph  is  reasonable.    If  a  digital  camera  is  available,  students  may  add  photos  to  their  notes.    

Quantitative  Data:    Mass  will  probably  be  the  most  precise.    You  might  discuss  accuracy  and  precision  as  they  relate  to  sample  sizes,  measuring  methods,  and  tools.    Bending:    Curvature  towards  the  parenchyma  may  not  be  apparent  if  students  roughly  handle  the  celery  sticks  –  even  college  students  will  play  with  rubbery  celery!    Low  salt  concentrations  may  be  isotonic  or  even  hypotonic  relative  to  celery  cells,  so  it  is  possible  that  bending  will  not  occur  or  will  look  similar  to  water-­‐treated  samples.    

Drawing  Conclusions:    Students  should  be  able  to  link  tonicity  to  changes  in  the  celery  sticks’  dimensions.    They  may  find  it  more  difficult  to  link  firmness  and  rubberiness  to  changes  in  water  content,  but  returning  to  demonstrations  or  the  inner  tube  and  tire  analogy  in  the  Celery  Challenge  Student  Packet  may  help.    Students  often  have  an  idea  that  the  outer,  ridged  side  of  the  celery  is  less  flexible  than  its  inner  side,  but  they  may  not  be  able  to  fully  explain  how  bending  occurs,  especially  if  they  are  unaware  that  plant  cell  types  differ  in  flexibility.      

Page 14: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 14 of 20 Last Updated 7/2013

 

ACTIVITY 3: Celery Sucks! (Allow two or three half-class periods)

Overview:    In  this  activity,  students  observe  transpiration  and  different  tissue  types.    The  research  question  for  guided  inquiry  is  “Does  water  move  the  same  way  in  all  parts  of  a  plant?”    This  deceptively  simple  experiment  involves  placing  intact  celery  petioles,  with  leaves,  into  a  dye  solution.    Before  and  after  the  stalks  stand  in  the  liquid  overnight,  students  make  qualitative  observations.    After  soaking,  students  focus  on  finding  evidence  of  dye  in  the  plant  by  external  examination  and  by  cutting  stalk  cross-­‐sections.    Students  discuss  their  observations  and  what  they  think  may  be  happening,  then  record  questions  based  on  what  they  have  learned.    

Explanation:    The  dye  will  extend  up  the  celery  stalk  into  the  leafy  blades,  some  parts  of  which  may  be  discolored  from  the  dye.    The  colored  liquid  was  literally  sucked  up  the  hollow  xylem  cells,  primarily  due  to  transpiration.    This  can  only  happen  if  living  cells  with  intact  membranes  are  present  in  the  leaf  tissues,  where  water  is  released  by  osmosis  into  the  air  spaces  between  mesophyll  cells.    

The  cells  of  the  cut  celery  surface  submerged  in  the  colored  liquid  will  be  stained,  but  the  color  will  be  darkest  in  a  series  of  spots  just  inside  the  ridges  on  the  outside  of  the  celery  stalk.    Some  amount  of  osmosis  occurs  in  immersed  cells  due  to  the  hypotonicity  of  the  liquid.    A  hand  lens  or  dissecting  microscope  will  reveal  that  the  darker  spots  are  associated  with  the  open  ends  of  xylem  tubes.    In  examining  cross-­‐sections  of  the  celery  stalk  above  liquid  level,  students  will  see  that  only  xylem  is  stained.    Osmosis  is  limited  to  immersed  cells,  while  transpiration  

and  the  vascular  system  move  most  of  the  water,  and  therefore  dye,  up  the  stalk.    Optional  Elaborations:    You  can  expand  the  guided  inquiry  or  add  demonstrations  using  one  or  more  of  the  suggestions  below.    The  PlantingScience  Celery  Challenge  Toolkit  details  some  of  the  more  complex  methods,  such  as  making  epidermal  peels  and  assembling  a  potometer.  

• Study  whether  individual  vascular  bundles  supply  specific  leaf  parts  or  the  whole  leaf  by  splitting  the  celery  stalk  at  the  base  and  placing  each  side  in  a  different  color  of  liquid.  

• Get  a  cell-­‐scale  view  of  celery  petiole  tissues  by  preparing  transverse  sections  of  celery  stalks,  epidermal  peels  of  the  inner  and  outer  epidermis,  or  xylem  “strings.”  

• Experiment  with  capillary  tubes,  Pasteur  pipettes,  or  straws  to  develop  working  models  of  xylem  cell  function  relating  to  capillary  action  and  how  it  is  affected  by  pressure  differentials.  

• Calculate  water  transport  rate  by  incubating  celery  for  a  predetermined  length  of  time,  such  as  30  min,  then  making  sequential,  even  cross  sections  up  the  stalks  until  dye  is  no  longer  visible.    Divide  the  total  distance  the  dye  covers  by  time.  

• Track  transpiration  rate  with  a  potometer  by  using  the  distance  the  meniscus  moves  over  a  set  period  of  time  to  calculate  the  volume  of  the  cylinder  of  water  the  celery  consumed.  

• Compare  water  transport  in  xylem  between  controls  and  experimental  conditions  of  differing  temperature,  humidity,  light,  and  air  movement.    

• Highlight  the  role  of  stomata  in  transpiration  by  comparing  dye  movement  in  control  stalks  against  those  for  which  one  or  both  sides  of  the  leaves  have  been  coated  with  Vaseline.  

• Use  epidermal  peels  or  impressions  to  examining  stomatal  density  in  different  celery  parts.      o Calculate  stomatal  density  by  counting  the  average  number  of  stomata  in  the  

microscope’s  field  of  view  and  dividing  by  the  area  of  the  field  of  view.      o Calculate  total  stomata  per  leaf  by  multiplying  stomatal  density  by  leaf  surface  area.  

xylem            collenchyma                    parenchyma  

Page 15: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 15 of 20 Last Updated 7/2013

 

• Use  the  same  methods  to  look  for  differences  in  stomatal  opening  between  two  treatments.      o Calculate  total  stomatal  pore  area  by  measuring  the  average  size  of  the  openings  from  

several  stomata,  then  multiplying  this  by  the  number  of  stomata  on  the  leaf.  

 

Materials (per student)   Logistics

• One  celery  petiole  with  intact  leaflets  • Container  allowing  the  celery  to  stand  

upright  • Tap  water  • Food  coloring  or  a  biological  stain  such  as  

safranin,  methylene  blue,  or  Congo  red  • Single-­‐edged  razor  blade,  scalpel,  or  knife  • Hand  lens  or  dissecting  microscope  • (Optional)    Poor  Man’s  Microtome  (see  

the  Celery  Challenge  Toolkit)  • (Optional)    Plastic  wrap  or  butcher  paper  • (Optional)    Masking  or  clear  tape  • (Optional)    Digital  camera  

Detailed  procedures  for  carrying  out  experiments  and  considerations  of  lab  safety  are  described  in  the  Celery  Challenge  Student’s  Guide.    

Students  should  work  in  the  same  teams  of  2-­‐4  they  worked  with  for  the  previous  inquiry  and  each  keep  a  research  journal,  as  previously  described.    Time  Required:    Allow  about  10-­‐15  min  on  the  first  day,  which  may  occur  in  the  same  class  period  as  any  part  of  Party  Preparations.    Allow  20-­‐30  min  during  the  next  class  period  for  student  observations  and  15  min  during  that  period  or  the  next  for  class  discussion  and  brainstorming  questions.  

Technical Notes   What to Expect  

Plant  Material:    The  celery  used  here  should  still  have  leaves  on  the  end,  i.e.,  do  not  use  trimmed  “celery  hearts.”    Fresher  celery  and  younger  stalks  will  generally  show  greater  transpiration  rates.    Stalk  Support:    The  celery  stalks  need  to  stand  overnight  in  an  inch  or  two  of  colored  liquid.    Heavy  glasses  are  ideal  for  this.    For  shorter  or  less  sturdy  containers,  students  may  have  to  build  supports  to  hold  the  stalks  upright  without  tipping.      

Dye  Color:    Red  contrasts  most  strongly  with  celery  tissue  and  will  be  easiest  to  see.    Blue  may  also  be  suitable.    Avoid  green  and  yellow.          Cutting  Stalks:    Cleanly  cutting  across  the  bottom  of  the  celery  stalk  ensures  even  dye  uptake.    Place  the  cut  end  in  liquid  immediately  afterwards  to  avoid  pulling  air  into  the  xylem.  

Student  Observation:    Students  should  be  able  to  easily  identify  the  dye  and  measure  how  far  it  traveled.    Some  students  may  need  encouragement  to  explore  by  cutting  the  celery  instead  of  just  looking  at  the  intact  stalk.    Students  should  be  able  to  tell  that  celery  has  different  cell  types  from  seeing  cross-­‐sections.    Drawing  Conclusions:    Some  students  may  relate  the  location  of  dyed  tissue  beneath  the  outer  ridges  of  the  stalk  to  the  “strings”  that  get  caught  between  your  teeth  when  eating  celery,  but  fail  to  connect  this  to  the  idea  that  xylem  cells  have  stiff  cell  walls.    Students  should  be  able  to  connect  cell  differentiation  to  differences  in  water  uptake,  but  many  will  find  it  difficult  to  link  their  observations  to  or  distinguish  among  transpiration,  osmosis,  and  capillary  action.  

Impression  of  upper  epidermis  (left)  and  peel  of  lower  

epidermis  (right)  from  celery  leaflet.    Images  were  taken  using  200x  magnification.    Few  stomata  

are  in  sharp  focus  due  to  specimen  curvature.  

Page 16: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 16 of 20 Last Updated 7/2013

 

ACTIVITY 4: Open Inquiry Lab (Allow one and a half weeks)  

Purpose:    This  open  inquiry  aims  to  challenge  students  to  develop  a  method  to  achieve  the  greatest  amount  of  bending  in  celery  petioles.    Students  develop  and  carry  out  their  own  experiments  not  only  to  achieve  bending,  but  to  help  them  explain  why  it  occurs.    The  open  inquiry  is  intended  to  encourage  students  to  integrate  concepts  related  to  water  transport  and  petiole  bending  identified  during  the  guided  inquiries,  and  to  test  any  other  factors  they  believe  may  be  involved.    

Overview:    Broadly,  all  teams  will  be  asking,  “How  far  can  celery  tissues  bend?”  and  “What  conditions  create  the  most  bending?”    Each  team  will  select  a  narrower,  testable  research  question  based  on  one  or  more  of  the  brainstorming  questions  they  wrote  down  after  the  guided  inquiries.    From  this,  teams  will  make  a  research  prediction  and  develop  an  appropriate  experimental  design.    Methods  can  incorporate  and  build  on  previous  experiences  in  the  module;  use  of  the  Celery  Challenge  Toolkit  is  encouraged.    Teams  refine  and  carry  out  their  experiments,  collecting  data  to  quantify  bending.    Data  and  observations  will  feed  into  each  team’s  storyboard  presentation  to  explain  why  their  celery  did  or  did  not  bend  as  much  as  they  had  anticipated.    

Explanation:    Students  must  decide  how  to  bend  the  celery,  keeping  in  mind  that  different  cell  types  respond  differently  to  osmosis  due  to  their  structural  features.    The  plant  response  always  comes  back  to  the  osmotic  response  of  parenchyma  cells  to  the  soaking  solution,  and  to  the  kinds  and  positions  of  specialized  cells  that  physically  resist  the  enlargement  (or  shrinkage)  of  the  parenchyma.    Xylem  and  collenchyma  strands  on  the  ridged  side  of  the  stalk  function  like  steel  reinforcing  bars  in  concrete  or  the  fibers  in  fiberglass.    On  their  own  they  can  bend,  but  they  resist  stretching.    Even  if  thin-­‐walled  parenchyma  cells  fill  with  water,  they  will  not  be  able  to  elongate  if  xylem  fibers  and  collenchymas  are  adjoining  them,  because  the  latter  are  not  as  flexible.    The  smooth  side  of  the  stalk  lacks  resistance,  so  the  parenchyma  on  this  side  can  elongate,  thereby  bending  the  stalk.    The  response  of  a  given  piece  of  celery  will  also  depend  on  other  factors.    In  general,  younger  tissues  are  more  responsive  than  older  ones,  because  they  haven’t  finished  developing  and  are  more  flexible.    Thus,  older  stalks  from  the  outside  of  a  bunch  will  likely  bend  less  than  younger  ones  on  the  inside.    As  another  example,  pieces  cut  from  just  beneath  the  leaflets  will  also  respond  differently  from  sections  taken  just  above  the  base.    The  cross-­‐sectional  shape  of  the  piece,  and  whether  or  not  it  goes  all  the  way  from  the  inner  to  the  outer  epidermis,  will  also  influence  how  much  bending  occurs.          Optional  Elaborations:    Teams  may  wish  to  use  methods  from  the  PlantingScience  Celery  Challenge  Toolkit  to  collect  data.    If  students  need  more  scaffolding  to  integrate  the  multiple  concepts  in  the  module,  you  may  want  to  allow  time  to  analyze  and  synthesize  findings  from  the  guided  inquiries,  directly  discussing  osmosis  and  different  cell  types  prior  to  beginning  the  open  inquiry.    You  may  also  guide  research  questions  to  focus  on  specific  topics  of  interest.  

• To  study  relationships  between  cell  differentiation  and  cell  function:  o Observe  thin  cross-­‐sections  of  stalk  under  a  microscope  to  identify  and  measure  which  

cells  swell  or  shrink  in  different  solutions  o Cut  or  shave  the  stalk  to  produce  test  samples  missing  parenchyma,  xylem,  collenchyma,  

epidermis,  or  combinations  thereof  • Studying  types  of  water  movement  could  involve  comparing  parenchyma  to  xylem  in  their  

capacities  for  osmosis  or  capillary  transport  • Study  the  effects  of  environment,  such  as  temperature,  humidity,  light,  or  air  movement  • Study  different  salt  concentrations  from  previous  tests  or  different  kinds  of  solutes  

Page 17: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 17 of 20 Last Updated 7/2013

 

• Study  effects  of  the  plant  hormone  auxin,  which  is  related  to  bending  during  cell  elongation  • To  study  tissue  type,  position,  and  development:  

o Remove  epidermis  from  the  inner,  smooth  side  or  outer,  ridged  side  of  the  stalk  o Test  vertical  source  of  samples,  with  some  sticks  from  more  basal  (flared)  and  others  from  

more  aerial  (“C”-­‐shaped)  tissues  o Test  lateral  source  of  samples,  with  some  sticks  from  the  middle  of  the  stalk  (cut  on  both  

sides),  and  some  from  one  edge,  so  the  epidermis  forms  one  curved  piece  o Test  the  number  of  ridges  in  a  celery  stick  sample  o Vary  the  cross-­‐section  of  the  sample,  e.g.,  wider  away  from  or  adjacent  to  the  ridges  o Test  older,  outer  celery  stalks  against  younger,  inner  stalks  of  the  same  size  

Materials (per team) Logistics

• Celery  petioles  with  intact  leaflets  for  each  student  to  make  3  or  more  ~10-­‐15  cm  sticks  

• At  least  3  containers  • Tap  or  distilled  water  • Salt  or  other  solute  for  solutions  • Digital  balance    • Scoopula  or  spoon  and  weighing  paper  • Single-­‐edge  razor  blade,  scalpel,  or  paring  knife  • Metric  ruler  or  Vernier  caliper  • Protractor  to  measure  bending  angle  • Food  coloring  or  biological  stain  • Hand  lens  and/or  dissecting  microscope  • (Optional)  Digital  camera  • (Optional)  ImageJ  software  

Detailed  procedures  for  carrying  out  experiments  and  considerations  of  lab  safety  are  described  in  the  Celery  Challenge  Student’s  Guide.    

Students  should  work  in  the  same  teams  of  2-­‐4  as  they  did  for  previous  inquiries;  keeping  a  research  journal  is  critical  for  the  open  inquiry.    Time  Required:    Allow  5-­‐8  class  hours  for  the  full  inquiry,  which  includes  developing  and  revising  the  research  plan,  practicing  any  tricky  techniques,  setting  up  the  experiment,  making  measurements  and  qualitative  observations,  and  summarizing  data.  

Technical Notes   What to Expect  

Removing  Ridges:    Some  students  may  want  to  make  samples  by  removing  the  tough  strands  of  xylem  and  collenchyma  making  up  the  outer  ridges  of  the  celery  stalk.    Older  students  may  cut  out  ridges  with  a  blade,  while  younger  students  can  use  their  fingernails  to  pick  them  out  of  one  end  of  the  stalk,  then  peel  them  down  the  length  of  the  stalk,  as  shown  below.  

   Hormone  Treatment:    If  students  want  to  try  to  induce  bending  with  plant  hormones,  

Research  Question:    The  open  inquiry  offers  diverse  avenues  to  investigate  structural,  physiological,  and  environmental  relationships.    Student  questions  will  likely  fall  along  the  lines  of:      • What  happens  if  we  remove  all  the  ridges?    • Will  we  get  more  bending  if  we  cover  all  the  

stomata?  • How  much  will  celery  bend  if  we  soak  it  in  hot  

water?  Asking  biologically  relevant  questions  may  be  a  challenge,  so  having  a  peer-­‐review  phase  requiring  teacher  approval  before  starting  the  experiment  can  be  valuable.        Experimental  Methods:    Teams  should  choose  their  own  variables  to  test  and  figure  out  their  own  ways  of  gathering  data.    If  teams  have  difficulty  with  technical  methods,  don’t  let  them  get  bogged  down  in  troubleshooting  at  the  expense  of  the  big  ideas.  

Page 18: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 18 of 20 Last Updated 7/2013

 

applying  a  paste  of  auxin  and  lanolin  to  one  side  of  the  celery  stalk  is  a  reasonable  method.    Since  it  affects  actively  elongating  cells,  young,  growing  stalks  near  the  center  of  the  bunch  are  the  most  likely  to  visibly  respond.    

Confounding  Factors:    Students  will  probably  not  realize  the  difficulty  of  isolating  a  single  environmental  factor.    For  instance,  using  a  fan  to  increase  air  flow  may  indirectly  increase  concentration  of  a  salt  solution.    Increasing  light  intensity  with  a  lamp  may  also  increase  air  temperature.    Don’t  worry  about  this  at  the  start;  such  details  can  be  highlighted  in  the  Storyboard  Discussion,  especially  if  different  teams  have  carried  out  experiments  on  related  factors.  

Student  Observation:    Middle  and  high  school  students  may  have  difficulty  identifying  what  they  see  when  examining  cells  with  a  microscope.    The  Celery  Challenge  Student’s  Packet  and  pp.  8-­‐10  here  include  some  sample  images  for  reference.    

Alternate  Conceptions:    Students  commonly  believe:  • The  terms  iso-­‐,  hypo-­‐  and  hypertonic  refer  to  

water  content,  not  solute  concentration.  • All  plant  species  have  similar  numbers  of  

stomata.      • Stomata  occur  only  on  lower  surfaces  of  leaves.  • Most  water  taken  in  through  roots  is  consumed  

by  the  plants,  not  lost  through  transpiration.  • High  humidity  increases  transpiration.  Most  of  these  misconceptions  can  be  directly  addressed  through  experimentation.    Inaccurate  definitions  are  best  addressed  in  discussion.  

   

Page 19: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 19 of 20 Last Updated 7/2013

 

ACTIVITY 5: Storyboard Discussion (Allow two full class periods)

Objective:    The  overall  goal  of  the  Storyboard  Discussion  is  to  have  students  make  sense  of  what  their  data  mean,  focusing  on  the  question,  “Why  does  the  celery  bend?”    Teams  should  have  a  full  class  period  to  work  out  their  answer  to  this  question  and  to  develop  a  storyboard,  a  visual  representation  of  their  work  similar  to  a  scientific  poster.    Each  team  will  present  their  storyboard  to  the  whole  class,  so  all  team  members  should  be  able  to  discuss  its  contents.    Teams  will  critique  each  other’s  storyboards  and  work  together  to  develop  a  comprehensive  answer  to  the  above  question.    

Storyboard  Preparation:    At  this  point,  teams  will  have  collected  qualitative  and  quantitative  data  in  up  to  three  inquiries.    Ideally,  teams  will  already  have  summarized  their  own  data  in  digital  images,  graphs,  tables,  and  short  descriptive  notes.    They  will  likely  find  it  fairly  easy  to  present  these  data,  as  in  the  photo  at  right.      

To  prepare  for  the  class  discussion,  allow  teams  to  work  together  during  one  class  period  to  make  sense  of  their  data  and  observations.    As  they  do  this,  they  should  create  a  visual  and  written  narrative  of  their  research  question(s),  how  they  tested  the  question(s),  how  they  knew  their  experiment(s)  worked,  what  data  and  observations  they  made,  and  how  these  helped  answer  their  question(s).    If  teams  will  present  multiple  inquiries  in  a  single  storyboard,  remind  them  to  clearly  delineate  each  one.    Older  students  could  also  show  how  guided  inquiries  informed  the  open  inquiry,  such  as  by  brainstorming  a  question  or  identifying  test  variables.    Teams  will  benefit  from  scientist  mentors’  guidance  as  they  look  for  explanatory  mechanisms  for  their  observations.    Two  key  questions  to  assist  students  with  sense-­‐making  are  “Why  do  we  think  the  conditions  we  used  created  the  most  bending?”  and  “What  qualitative  and  quantitative  data  are  evidence  for  our  reasoning?”    The  first  question  can  help  teams  link  experimental  conditions  to  concepts  of  transpiration,  osmosis,  changes  in  cell  size,  cell  types,  and  other  factors  tested.      The  second  helps  each  team  base  its  arguments  in  data  from  all  inquiries  the  team  has  completed.  

Class  Discussion:    Allow  a  full  class  period  for  each  team  to  present  its  storyboard,  including  time  for  the  rest  of  the  class  to  ask  questions  and  provide  feedback  about  the  presentation,  storyboard,  or  team  conclusions.    Facilitate  comparisons  among  different  treatment  conditions,  encouraging  students  to  identify  which  factors  caused  the  most  petiole  bending.    You  might  also  ask  what  students  would  expect  to  see  if  they  carried  out  an  experiment  consisting  of  two  different  factors  that  both  caused  bending.    The  discussion  can  be  drawn  to  a  close  by  developing  an  overall  working  model  of  petiole  bending  in  celery  that  accounts  for  the  results  of  all  teams’  experimental  conditions.    To  summarize  the  overall  findings,  you  may  wish  to  have  each  team  record  on  a  notecard  the  amount  and  direction  of  bending  they  observed  in  their  most  successful  treatment  and  what  the  conditions  were  for  that  treatment.    The  top  three  teams  with  (a)  the  greatest  amount  of  bending  and  (b)  a  clear  explanation  as  to  how  the  treatment  caused  bending  can  be  awarded  additional  points  for  “winning”  the  Celery  Challenge.    If  the  three  teams  used  different  treatments  to  achieve  the  observed  bending,  this  provides  a  second  route  to  address  the  role  of  multiple  factors  in  celery  bending.    

Students  will  become  quickly  aware,  if  they  did  not  know  already,  that  different  teams  tested  different  factors.    If  any  teams  have  factors  related  to  or  confounding  those  tested  by  another  team,  they  may  see  that  “their”  variable  could  also  have  been  involved  in  someone  else’s  experiment.    If  students  do  not  bring  up  this  point  themselves,  raise  it  yourself  to  set  the  stage  for  teams  to  discuss  

Page 20: CeleryChallenge TeacherPacket CH - PlantingSciencev1.plantingscience.org/.../CeleryChallenge...CH.pdf · PlantingScience CC BY-NC-SA 3.0 | | Celery Challenge—Teacher Guide Page

 

PlantingScience CC BY-NC-SA 3.0 | www.plantingscience.org | Celery Challenge—Teacher Guide Page 20 of 20 Last Updated 7/2013

 

how  they  might  redesign  a  future  experiment  to  eliminate  the  confounding  variables.    Searching  for  and  eliminating  alternative  explanations  is  a  critical  feature  of  science  that  is  usually  overlooked  until  graduate  school!    

What  to  Expect:    Students  have  likely  taken  on  the  challenge  to  bend  celery  with  gusto  and  succeeded.    The  greater  challenge  comes  in  explaining  what  is  happening.    Integrating  multiple  concepts  will  likely  be  a  key  difficulty.    For  example,  students  might  recognize  that  xylem  strands  or  ridges  in  the  stalk  affect  bending,  but  they  are  unlikely  to  recognize  that  the  xylem  resists  stretching  or  to  relate  this  to  osmosis.    Attend  to  students’  thought  processes  to  shift  assessment  from  a  right-­‐answer  orientation  towards  an  emphasis  on  reasoning.    We  often  make  assumptions  about  students’  ideas  and  connect  concepts  in  ways  novice  learners  cannot.    Careful  probing  can  upturn  our  assumptions  and  those  of  our  students  –  such  as  when  students  ask  each  team  questions  here.  

Additional  Information:    A  description  of  the  contents  of  a  storyboard,  how  to  integrate  writing  and  discussion  into  a  presentation,  how  to  focus  the  class  discussion,  ground  rules  for  a  productive  discussion,  and  final  outcome  are  all  provided  in  the  document  What  is  a  Storyboard  Discussion?