ccc/robotics ‐ roadmap f. service robotics › reports › ccc-serv-rob-v16.pdf · service...

24
1 CCC/Robotics ‐ Roadmap f. Service Robotics 1. Introduction........................................................................................................................ 2 2. Strategic Findings ................................................................................................................ 3 2.1 Principal Markets and Drivers ..................................................................................................... 4 2.2 Near Term Opportunities and Factors Effecting Commercialization ............................................ 5 2.3 Scientific and Technical Challenges ............................................................................................. 6 Mobility ................................................................................................................................................ 6 Manipulation ........................................................................................................................................ 7 Planning ................................................................................................................................................ 8 Sensing and Perception ........................................................................................................................ 9 Architectures, Cognition, and Programming Paradigms....................................................................... 9 Human Robot Interaction (HRI) .......................................................................................................... 10 Research Infrastructure ...................................................................................................................... 10 Mechanical Hardware......................................................................................................................... 11 3. Key Challenges / Capabilities ............................................................................................ 12 3.1 Motivating Scenarios ................................................................................................................ 12 3.2 Capabilities Roadmap ............................................................................................................... 15 Human‐like Dexterous Manipulation .................................................................................................16 Real‐World 3D Planning and Navigation ............................................................................................ 17 Cognition ............................................................................................................................................ 18 Robust Perception .............................................................................................................................. 19 Physical, intuitive HRI and interfaces .................................................................................................19 Skill Acquisition ................................................................................................................................... 20 Safe robots.......................................................................................................................................... 20 4. Basic Research and Technologies ...................................................................................... 21 Architecture and Representations .................................................................................................. 21 Control and Planning ...................................................................................................................... 21 Perception ..................................................................................................................................... 22 Robust, High‐fidelity Sensors.......................................................................................................... 22 Novel Mechanisms and High‐Performance Actuators ..................................................................... 22 Learning and Adaptation ................................................................................................................ 22 Physical Human‐Robot Interaction ................................................................................................. 23 Socially Interactive Robots ............................................................................................................. 23 5. Contributors ..................................................................................................................... 23

Upload: others

Post on 29-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

1

CCC/Robotics‐Roadmapf.ServiceRobotics1.Introduction........................................................................................................................ 2

2.StrategicFindings................................................................................................................ 32.1PrincipalMarketsandDrivers..................................................................................................... 42.2NearTermOpportunitiesandFactorsEffectingCommercialization ............................................ 52.3ScientificandTechnicalChallenges ............................................................................................. 6

Mobility ................................................................................................................................................6Manipulation ........................................................................................................................................7Planning ................................................................................................................................................8SensingandPerception ........................................................................................................................9Architectures,Cognition,andProgrammingParadigms.......................................................................9HumanRobotInteraction(HRI) ..........................................................................................................10ResearchInfrastructure ......................................................................................................................10MechanicalHardware.........................................................................................................................11

3.KeyChallenges/Capabilities ............................................................................................ 123.1MotivatingScenarios................................................................................................................ 123.2CapabilitiesRoadmap............................................................................................................... 15

Human‐likeDexterousManipulation .................................................................................................16Real‐World3DPlanningandNavigation ............................................................................................17Cognition ............................................................................................................................................18RobustPerception ..............................................................................................................................19Physical,intuitiveHRIandinterfaces .................................................................................................19SkillAcquisition...................................................................................................................................20Saferobots..........................................................................................................................................20

4.BasicResearchandTechnologies ...................................................................................... 21ArchitectureandRepresentations.................................................................................................. 21ControlandPlanning...................................................................................................................... 21Perception ..................................................................................................................................... 22Robust,High‐fidelitySensors.......................................................................................................... 22NovelMechanismsandHigh‐PerformanceActuators ..................................................................... 22LearningandAdaptation................................................................................................................ 22PhysicalHuman‐RobotInteraction ................................................................................................. 23SociallyInteractiveRobots ............................................................................................................. 23

5.Contributors ..................................................................................................................... 23

Page 2: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

2

1.IntroductionServiceRoboticsisdefinedasthoseroboticssystemsthatassistpeopleintheirdailylivesatwork,intheirhouses,forleisure,andaspartofassistancetohandicappedandelderly.Inindustrialroboticsthetaskistypicallytoautomatetaskstoachieveahomogenousqualityofproductionorahighspeedofexecution.In

contrast,serviceroboticstasksareperformedinspacesoccupiedbyhumansandtypicallyindirectcollaborationwithpeople.Serviceroboticsisnormallydividedintoprofessionalandpersonalservices.

Professionalserviceroboticsincludesagriculture,emergencyresponse,pipelinesandthenationalinfrastructure,forestry,transportation,professionalcleaning,andvariousotherdisciplines.

[Professionalservicerobotsarealsousedformilitarypurposesbuttheirapplicationinthisareaisnotincludedinthisreport.]Thesesystemstypicallyaugmentpeopleforexecutionoftasksintheworkplace.AccordingtotheIFR/VDMAWorldRoboticsmorethan38,000professionalrobotsareinusetodayand

themarketisgrowingrapidlyeveryyear.Severaltypicalprofessionalrobotsareshowninfigure1.

Figure1:Typicalservicerobotsforprofessionalapplications.

Personalservicerobotsontheotherhandaredeployedforassistancetopeopleintheirdailylivesin

theirhomesorasassistantstothemforcompensationformentalandphysicallimitations.Thebyfarlargestgroupofpersonalservicerobotsconsistsofdomesticvacuumcleaners;over3millioniRobotRoomba’salonehavebeensoldworldwideandthemarketisgrowing60%+/year.Inaddition,alarge

numberofrobotshavebeendeployedforleisureapplicationssuchasartificialpets(AIBO),dolls,etc.Withmorethan2millionunitssoldoverthelast5years,themarketforsuchleisurerobotsisexperiencingexponentialgrowthandisexpectedtoremainoneofthemostpromisinginrobotics.A

numberoftypicalpersonalservicerobotsystemsareshowninfigure2.

Figure2:Typicalservicerobotsforpersonalapplications.

TALON®Hazmatrobot

EnvirobotTMPaintStrippingRobotPackBotTMTacticalRobot ResponderTMPipelineRobot

RoombaTMVacuumCleaningRobot ATRSTMRoboticWheelchairSystemStrippingRobot

VerroTMPoolCleaningRobot LEGO®MindstormsTMEducationalRobot

Page 3: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

3

Theservicerobotspanelincludedbothprofessionalandpersonalservicesandassuchcoveredahighlydiversesetofapplicationsandproblems.

2.StrategicFindingsAftermuchdiscussion,therewasgeneralagreementamongthosepresentatthemeetingthatwearestill

10to15yearsawayfromawidevarietyofapplicationsandsolutionsincorporatingfull‐scale,generalautonomousfunctionality.Someofthekeytechnologyissuesthatneedtobeaddressedtoreachthatpointarediscussedinalatersectionofthisreport.Therewasfurtheragreementamongthosepresent,

however,thatthetechnologyhassufficientlyprogressedtoenableanincreasingnumberoflimitedscaleand/orsemi‐autonomoussolutionsthatarepragmatic,affordable,andproviderealvalue.Commercialproductsandapplicationsbasedonexistingtechnologyhavealreadybeguntoemergeandmoreare

expectedasentrepreneursandinvestorsrealizetheirpotential.Theparticipantsidentifiedseveralmarketswheretheseearlycommercialsolutionsareappearingandwhereserviceroboticsislikelytohavethegreatestimpact.Amongtheareasidentifiedarehealthcare,nationalinfrastructureandresource

management,energyandtheenvironment,security,transportationandlogistics,andeducationandentertainment.

Figure3.ThechangesindemographicsinUSAandJapanrespectively.

Page 4: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

4

Oneofthekeyfactorscontributingtotheidentifiedtrendsisouragingpopulation.Thisimpactsserviceroboticsbothintermsoftheneedtoaddressashrinkingworkforceaswellastheopportunitytodevelop

solutionsthatwillmeettheirhealthcareneeds.Asshowninfigure3,theUnitedStatesisonthethresholdofa20yeartrendthatwillseeaneardoublingofthenumberofretireworkersasapercentageofthecurrentworkforce;fromjustover2retireesforevery10workerstodaytojustover4retireesforevery10

workersin2030.InJapanthesituationisevenworseandhasfueledamajornationalinitiativetodeveloptheroboticstechnologyneededtohelpcarefortheirrapidlyagingpopulation.Generallyspeaking,professionalserviceroboticsisexpectedtoserveasaworkforcemultiplierforincreasedeconomicgrowth,

whiledomesticserviceroboticsisexpectedtoenablesustainedpersonalautonomy.

Whileincreasingproductivityandreducingcostsarethecommondenominatorofservicerobotics,eachsystemisexpectedtouniquelyprovideacompellingsolutiontocertain,criticalmarketspecificissuesorneeds.Forexample,akey,primarydriverinusingroboticstechnologytoautomatetheautomobile

factorieswasthedesiretoobtainconsistent,day‐to‐dayqualityandavoidthe“builtonMonday”syndrome.

2.1PrincipalMarketsandDriversHealthcare&QualityofLife–thecurrentapplicationofroboticstechnologytoprovidetele‐operatedsolutionssuchasIntuitiveSurgical’sdaVincisurgicalsystemrepresentsthetipofthe

iceberg.Roboticstechnologyholdsenormouspotentialtohelpcontrolcosts,empowerhealthcareworkers,andenableagingcitizenstolivelongerintheirhomes.

Energy&Environment–theattendeesidentifiedthesetwocloselylinkedissuesasbothcriticalto

thefutureofourcountryandripefortheemergenceofroboticstechnologyapplications,especiallyintheareasofautomatingtheacquisitionofenergyandmonitoringtheenvironment.

Manufacturing&Logistics–beyondthetraditionalapplicationofroboticstechnologytoautomatecertainassemblylinefunctions,themeetingparticipantsagreedthatthereistremendouspotential

tofurtherautomatethemanufactureandmovementofgoods;asfullyexploredintheparallelroadmappingeffortinthisarea.Inparticular,roboticstechnologypromisestotransformsmallscale,or“micro”,manufacturingoperationsandintheprocesshelpacceleratethetransitionof

manufacturingbacktoAmerica.Thisbeliefhassincebeensubstantiatedbytheformationofanewstart‐uproboticscompany,HeartlandRobotics,organizedspecificallyforthatpurpose.

Automotive&Transportation–althoughwearestilldecadesawayfromthefullyautonomousautomobile,roboticstechnologyisalreadyappearingintheformofadvanceddriverassistanceand

collisionavoidancesystems.Publictransportationisanotherareathatisexpectedtobecomeincreasinglyautomated.Asroboticstechnologycontinuestoimproveandmature,unmannedtransportationsystemsandsolutionsdevelopedforlimitedscaleenvironmentssuchasairportswill

beadaptedforimplementationinurbancentersandothergeneralpurposeenvironments.

HomelandSecurity&InfrastructureProtection–participantsinthemeetingagreedthatroboticstechnologyofferstremendouspotentialforapplicationsinborderprotection,searchandrescue,portinspectionandsecurity,andotherrelatedareas.Inaddition,roboticstechnologyisexpectedto

Page 5: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

5

beincreasinglyusedtoautomatetheinspection,maintenance,andsafeguardingofournation’sbridges,highways,waterandsewersystems,energypipelinesandfacilities,andothercritical

componentsofournation’sinfrastructure.

Entertainment&Education–thisarea,perhapsmorethananyotherhasseentheearlyemergenceofroboticstechnologyenabledproducts.Inparticular,roboticshasthepotentialtosignificantlyaddressthescience,technology,engineering,andmath(“STEM”)crisisfacingthenationandto

becometheveritable“fourthr”ofeducation.ThisisevidencedbythetremendoussuccessofFIRST,anon‐profitorganizationfoundedin1999thatrunsnationalroboticscompetitionstoinspireyoungpeopletobescienceandtechnologyleaders,andotherroboticsinspirededucationalinitiatives.

Roboticsprovideskidswithacompellingandtactileavenuetolearnandapplyboththeunderlyingkeymathematicsandsciencefundamentalsandtheengineeringandsystemintegrationprinciplesrequiredtoproduceintelligentmachinestoaccomplishcertainmissions.

2.2NearTermOpportunitiesandFactorsEffectingCommercializationSignificantinvestmentisrequiredforexpandedresearchanddevelopmentofroboticstechnologyifthefull

promiseofwhatcanbeachievedineachoftheaboveareasistoberealized.Asnotedabove,wearestillalongwayfromthefullyautonomousroboticstechnologyrequiredtoautomateprocessestotheextentthatnohumanattentionorinterventionisrequired.Thatsaid,itwasthecollectiveopinionofthosein

attendancethatenoughprogressinroboticstechnologyhasbeenmadetoenablethedevelopmentandmarketingofawidevarietyofinitialapplicationsandproductsineachoftheseareastoachievesignificant

levelsof“humanaugmentation”.

Suchsolutionswillbecapabletovaryingdegreesofautomaticallyperformingthefollowingtypesoffunctions:monitoringdefined,yetdynamicphysicalenvironments,identifyingobjects,detectingchanges,orotherwiseperceivingthestatusoftheirassignedenvironments,analyzingandrecommendingactionsthat

shouldbetakeninresponsetodetectedconditions,takingsuchactionsinresponsetohumancommands,and/orautomaticallyperformingsuchactionswithincertainpre‐authorizedboundariesnotover‐riddenbyhumanoperators.

Examplesofsuchroboticssolutionstodayincludetele‐operatedsystemssuchasthedaVincisurgicalsystem

andautonomous,specializedproductivitytoolssuchastheRoomba.AstheInternetcontinuestoevolve,itwillinspireanaturalprogressionfromsensingatadistancetotakingactionatadistance.ThisextensionoftheInternetintothephysicalworldwillservetofurtherblurtheboundariesamongcommunity,

communication,computing,andservicesandinspirenewdimensionsintelecommutingandtelepresenceapplications.Hybridsolutionsarelikelytoemergethatenabledistributedhumancognitionandenabletheefficientuseofhumanintelligence.Suchsolutionswillcombinetherobotics‐enabledcapabilitytoremotely

andautonomouslyperceivesituationsrequiringinterventionwiththeInternet‐enabledcapabilityforhumanoperatorstotakeactionfromadistanceonanas‐neededonlybasis.

Page 6: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

6

Asreferencedabove,ouragingpopulationwillresultinafuturelaborshortage.Asworkersseektomoveupthejobhierarchy,therewillbeagrowingneedtoaugmentandincreasinglyautomatejobsatthebottom

becausetheworkerstoperformthemmaynotbereadilyavailableandeventuallymaynotexist.Whilethechallengeofachievingfullyautonomoussolutionsinthelongrunremainsprimarilytechnological,thechallengeintheneartermisoneofinvestinginthescienceofdevelopingrequirementsandotherwise

determininghowtobest“crossthechasm”;itisoneofidentifyingtherightvaluepropositions,drivingdowncosts,developingefficient,effectivesystemsengineeringprocesses,determininghowtobestintegratesuchsolutionsintocurrentoradaptedprocesses,andotherwiseaddressingtheknow‐howgapof

transitioningtechnologyintoproducts.

2.3ScientificandTechnicalChallengesWorkshopparticipantsworkedinthreebreak‐outgroupstoidentifytechnicalandscientificchallengespertinenttotheapplicationsandbusinessdriversdescribedintheprevioussection.Thefirstbreak‐outgroupfocusedonapplicationandsystemsdesign;thesecondgroupdiscussedaction,cognition,

planning,andotherelementsofroboticintelligence;andthefinalgroupidentifiedchallengesinhumanrobotinteraction.Thissectionsummarizestheirfindings.Becausethechallengesidentifiedbythethreegroupsspantheboundariesbetweentherespectivetopicareas,wewillpresentthetechnicaland

scientificchallengesidentifiedbythebreak‐outgroupsinanintegratedmanner.Theemphasisofthissectionisondescribingthechallenges,notonlayingoutaroadmaptowardsaddressingthesechallenges—sucharoadmapwillbeoutlinedinthenextsection.

MobilityMobilityhasbeenoneofthesuccessstoriesofroboticsresearch.Thissuccessisexemplifiedbya

numberofsystemswithdemonstratedperformanceinrealworldenvironments,includingmuseumtourguidesandautonomouslydrivingcars,asintheDARPAGrandChallengeandUrbanChallenge.Nevertheless,workshopparticipantsagreedthatanumberofimportantopenproblemsremain.Finding

solutionstotheseproblemsintheareaofmobilitywillbenecessarytoachievethelevelofautonomyandversatilityrequiredfortheidentifiedapplicationareas.

Participantsidentified3Dnavigationasoneofthemostimportantchallengesintheareaofmobility.Currently,mostmapping,localization,andnavigationsystemsrelyontwo‐dimensionalrepresentations

oftheworld,suchasstreetmapsorfloorplans.Asroboticapplicationsincreaseincomplexityandaredeployedineveryday,populatedenvironmentsthataremoreunstructuredandlesscontrolled,however,these2Drepresentationswillnotbesufficienttocaptureallaspectsoftheworldnecessaryfor

commontasks.Ifwillthereforebeimportanttoenabletheacquisitionofthree‐dimensionalworldmodelsinsupportofnavigationandmanipulation(seenextsection).These3Drepresentationsshouldnotonlycontainthegeometrylayoutoftheworld;instead,mapsmustcontaintask‐relevantsemantic

informationaboutobjectsandfeaturesoftheenvironment.Currentrobotsaregoodatunderstandingwherethingsareintheworld,buttheyhavelittleornounderstandingofwhatthingsare.Whenmobilityisperformedinservicetomanipulation,environmentalrepresentationsshouldalsoinclude

objectaffordances,i.e.knowledgeofwhattherobotcanuseanobjectforAchievingsemantic3Dnavigationwillrequirenovelmethodsforsensing,perception,mapping,localization,objectrecognition,

Page 7: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

7

affordancerecognition,andplanning.Someoftheserequirementsarediscussedinmoredetaillaterinthissection.

Oneofthepromisingtechnologiestowardssemantic3Dmapping,asidentifiedbytheparticipants,is

usingdifferentkindsofsensorsforbuildingmaps.Currently,robotsrelyonveryhighprecisionlaser‐basedmeasurementsystemsforlearningabouttheirenvironment,usingmappingalgorithmsknownas"SLAM"algorithms.Theparticipantsidentifiedadesiretomoveawayfromlaserstocameras,todevelop

anewfieldof"visualSLAM"(VSLAM).Thistechnologyreliesoncameras,whicharerobust,cheap,andreadilyavailablesensors,tomapandlocalizeinathree‐dimensionalworld.Alreadytoday,VSLAMsystemsexhibitimpressivereal‐timeperformance.ParticipantsthereforebelievedthatVSLAMwill

likelyplayaroleinthedevelopmentofadequateandmoreaffordable3Dnavigationcapabilities.

Participantsidentifiedadditionalrequirementsfor3Dnavigationthatwillbecriticaltomeettherequirementsoftargetedapplications.Outdoor3Dnavigationposesanumberofimportantchallengesthathavetobeaddressedexplicitly.Amongthemisthefactthatcurrent2Denvironmental

representationscannotcapturethecomplexityofoutdoorenvironmentsnorthechanginglightingconditionsthatcausesubstantialvariabilityintheperformanceofsensormodalities.Participantsalsoidentifiedrobustnavigationincrowdsasanimportantmobilitychallenge.

ManipulationSubstantialprogressinmanipulationisneededforalmostalloftheserviceroboticsapplications

identifiedintheprevioussection.Theseapplicationsrequirearobottointeractphysicallywithitsenvironmentbyopeningdoors,pickingupobjects,operatingmachinesanddevices,etc.Currently,autonomousmanipulationsystemsfunctionwellincarefullyengineeredandhighlycontrolled

environments,suchasfactoryfloorsandassemblycells,butcannothandletheenvironmentalvariabilityanduncertaintyassociatedwithopen,dynamic,andunstructuredenvironments.Asaresult,participantsfromallthreebreak‐outgroupsidentifiedautonomousmanipulationasacriticalareaof

scientificinvestigation.Whilenospecificdirectionsforprogresswereidentified,thediscussionsrevealedthatthebasicassumptionsofmostexistingmanipulationalgorithmswouldnotbesatisfiedintheapplicationareastargetedbythiseffort.Graspingandmanipulationsuitableforapplicationsin

open,dynamic,andunstructuredenvironmentsshouldleveragepriorknowledgeandmodelsoftheenvironmentwheneverpossible,butshouldnotfailcatastrophicallywhensuchpriorknowledgeisnotavailable.Asacorollary,trulyautonomousmanipulationwilldependontherobot’sabilitytoacquire

adequate,task‐relevantenvironmentalmodelswhentheyarenotavailable.Thisimpliesthat—incontrasttomostexistingmethodswhichemphasizeplanningandcontrol—perceptionbecomesanimportantcomponentoftheresearchagendatowardsautonomousmanipulation.

Participantsidentifiednovelrobotichands(discussedinthesubsectiononHardware),tactilesensing(seeSensingandPerception),andhighly‐accurate,physicallyrealisticsimulatorsasimportantenablersforautonomousmanipulation.Participantsuggestedthatcompetent“pickandplace”operationsmayprovideasufficientfunctional

basisforthemanipulationrequirementsofamanyofthetargetedapplications.Itwastherefore

Page 8: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

8

suggestedthatpickandplaceoperationsofincreasingcomplexityandgeneralitycouldprovidearoadmapandbenchmarkforresearcheffortsinautonomousmanipulation.

PlanningResearchintheareaofmotionplanninghasmadenotableprogressoverthelastdecade.Theresultingalgorithmsandtechniqueshaveimpactedmanydifferentapplicationareas.Nevertheless,participants

agreedthatrobustdynamic3Dpathplanningremainsanopenproblem.Animportantaspectofthisproblemisthenotionofarobot’ssituationalawareness,i.e.therobot’sabilitytoautonomously

combine,interleave,andintegratetheplanningofactionswithappropriatesensingandmodelingoftheenvironment.Theterm“appropriate”alludestothefactthatcompleteandexactmodelsoftheenvironmentcannotbeacquiredbytherobotinrealtime.Instead,itwillbenecessarytoreasonabout

theobjectives,theenvironment,andtheavailablesensingandmotoractionsavailabletotherobot.Asaresult,theboundarybetweenplanningandmotionplanningisblurred.Toplanamotion,theplannerhastocoordinatesensingandmotionundertheconstraintsimposedbythetask.Toachievetask

objectivesrobustlyandreliably,planninghastoconsiderenvironmentalaffordances.Thismeansthattheplannerhastoconsiderinteractionswiththeenvironmentandobjectsinitaspartoftheplanningprocess.Forexample:topickupanobject,itmaybecomenecessarytoopenadoortomoveintoa

differentroom,topushawayachairtobeabletoreachtoacabinet,toopenthecabinetdoor,andtopushanobstructingobjectoutoftheway.Inthisnewparadigmofplanning,thetaskandconstraintsimposedbythetaskandtheenvironmentarethefocus;the“motion”of“motionplanning”isameans

toanend.Constraintsconsideredduringplanningcanarisefromobjectmanipulation,locomotion(e.g.footstepplanning),kinematicanddynamicconstraintsofthemechanism,postureconstraints,orobstacleavoidance.Planningundertheseconstraintsmustoccurinrealtime.

Someoftheconstraintsontherobot’smotionaremosteasilyenforcedbyleveragingsensorfeedback.

Obviousexamplesarecontactconstraintsandobstacleavoidance.Theareaoffeedbackplanningandtheintegrationofcontrolandplanningarethereforeimportantareasofresearchtowardssatisfyingtheplanningrequirementsidentifiedbytheparticipants.Afeedbackplannergeneratesapolicythat

directlymapsstatestoactions,ratherthangeneratingaspecificpathortrajectory.Thisensuresthatsensor,actuation,andmodelinguncertaintiescanadequatelybeaddressedusingsensoryfeedback.

Theincreasedcomplexityofplanninginthiscontextwillalsorequirenovelwaysofcapturingtaskdescriptions.Whileinclassicalmotionplanningthespecificationoftwoconfigurationsfullyspecifieda

planningtask,theviewofplanningdescribedherehastohandlemuchrichertaskrepresentationstoaddresstherichnessofmanipulationtasksandintermediateinteractionswiththeenvironment.

Participantsalsoperceivedtheneedforformalmethodstoperformverificationandvalidationoftheresultsofplanners.Suchguaranteesmayberequiredtoensuresafeoperationofrobotsin

environmentspopulatedwithhumans.

Page 9: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

9

SensingandPerceptionSensingandperceptionareofcentralimportancetoallaspectsofrobotics,includingmobility,manipulation,andhuman‐robotinteraction.Participantswereconvincedthatinnovationinsensingandperceptionwillhaveprofoundimpactontherateofprogressinrobotics.

Participantsbelievedthatnewsensingmodalitiesaswellasmoreadvanced,higher‐resolution,lower‐

costversionsofexistingmodalitieswouldbeareasofimportantprogress.Forexample,participantsexpectimportantadvancesinmanipulationandmobilityalikefromdense3Drangesensing,possiblyby

LIDAR.Advancesindexterousmanipulationarelikelytorequireskin‐liketactilesensorsforrobotichands.Butalsospecializedsensors,forexampleforsafety,termedsafetysensors,werediscussedbytheparticipants.Thesesensorscouldtakevariousforms,suchasrangeorheatsensingtodetectthe

presenceofhumans,orcouldbeimplementedbyspecialtorquesensorsaspartoftheactuationmechanism,capableofdetectingunexpectedcontactbetweentherobotanditsenvironment.Skin‐likesensorsfortheentireroboticmechanismwouldalsofallintothiscategory.

Thedatadeliveredbysensormodalitiesmustbeprocessedandanalyzedbyalgorithmsforperceptionin

complexandhighlydynamicenvironmentsundervaryingconditions,includingdifferencesbetweendayandnightandobscurantslikefog,haze,brightsunlight,andthelike.Participantsidentifiedtheneedforprogressinhigh‐levelobjectmodeling,detection,andrecognition,inimprovedsceneunderstanding,

andintheimprovedabilitytodetectactivitiesandintent.Novelalgorithmsforaffordancerecognitionarerequiredtosupportthetypeofplanningdescribedintheprevioussubsection.Participantsalsodiscussedtheneedforaccuratesensormodelsinsupportofperceptualalgorithms.

Architectures,Cognition,andProgrammingParadigmsThediscussionsonthetopicsofmobility,manipulation,planning,andperceptionrevealedthattheseissuescannotbeviewedinisolationbutareintricatelylinkedtoeachother.Thequestionofhowto

engineerasystemtoeffectivelyintegratespecificskillsfromthoseareastoachievesafe,robust,task‐directed,orevenintelligentbehaviorremainsanopenquestionoffundamentalimportanceinrobotics.Researchtowardsthisobjectivehasbeenconductedunderthenameofarchitectures,cognition,and

programmingparadigms.Thisdiversityinapproachesorevenphilosophicalviewpointsmayreflectthelackofunderstandinginthecommunityonhowtoadequatelytacklethischallenge.Thisdiversityofviewpointsisalsoreflectedinthediversityoftoolscurrentlybroughttobearonthisissue:theyrange

fromimitationlearningtoexplicitprogrammingofso‐calledcognitivearchitectures.Someparticipantsfeltthatamixtureofthesewouldprobablyberequiredtoachievethedesiredoutcome.

Oneoftheclassicalapproachestowardstheoverarchingissueofgeneratingrobust,autonomousbehavioristhesense/plan/actloopusuallyemployedbymoderncontrolsystems.While

sense/plan/acthasbeenaconstantinroboticsresearchoverthelastseveraldecades,someparticipantsfeltthatnovelapproacheswouldlikelydeviatefromthisapproachinitssimplestform.Possible

alternativesaremultiplenestedorhierarchicalloops,thebehavior‐basedapproach,combinationsofthetwo,orpossiblyevencompletelynovelapproaches.

Page 10: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

10

Allparticipantsagreedthatthisareaofinvestigationwillrequiresubstantialattentionandprogressonthepathtowardsautonomousroboticsystems.

HumanRobotInteraction(HRI)Giventheultimategoalofdeployingmobileanddexterousrobotsinhumanenvironmentstoenablecoexistenceandcooperation,substantialprogresswillberequiredintheareaofhumanrobotinteraction.Theseinteractionscouldalsobecomeanimportantcomponentinanoverarchingapproach

torobustrobotbehavior,asdiscussedintheprevioussubsection.Robotmightlearnnovelskillsfromtheirinteractionswithhumansbutunderallcircumstancesshouldbecognizantofthecharacteristicsandrequirementsoftheircommunicationwithhumans.

Inadditiontothemodesofcommunication(verbal,nonverbal,gesture,facialexpression,etc.),

participantsidentifiedanumberofimportantresearchtopics,includingsocialrelationships,emotions(recognition,presentation,socialemotionalcognition/modeling),engagement,andtrust.Anunderstandingoftheseaspectsofhumanrobotcommunicationshouldleadtoanautomaticstructuring

oftheinteractionsbetweenhumansandrobotswhereroboticsystems’abilitytooperateindependentlyrisesorfallsautomaticallyasboththetaskandthehumansupervisor'sinteractionwiththesystemchange.

Progresstowardstheseobjectiveswilldependoneffectiveinputdevicesandintuitiveuserinterfaces.

ParticipantsalsoadvocatedthedevelopmentofavarietyofplatformstostudyHRI,includinghumanoidrobots,mobilemanipulationplatforms,wheelchairs,exoskeletons,andvehicles.Participantsidentifiedadesign/build/deploycycleinwhichHRIresearchshouldprogress.Thedesignprocessshouldconsider

inputfromanumberofrelevantcommunities,includingthebasicresearchcommunityandendusers.Thebuildprocessintegratesnumerouscomponentsandresearchthreadsintoasinglesystem;herethereisanopportunityforindustrycollaborationsandtechnologytransfer.Finally,theintegrated

systemisdeployedinareal‐worldcontext.ParticipantssuggestedthenotionofaRobotCity(seenextsubsection)asapromisingideatoevaluateHRIinareal‐worldcontext.Thecycleisclosedbyincorporatingenduserfeedbackintotheexperimentaldesignofthenextiterationofthe

design/build/deploycycle.

ResearchInfrastructureWorkshopparticipantsfeltstronglythatrapidprogresstowardstheidentifiedscientificobjectiveswillcriticallydependonthebroadavailabilityofadequateresearchinfrastructure,includinghardwareandsoftware.Toaddresstheresearchchallengesgivenabove,itwillbenecessarytoconstructrobotic

platformsthatcombinemanyadvancedandinteractingmechanicalcomponents,providingadequatecapabilitiesformobility,manipulation,andsensing.Thesesplatformswillbecontrolledbyamultitudeofindependentlydeveloped,yetinterdependentlyoperatingsoftwarecomponents.Asaresult,these

integratedroboticplatformsexhibitadegreeofcomplexitythatisbeyondwhatcaneasilybedesigned,developed,tested,andmaintainedbymanyindependentlyoperatingresearchgroups.Thelackofstandardizationofhardwareandsoftwareplatformsmayalsoresultinafragmentationoftheresearch

Page 11: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

11

community,difficultiesinassessingthevalidityandgeneralityofpublishedresults,andthereplicationofmuchunnecessaryengineeringandintegrationeffort.

Toovercomethesechallenges,workshopparticipantsadvocatedcoordinatedcommunityeffortsforthe

developmentofhardwareandsoftwaresystems.Theseeffortsshouldincludethedevelopmentofanopenexperimentalplatformthatwould—preferablyatlowcost—supportabroadrangeofresearcheffortsontheonehand,whileenablingtechnologyandsoftwarereuseacrossresearchgroupsonthe

otherhand.OneexampleofsuchanopenplatformisROS,arobotoperatingsystembeingdevelopedbyWillowGaragethatenablescodereuseandprovidestheservicesonewouldexpectfromanoperatingsystem,suchaslow‐leveldevicecontrol,implementationofcommonly‐usedfunctionality,and

message‐passingbetweenprocesses.Ideally,suchplatformswouldbecomplementedbyphysicalsimulationsoftwaretosupportearlydevelopmentandtestingofalgorithmswithoutcompromisingthesafetyofresearchersandhardware.Developmenteffortscouldalsobenefitfromroboticintegrated

developmentenvironments(IDEs);theseIDEsenforcedmodularityinsoftwaredevelopmenttherebyfacilitatingreuseanddocumentation.

Participantsnotedthatresearchinroboticsisrarelythoroughlyevaluatedandtestedinwell‐defined,repeatableexperiments.Otherfields,suchascomputervision,havegreatlybenefitedfrompublicly

availabledatasets,whichenabledanobjectivecomparisonbetweenmultiplealgorithmsandsystems.Theparticipantsthereforesuggestedthecreationandexpansionofrepositoriesofexperimentaldata,whichcouldthenserveascommunity‐widebenchmarks.However,asmuchoftheresearchinrobotics

isfocusedonthephysicalinteractionbetweentherobotanditsenvironment,electronicdatasetsarenotsufficient.Theyshouldbecomplementedbyskill‐specificbenchmarksconsistingofphysicalobjects.Forexample,anumberofreadilyavailableobjectscanbeselectedasabenchmarkforgrasping

research.Furthermore,entirebenchmarkenvironmentsweresuggestedtodevelop,evaluate,andcomparetheperformancewithrespecttoaparticularapplicationorimplementation.Such

environmentscouldrangeinsizeandcomplexityfromasimpleworkspace(anofficedeskorakitchencounter)toanentireroom,ahouse,oranentirecityblock.Inthiscontext,thenotionofaRobotCitywasmentioned:aregularurbanenvironmentinwhichallinhabitantsarepartoftheexperimentand

helpintheevaluationprocessaswellaswiththedefinitionofadequaterequirementsforeverydayapplicationenvironments.

Manyoftheproposedefforts—andinparticularhardwareorsoftwareintegrationefforts—falloutsideofthescopeofexistingfundingprograms.Participantsnotedthatapolicychangeinthisregardwould

benecessarytoensurethattheavailabilityofresearchinfrastructuredoesnotrepresentabottleneckintheprogresstowardsautonomousroboticsystemsineverydayenvironments.

MechanicalHardwareSafetyisacriticalfactorforthedeploymentofroboticsystemsinhumanenvironments.Inherentlysaferobotswouldalsoenablemodesofhumanrobotinteractionthatcanincreaseacceptanceofrobotictechnologyineverydaylife.Participantsthereforefeltthatinherentlysafermotorsandmechanisms

withincreasedstrengthtoweightratiowouldrepresentanimportantenablingtechnology.Insuchmechanismsvariablecompliancewouldbeadesirableproperty.Theconceptofvariablecompliance

Page 12: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

12

referstoamechanismsabilitytoadjustitsbehaviortoreactionforceswhencontactingtheenvironment.Thesereactionforcescanbevariedfordifferenttasks.Suchmechanismsenablesafe

operation,especiallywheninteractingwithhumans,aswellasflexible,robust,andcompetentmotionwhenincontactwiththeenvironment.Furthermore,energyefficiencywasidentifiedasacriticalconcernformanyapplications,asrobotswillhavetooperatewithouttethersforextendedperiodsof

time.Finally,novelorimprovedmodesoflocomotionbeyondwheelsareneededtoenablesafeandreliableoperationinindoorandoutdoorenvironments.Outdoorenvironmentsoftentimesexhibithighlyvariableterrainpropertieswhileoutdoormaycontainstairs,ladders,ramps,escalators,or

elevators.

Participantsidentifiedhighlydexterousandeasilycontrollablerobotichandsasanimportantareaforresearch.Progressinroboticgraspingandmanipulationverylikelywillgohandinhandwiththedevelopmentofnovelhandmechanisms.Atthesametime,participantsfeltthatthepotentialof

currenthandtechnologywerenotfullyleveragedbyexistinggraspingandmanipulationalgorithms.Itisthereforeconceivablethatmanyinterestingandrelevantapplicationscanbeaddressedwithavailablegraspingandmanipulationhardware.

3.KeyChallenges/Capabilities

3.1MotivatingScenarios

QualityofLifeRoboticstechnologyisexpectedtomakeatremendouscontributiontothelivesoftheelderlyanddisabled.Onesuchexampleofanexistingapplicationisarevolutionarytransportationmobilitysolutionthatenables

thosewithlimitedmobilitywhousewheelchairstoindependentlygetintoandoutoftheirvehiclesandremotelyloadandunloadtheirwheelchairsfromawiderangeofvehicles.Thissystemmakesitpossibleforthosedependent

onwheelchairstotransporttheirwheelchairusinganordinarypassengervanandtoaccessitwheneverneededwithoutassistancefromothersofferingthemadegreeoffreedomandindependenceheretoforeunavailable.Thissystemprovidessignificant

benefitsoverexistingtransportationmobilitysolutions,includinglowercostofownership,abilitytousestandardcrash‐testedautomotiveseats,greaterchoiceofvehicles,norequiredstructuralmodifications,andabilitytore‐installonsubsequentvehicles.

Agriculture

Roboticstechnologyisexpectedtoimpactamyriadofapplicationsinagricultureandaddressfarmers’constantstruggletokeepcostsdownandproductivityup.Mechanicalharvestersandmanyotheragriculturalmachinesrequireexpertdriverstoworkeffectively,whilefactors

suchaslaborcostsandoperatorfatigueincreaseexpensesandlimittheproductivityofthesemachines.Automatingoperationssuchascropspraying,harvesting,andpickingofferthepromiseofreducedcosts,increasedsafety,

greateryields,increasedoperationalflexibility,includingnighttime

ATRSTMRoboticWheelchair

AutonomousTractor

Page 13: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

13

operations,andreduceduseofchemicals.Anumberofsuchprototypesystemsandapplications,includingautomatedfruitcropsprayingandfieldcropharvesting,havebeendevelopedandthetechnologyhasnow

maturedtothepointwhereitisreadytobetransitionedforfurthercommercializationandfielddeploymentwithinthenextfewyears.

InfrastructureRoboticstechnologyhastremendouspotentialtoautomatetheinspectionandmaintenanceofournation’sbridges,highways,pipelines,andotherinfrastructure.Already,thetechnologyhasbeenadaptedtodevelopautomatedpipelineinspectionsystemsthatreducemaintenanceandrehabilitationcostsbyproviding

accurate,detailedpipeconditioninformation.Suchsystems,basedonadvancedmulti‐sensorandotherroboticstechnology,aredesignedforundergroundstructuresandconditionsthatareotherwisedifficulttoinspect,includinglargediameterpipes,longhaulstretches,inverts,crowns,culverts,andmanholes,andin‐serviceinspections.Theseroboticplatformsnavigatethiscriticalwastewaterinfrastructuretoinspectsewerpipeunreachablebytraditionalmeansandproduceveryaccurate3Dimagesofthepipeinsidesurface.The

inspectioninformation,capturedindigitalform,servesasabaselineforfutureinspectionsandasaresultcanautomaticallycalculatedefectfeaturechangesovertime.

MiningRoboticstechnologyisalreadystartingtohaveadramaticimpactonboththeundergroundandsurfaceminingindustries.Aninnovativebeltinspectionsystemthatusesahigh‐speed"machinevision"systemandsoftwarealgorithmstomonitortheconditionofconveyorbeltsandhelpoperatorsdetectdefects,forexample,isineverydayuseatseveralundergroundcoalmines.Thepatentedsystemisdesignedtoreducecostlydowntimecausedbythedegradationandeventualruptureofconveyorbeltsplices.Onalargerscaleroboticstechnologyisbeingusedtodevelopautonomousversionsoflargehaultrucksusedinminingoperations.Caterpillarrecentlyannouncedthatitisdevelopinganautonomousmininghaulagesystemwithplanstointegrateautonomoushaultrucks,eachwithpayloadcapacitiesof240tonsormore,intosomeminesitesby2010.Theautonomoustechnologyisdesignedtoprovideproductivitygainsthroughmoreconsistencyinprocessesandminimizeenvironmentalimpactbybothimprovedefficiencyandoverallminesafety.

TransportationRoboticstechnologywillsignificantlyaffecteveryaspectofhowwetransportpeopleandgoodsinthecomingdecades;frompersonaltransportationsystemstointelligenthighwaystoautonomouspublictransportationsystems.CompaniessuchasSegwayandToyotahaveintroducedpersonaltransportationrobotsthatareriddeninstandingpositionandcontrolledbyinternalsensorsthatconstantlymonitortherider’spositionandautomaticallymaketheaccordingadjustments.Meanwhile,carmakersanddevicemanufacturersarecreating“smartcars”byinstallingmorepowerfulcomputersandsensors,givingdriversabetterideaoftheirenvironmentandcarperformance.

ResponderTMPipelineRobot

AutonomousHaulTruck

Page 14: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

14

AlthoughAmericandriverslognearlytwiceasmanymiles(1.33trillionperyear)astheydid25yearsago,theroadstheyaredrivingonhaveincreasedincapacitybyonly5percent,resultingin3.7billionhoursofdriverdelaysand2.3billiongallonsofwastedfuel.Toaddressthisissuehighwayagenciesareattemptingtocreate“smartroads”byinstallingsensors,camerasandautomatictollreadersandapublic‐privatenationalinitiativecalledVehicleInfrastructureIntegration(VII)hasbeenlaunchedtomergesmartcarsandsmartroadstocreateavirtualtrafficinformationnetworkandbustupgridlock.Masstransportationsystemsarealsoexpectedtoadoptroboticstechnologytoprovideoperatorswithgreatersituationalawarenessandnavigationassistanceincrowdedurbancorridorstherebyhelpingtocontrolcostsandincreasesafety.

EducationRoboticshasalreadycommencedtransformingtheAmericanclassroom.RoboticsputsacademicconceptsincontextandisbeingusedatalllevelsinK‐12andcollegeeducation.Roboticsprovidesstudentswitha

tactileandintegratedmeanstoinvestigatebasicconceptsinmath,physics,computerscienceandotherSTEMdisciplines,whileenablingteachersatthesametimetointroduceconceptsaboutdesign,innovation,problemsolving,andteamwork.Roboticscurriculumshavebeendeveloped,teachershavebeentrained,andscoresofcompetitionsareheldeveryyearacrossthecountry.PerhapsthebestknownroboticscompetitionprogramsareoperatedbyFIRST,anon‐profitorganizationfoundedin1999toinspireyoungpeopletobescienceandtechnologyleaders.Asameasureofthe

growingpopularityofroboticscompetitions,FIRSTisexpectingover195,000studentstoparticipateinitscompetitionsinthecomingyear.Evenmoresignificantly,arecentBrandeisUniversitysurveyfoundthatFIRSTparticipantsaremorethantwiceaslikelytopursueacareerinscienceandtechnologyasnon‐FIRSTstudentswithsimilarbackgroundsandacademicexperiences.Althoughmuchprogresshasbeenmade,thesurfacehasonlybeenscratchedintermsofthepotentialimpactofroboticsineducation.Tomorefullyrealizethispotential,robotsneedtobemademoreaccessible,affordableandeasytouseforbothstudentsandteachers.

HomelandSecurityandDefenseTheuseofroboticstechnologyforhomelandsecurityanddefensecontinuestogrowasinnovativetechnologyhasimprovedthefunctionalityandviabilityofsearchandrescueefforts,surveillance,explosivescountermeasures,firedetection,andotherapplications.Unmannedsurveillance,detection

andresponsesystemswillbeabletomakeuseofroboticplatforms,fixedsensors,andcommandandcontrolnetworkstopotentiallymonitorandpatrolhundredsofmilesofroughborder

TopThreeFinishersinthe2008DARPAUrbanGrandChallenge

FIRSTLegoLeagueTMParticipants

DisasterSiteApplication

Page 15: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

15

terrain,tosniffoutandlocatechemical/biological/radioactive/nuclear/explosivethreats,andsurveylargeperimetersassociatedwithborders,powerplantsorairports.Suchsystemswillenablesecuritypersonneltoautomaticallydetectpotentialthreats,totakeaclose‐infirstlookfromasafedistance,andtoprovideinitialdisruptionandinterdictionatthepointofintrusionifnecessary.Whileother“man‐packable”robotsequippedwithinstrumentsincludinginfraredcameras,nightvisionsensorsandmillimeter‐waveradarhavebeenusedatdisastersites,includingtheWorldTradeCenter,tosearchforvictims.

3.2CapabilitiesRoadmapInthefollowing,weidentifythekeychallengesthathavetobemetandthekeycapabilitiesthathaveto

bedevelopedinordertodeliverservicerobotscapableofaddressingtheaforementionedmotivatingscenarios.Figure4providesanoverviewoftheproposedroadmapandtheremainderofthisdocument.Therightcolumninthefigurelaysouttheapplicationareas,manyofwhicharedescribedinthe

motivatingexamplescenariosabove.High‐impactadvancesintheseapplicationareascanonlybeenabledifanumberofcapabilitiesforautonomousservicerobotsbecomeavailable.ThesecapabilitiesarelistedinthemiddleofthefigureanddescribedinmoredetailinSection3.Toachievetherequired

levelofcompetencyinthoseareas,sustainedinvestmentinresearchanddevelopmentsinanumberofbasicresearchareasandtechnologiesisrequired.Figure4showstheseresearchareasandtechnologiesintheleftcolumn;theyaredescribedinmoredetailinSection4.

Page 16: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

16

Figure4.Overviewoftheroadmapfordomesticandindustrialservicerobotics:Sustainedresearchanddevelopmentinthebasicresearchareasintherightmostcolumnofthefigurewillenableanumberofelementarycapabilities,showninthemiddlecolumnofthefigure.Thesecapabilitiesinturnenable

progressintheapplicationareasontheright.

Human­likeDexterousManipulationEvensimpletasks,suchaspickingupunknownobjects,stillrepresentmajorresearchchallenges.The

levelofdexterityandcapabilitiesinphysicalreasoningrequiredforautonomousmanipulationinthecontextofprofessionalanddomesticserviceroboticsseemsfaroutofreach.Pressingproblemsinthisareaincludeadequatesensorsandassociatedperceptualcapabilities,dexteroushandsandsafe

manipulators,planningunderuncertainty,advancedcontrol,skilllearningandtransfer,andmodelingandsimulation.

Someparticipantsbelievedthattherequiredcompetencyinmanipulationcanonlybeachievedwhenthesedifferentareasareadvancedinacoordinatedfashionratherthaninisolation.Forexample,novel,

skin‐liketactilesensorsholdgreatpromisefordexterousin‐handmanipulation.However,welackthealgorithmstoprocessthedatafromsuchsensors.Itisconceivablethattechniquesfromcomputer

Page 17: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

17

visioncouldinterpretthetactileinformationasanimageandthereforeareabletocomputeusefulabstractionsofthehigh‐dimensionaltactiledata.Atthesametime,inspirationfromcomputervision

algorithmsmayenablethedesignofsimplertactilesensorsthatcontainsimplelocalpre‐processingtailoredtothespecificalgorithmstheysupport.

In5,10,and15yearsthefollowinggoalsarepossiblewithsustainedresearchanddevelopment:

• 5years:Robotsperformlimitedpickandplacetaskinthehomeandinindustrialsettings;robotsareabletoreliablyopendoorsandcabinets.Thesemanipulationtasksareaccomplished

partiallybyengineeringtheenvironment,partiallybyequippingrobotswithspecialized(oratleastnotverygeneralpurpose)end‐effectors,andbymakingsimplifyingassumptionsregardingtheenvironment.

• 10years:Robotsrobustlymanipulatelarge,graspable,rigid,possiblyarticulatedobjectsandtoolswithoutpossessingapriorimodels.Robotsimprovetherobustnessandapplicabilityofmanipulationandgraspingskillswithexperience.Robotsacquiregeneralizedmanipulation

knowledgetogivetheminformationabouttheuseofobjectsandtools,eveniftheyhavenotencounteredthembefore.

• 15years:Robotspossesshandswithnearlyhumanlevelsofmechanicaldexterity.Handsare

coveredwithhigh‐resolutiontactileskin.Robotsareabletoperformrobust,sensor‐based,prehensileandnon‐prehensilemanipulationofobjects.Theypossessrudimentarycapabilitiesofmanipulatingflexibleobjects.

Real­World3DPlanningandNavigationAutonomousservicerobotsaccomplishtasksbymovingabouttheirenvironmentandbyinteractingwith

theirenvironment.Thesemotionsandinteractionsneedtoachieveagiventaskbychangingtherobot’sposeandbymovingobjectsintheenvironment.Theaccomplishmentofataskmayrequirecomplexsequencesofmotionsandinteractions;therobotmayhavetomovefromoneroomtoanotheroritmay

havetoopendoors,clearobstaclesoutofitspath,removeobstructions,orusetools.Toachievethislevelofcompetency,substantialadvancesattheintersectionofmotionplanning,taskplanning,andcontrolhavetobemade.Historically,theseareashaveprogressedinisolation.Theproblemsposedby

servicerobotics,however,canonlybeaddressedthroughatightintegrationofthesetechniques.

Considerthetaskofpickingupacuptowhichaccessisobstructedbyabox.Toreasonaboutpushingtheboxtothesidetopickupthecup,therobothastoreasonaboutitsowncapabilities,thegeometryofthescene,constraintsimposedbyactuationandjointlimits,thecontactdynamicsandfrictionthat

arisewhenpushingthebox,etc.

Toreasonabouttheworldinsuchawaythattheappropriatesequenceofactionsandmotionscanbedetermined,therobothastobeawareofitsenvironment.Notalloftherequiredinformationcanbeprovidedtotherobotbeforehand,asservicerobotsoperateinunstructuredanddynamic

environments.Therobotthereforehastopossesscapabilitiestoperceiveandmapitsenvironment.“Semanticmapping”providestherobotwithinformationabouttheenvironmentthatisrequiredto

Page 18: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

18

achieveatask.Objectdetectionandrecognitionandrelatedperceptualskillsprovideinformationforsemanticmappingandforobjectmanipulation.

In5,10,and15yearsthefollowinggoalsarepossiblewithsustainedresearchanddevelopment:

• 5years:Robotsinresearchlaboratoriescannavigatesafelyandrobustlyinunstructured2D

environmentsandperformsimplepickandplacetasks.Relevantobjectsareeitherfromaverylimitedsetorpossessspecificproperties.Robotslearnsemanticmapsabouttheirenvironmentthroughexplorationandinteractionbutalsothroughinstructionfromhumans.Theyareableto

reasonabouttasksofmoderatecomplexity,suchasremovingobstructions,openingcabinets,etc.toobtainaccesstootherobjects.

• 10years:Givenanapproximateandpossiblyincompletemodelofthestaticpartofthe

environment(possiblygivenaprioriorobtainedfromdatabasesvietheInternet,etc.),servicerobotsareabletoreliablyplanandexecuteatask‐directedmotioninserviceofamobilityormanipulationtask.Therobotbuildsadeepunderstandingoftheenvironmentfromperception,

interaction,andinstruction.Therobotmodifiesitsenvironmenttoincreasethechancesofachievingitstask(removeobstructions,clearobstacles,turnonlights),anditcandetectandrecoverfromsomefailures.

• 15years:Servicerobotscanperformhigh‐speed,collision‐free,mobilemanipulationincompletelynovel,unstructured,dynamicenvironments.Theyperceivetheirenvironment,translatetheirperceptionsintoappropriate,possiblytask‐specificlocalandglobal/short‐and

long‐termenvironmentalrepresentations(semanticmaps)andusethemtocontinuouslyplanfortheachievementofglobaltaskobjectives.Theyrespondtodynamicchangesintheenvironmentinawaythatisconsistentwiththeglobalobjective.Theyareabletointerleave

exploratorybehaviorwhennecessarywithtask‐directedbehavior.Theyinteractwiththeirenvironmentandareabletomodifyitinintelligentwayssoastoensureandfacilitatetask

completion.Thisincludesreasoningaboutphysicalpropertiesofinteractionsbetweenobjectsandtheenvironments(sliding,pushing,throwing,etc.)andtheuseoftoolsandotherobjects.

CognitionInserviceroboticsthereisaneedtooperateinnon‐engineeredenvironments,toacquirenewskills

fromdemonstrationbyusers,andtointeractwithusersfortaskingandstatusreporting.Cognitivesystemsenableacquisitionofnewmodelsoftheenvironmentandtrainingofnewskillsthatcanbeusedforfutureactions.Cognitionisessentialforfluentinteractionwithusersanddeploymentindomains

wherethereislimitedopportunitiesforusertraining.Inadditionanaddeddegreeofintelligenceforcopingwithnon‐engineeredenvironmentisessentialtoensuresystemrobustness.

In5,10,and15yearsthefollowinggoalsarepossiblewithsustainedresearchanddevelopment:

• 5years:Demonstrationofarobotthatcanlearnskillsfromapersonthroughgestureand

speechinteraction.Inadditionacquisitionofmodelsofanon‐modeledin‐doorenvironment.

Page 19: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

19

• 10years:Arobotthatinteractswithuserstoacquiresequencesofnewskillstoperformcomplexassemblyoractions.Therobothasfacilitiesforrecoveryfromsimpleerrors

encountered.• 15years:Acompanionrobotthatcanassistinavarietyofservicetasksthroughadaptationof

skillstoassisttheuser.Theinteractionisbasedonrecognitionofhumanintentandre‐planning

toassisttheoperator.

RobustPerceptionServicerobotsoperateinrelativeunconstrainedenvironmentsandassuchthereisaneedtoproviderobustperceptualfunctionalitytocopewiththeenvironmentalvariation.Perceptioniscriticaltonavigationandinteractionwiththeenvironmentandforinteractionwithusersandobjectsintheproximityofthesystem.Todayperceptionistypicallyusedforrecognizingandinteractingwithsingle,knownobjects.Toenablescalabilitythereisaneedtohavefacilitiesforcategorizationofperceptsandgeneralizationacrossscenes,eventandactivities.Alreadytodaytherearemethodsformappingandinterpretationofscenesandactivitiesandthemainchallengeisinscalabilityandrobustnessforoperationinunconstrainedenvironments.In5,10,and15yearsthefollowinggoalsarepossiblewithsustainedresearchanddevelopment:

• 5years:Demonstrationofarobotsystemthatcancategorizespacesandautomaticallyassociatesemanticswithparticularplaces.Thesensingwillbeintegratedovertimeforrobust

operationinlargescalescalessuchasmallorabuildingstructure.Therobotwillbeabletorecognizehundredsofobjects.

• 10years:Demonstrationofarobotsystemthatcanperceiveeventandactivitiesinthe

environmenttoenableittooperateoverextendedperiodsoftime.• 15years:DemonstrationofarobotthatintegratesmultiplesensorymodalitiessuchasGPS,

visionandinertialtoacquiremodelsoftheenvironmentandusethemodelsfornavigationand

interactionwithnovelobjectsandevents.

Physical,intuitiveHRIandinterfacesDeploymentofservicerobotsbothinprofessionalanddomesticsettingsrequirestheuseofinterfacesthatmakesthesystemseasilyaccessiblefortheusers.Diffusionofroboticstoabroadercommunityrequires

interfacesthatcanbeusedwithnoorminimaltraining.Therearetwoaspectstointerfaces:physicalinteractionwithusersandpeopleinthevicinityandthecommandinterfacefortaskingandcontroloftherobot.Thephysicalinteractionincludesbodymotiontomove/nudgeobjectsandpeopleandnon‐contact

interactionsuchaschangeofmotionbehaviortocommunicateintentorstate.Theinterfaceaspectisessentialtotaskingandstatusreportingforoperatorstounderstandtheactionsoftherobot.

In5,10,and15yearsthefollowinggoalsarepossiblewithsustainedresearchanddevelopment:

• 5years:Demonstrationofarobotwheretaskinstructionisfacilitatedbymulti‐modaldialogfor

simpleactions/missionsandrobotsthatcancommunicateintentofactionsbythebodylanguage.• 10years:Demonstrationofarobotwhereprogrammingbydemonstrationcanbeusedfor

complextasklearningsuchasmealpreparationinaregularhome.

Page 20: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

20

• 15years:Demonstrationofarobotthatcanbeprogrammedbyanoperatorforcomplexmissionatatimescalesimilartotheactualtaskduration.

SkillAcquisitionServicerobotsmustpossesstheabilitytosolvenoveltaskswithcontinuouslyimprovingperformance.Thisrequiresthatservicerobotsbeabletoacquirenovelskillsautonomously.Skillscanbeacquiredin

manyways:theycanbeobtainedfromskilllibrariesthatcontainskillsacquiredbyotherrobots;skillscanbelearnedfromscratchorbycomposingotherskillsthroughtrialanderror;skillscanalsobe

learnedthroughobservationofotherrobotsorhumans;furthermore,theycanbetaughttoarobotbyahumanorroboticinstructor.Butskillacquisitionalsorequirestherobottoidentifythosesituationsinwhichaskillcanbebroughttobearsuccessfully.Skillscanbeparameterized;learningandselecting

appropriateparametersforavarietyofsituationsisalsoincludedinthecapabilityofskillacquisition.Theabilitytotransferskillsfromonedomaintoanotherortotransferexperienceacquiredwithoneskilltoanotherskillcanbeexpectedtoprovidesubstantialadvancesinskillacquisition.Adequate

capabilitiesinskilllearningwillbeenabledbyadvancesinperception,representation,machinelearning,cognition,planning,control,activityrecognition,andotherrelatedareas.

In5,10,and15yearsthefollowinggoalsarepossiblewithsustainedresearchanddevelopment:

• 5years:Robotscanlearnavarietyofbasicskillsthroughobservation,trialanderror,andfrom

demonstration.Theseskillscanbeappliedsuccessfullyunderconditionsthatvaryslightlyfromtheonesunderwhichtheskillwaslearned.Robotscanautonomouslyperformminoradaptationsofacquiredskillstoadaptthemtoperceiveddifferencefromtheoriginalsetting.

• 10years:Asperceptualcapabilitiesimprove,robotscanacquiremorecomplexskillsanddifferentiatespecificsituationsinwhichskillsareappropriate.Multipleskillscanbecombinedintomorecomplexskillsautonomously.Therobotisabletoidentifyandreasonaboutthetype

ofsituationinwhichskillsmaybeappliedsuccessfully.Therobothasasufficientunderstandingofthefactorsthataffectthesuccesssoastodirecttheplanningprocessinsuchawaythatchancesofsuccessaremaximized.

• 15years:Therobotcontinuouslyacquiresnewskillsandimprovestheeffectivenessofknownskills.Itcanacquireskill‐independentknowledgethatpermitsthetransferofsingleskillsacrossdifferenttasksanddifferentsituationsandthetransferofskillstonoveltasks.Therobotisable

toidentifypatternsofgeneralizationfortheparameterizationofsingleskillsandacrossskills.

SaferobotsTodaysafetyforrobotsisachievedthroughaclearseparationoftheworkspacesforhumansandrobotsor

throughoperationatspeedsthatdonotrepresentarisktohumansintheproximityofthesystem.Astheoperationofhumansandrobotsbecomemoreandmoreintertwinedtherewillbeaneedtoexplicitly

consideroperationathigherspeedswhileoperatingindirectproximitytopeople.Thereisaneedtoconsiderstandardsforsafetytoenablecertification.Whiletechnologically,safetyinvolvesseveralaspectsincludingtheneedfor:advancedperceptioncapabilitiestodetectobjectsandpersonsandpredict

possiblesafetyhazards,controlsystemsthatreacttopossibledangeroussituations,andinherentlysafeactuationmechanismstoensurethatcontactwithapersonorobjectscauseslittleornodamage.

Page 21: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

21

In5,10,and15yearsthefollowinggoalsarepossiblewithsustainedresearchanddevelopment:

• 5years:Asafetystandardforserviceroboticshasbeendefinedandacceptedworldwide,which

specifiesallowimpactsandenergytransfers.Basicmanipulationsystemshavefirstversionsofsafetystandardimplemented.

• 10years:Aninherentlysaferobotforoperationinproximityofhumansisdemonstratedfor

industrialapplicationscenarios.• 15years:Arobotsystemthatdoesmobilemanipulationincooperationwithhumansis

demonstratedandthesafetyisdemonstratedbothforhardwareandsoftwarecomponents.

4.BasicResearchandTechnologies

ArchitectureandRepresentationsOverthelast20yearsanumberofestablishedmodelsforsystemorganizationhaveemerged.Characteristically,however,noagreementoroverallframeworkforsystemorganizationhas

materialized.Forautonomousnavigation,mobility,andmanipulationtherearesomeestablishedmethodssuchas4D/RCSandHybridDeliberativeArchitectures,butonceinteractioncomponentsareaddedsuchasHuman‐RobotInteraction(HRI)thereislittleagreementonacommonmodel.Overthe

lastfewyearstheareaofcognitivesystemshasattemptedtostudythisproblem,butsofarwithoutaunifiedmodel.Forwideradoptionofrobotsystemsitwillbeessentialtoestablisharchitecturalframeworksthatfacilitatesystemsintegration,componentmodeling,andformaldesign.Appropriate

architecturalframeworksmayinitiallyorinherentlydependonthetask,theapplicationdomain,therobot,oravarietyofotherfactors.Nevertheless,adeeperunderstandingoftheconceptsunderlyingcognitioncanbeexpectedfromanincrementalunificationofmultipleframeworksintomoreless

problem‐orrobot‐specificarchitectures.Anyoftheaforementionedarchitecturalframeworkswillbeintricatelylinkedtoasetofappropriaterepresentationsthatcaptureaspectsoftheenvironmentand

theobjectscontainedinit,therobot’scapabilities,domaininformation,aswellasadescriptionoftherobot’stask

ControlandPlanningAsservicerobotsaddressreal‐worldproblemsindynamic,unstructured,andopenenvironments,novelchallengesariseintheareasofrobotcontrolalgorithmsandmotionplanning.Thesechallengesstem

fromanincreasedneedforautonomyandflexibilityinrobotmotionandtaskexecution.Adequatealgorithmsforcontrolandmotionplanningwillhavetocapturehigh‐levelmotionstrategiesthatadapttosensorfeedback.Researchchallengesincludetheconsiderationofsensingmodalitiesanduncertainty

inplanningandcontrolalgorithms;thedevelopmentofrepresentationsandmotionstrategiescapableofincorporatingfeedbacksignals;motionsubjecttoconstraints,arisingfromkinematics,dynamics,andnonholonomicsystems;addressingthecharacteristicsofdynamicenvironments;developingcontrol

andplanningalgorithmsforhybridsystems;andunderstandingthecomplexityofthesealgorithmicproblemsincontrolandmotionplanning.

Page 22: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

22

PerceptionOverthelastfewdecadestremendousprogresshasbeenachievedinperceptionandsensoryprocessingasisseenforexampleinwebbasedsearchessuchasGoogleimagesandfacerecognitioninsecurity

applications.Mappingandlocalizationinnaturalenvironmentsisalsopossibleforengineeredenvironments.OverthelastdecadeinparticularuseoflaserscannersandGPShaschangedhownavigationsystemsaredesignedandenabledanewgenerationofsolutions.Nonetheless,localization

andplanninginGPS‐deniedenvironmentswhicharequitecommonremainsaveryimportantresearcharea.Inadditiontherehasbeentremendousprogressonimagerecognitionwithscalingtolargedatabases.Inthefuturealargenumberofrobotswillrelyonsensoryfeedbackfortheiroperationand

theapplicationdomainwillgobeyondpriormodeledsettings.Thereisthereforeaneedforrelianceonmultiplesensorsandfusionofsensoryinformationtoproviderobustness.Itisexpectedthattheuseofimage‐basedinformationinparticularwillplayamajorrole.Visionwillplayacrucialroleinnew

mappingmethods,infacilitatingthegraspingofnovelobjects,inthecategorizationofobjectsandplacesbeyondinstancebasedrecognition,andinthedesignofflexibleuserinterfaces.

Robust,High­fidelitySensorsAdvancesinmicroelectronicsandpackaginghaveresultedinarevolutioninsensorysystemsoverthe

lastdecade.Imagesensorshavemovedbeyondbroadcastqualitytoprovidemega‐pixelimages.MEMStechnologyhasenabledanewgenerationofinertialsensorpackagesandRFIDhasenabledmoreefficienttrackingofpackagesandpeople.Sensorshaveenabledsolidprogressindomainswithgood

signalquality.Asthedomainsofoperationarewidenedtherewillbetheneedfornewtypesofsensorsthatallowrobustoperation.Thisrequiresbothnewmethodsinrobustcontrol,butmoreimportantlysensorsthatproviderobustdatainthepresenceofsignificantdynamicvariationsandadomainwith

poordataresolution.NewmethodsinsiliconmanufacturingandMEMSopenopportunitiesforanewgenerationofsensorsthatwillbeakeyaspectoffutureprogressinrobotics.

NovelMechanismsandHigh­PerformanceActuatorsThereisanintricateinterplaybetweenprogressinmechanicaldevicesandactuationandthealgorithmiccomplexityrequiredtousetheminaccordancewiththeirfunction.Somealgorithmicproblemscanbe

solvedortheirsolutiongreatlyfacilitatedbyintelligentmechanicaldesign.Advancesinmechanismdesignandhigh‐performanceactuatorscouldthereforecriticallyenableground‐breakinginnovationsinotherbasicresearchareasaswellasenableseveralofthecapabilitieslistedintheroadmap.Importantresearch

areasincludethedesignanddevelopmentofmechanismswithcomplianceandvariablecompliance,highlydexteroushands,inherentlycomplianthands,energy‐efficient,safe,high‐performanceactuators,energy‐efficientdynamicwalkers,andmanymore.Ofparticularinterestare“intelligent”mechanical

designsthatcansubsume—throughtheirdesign—afunctionthatotherwisehadtobeaccomplishedthroughexplicitcontrol.Examplesincludeself‐stabilizingmechanismsorhandswithspecialprovisionstoachieveformclosurewithoutexplicitcontrol.

LearningandAdaptationManyofthebasicresearchareasdescribedinthissectioncanbenefitfromadvancesinandapplicationof

learningandadaptation.Servicerobotsoccupycomplexenvironmentandliveinhigh‐dimensionalstate

Page 23: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

23

spaces.Knowledgeoftheenvironmentandoftherobot’sstateisinherentlyuncertain.Therobot’sactionsmostoftenarestochasticinnatureandtheirresultcanbestbedescribedbyadistribution.Many

ofthephenomenathatdeterminetheoutcomeofanactionaredifficultorevenimpossibletomodel.Techniquesfrommachinelearningprovideapromisingtooltoaddresstheseaforementioneddifficulties.Thesetechniquescanbeusefulforlearningmodelsofrobots,taskorenvironments;learningdeep

hierarchiesorlevelsofrepresentationsfromsensorandmotorrepresentationstotaskabstractions;learningofplansandcontrolpoliciesbyimitationandreinforcementlearning;integratinglearningwithcontrolarchitectures;methodsforprobabilisticinferencefrommulti‐modalsensoryinformation(e.g.,

proprioceptive,tactile,vision);structuredspatio‐temporalrepresentationsdesignedforrobotlearningsuchaslow‐dimensionalembeddingofmovements.

PhysicalHuman­RobotInteractionGraduallythesafetybarriersthathavebeencommoninindustrialroboticsareremovedandrobotswilltoalargerdegreeengagewithpeopleforcooperativetaskexecutionandforprogrammingby

demonstration.Aspartofthis,robotswillhavedirectphysicalcontactwiththeuser.Thisrequiresfirstofallcarefulconsiderationofsafetyaspects.Inadditionthereisaneedtoconsiderhowtheserobotscanbedesignedtoprovideinteractionpatternsthatareperceivedasnaturalbyusers.Thisspansallaspectsof

interactionfromphysicalmotionoftherobottodirectphysicalinteractionwithaperceptionofminimuminertiaandfluidcontrol.Inadditionthereisaneedheretoconsidertheinteractionbetweendesignandcontroltooptimizefunctionality.

SociallyInteractiveRobotsAsrobotsengagewithpeoplethereisaneedtoendowthesystemswithfacilitiesforcooperativeinteractionwithhumans.Thisinteractionisneededfortaskingofasystem,forteachingofnewskillsandtasksandforcooperativetaskexecution.Thecurrentmodelsforsocialinteractionincludegestures,

speech/sound,bodymotion/pose,andphysicalposition.Thereishereaneedtointegrateskillandtaskmodelswithinterpretationofhumanintenttoenableinterpretationofnewandexistingactivities.Inserviceroboticsthereisabroadneedforsocialinteractionfromencounterswithnoviceusersto

cooperativetaskingwithanexpertoperator.Thefullspanofcapabilitiesisrequiredtoprovideengagingandlong‐termadoptionofrobotics.

5.ContributorsThisreportdocumentstheresultofbrainstormingsessionthattookplace7‐8August2008inSanFrancisco,CA.ThereportispartoftheCCCstudyonRobotics.TheComputingCommunityConsortium

(CCC)isaprojectmanagedbytheComputingResearchAssociation(CRA)andissponsoredbytheNationalScienceFoundation(NSF).ThepresentreporthasbeenauthoredbytheworkshoporganizersanddoesnotreflecttheoptionofCRA,CCCorNSF.Theresponsibilityofthereportliesentirelywiththe

authors.

TheCCCworkshoponserviceroboticswasorganizedbyOliverBrock,UniversityofMassachusetts,BillThomasmeyer,TheTechnologyCollaborative,Inc,andHenrikIChristensen,GeorgiaInstituteofTechnology.Theworkshopwasattendedbythefollowingpeoplefromacademiaandindustry:

Page 24: CCC/Robotics ‐ Roadmap f. Service Robotics › reports › CCC-serv-rob-v16.pdf · service robotics is expected to enable sustained personal autonomy. While increasing productivity

24

ChadJenkins BrownNicholasRoy MITAaronDollar MITStefanoCarpin UCMercedJanaKosecka GeorgeMasonAndrewNg StanfordAndreaThomaz GeorgiaTechJingXiao UNCCharlotteCharlesRich WPICandaceSidner WPIStewartTansley MicrosoftResearchJoshuaSmith IntelEricBerger WillowGarageMartinBuehler iRobotPaoloPirjanian EvolutionRoboticsBillTownsend BarrettTechnologyScottThayer RedZoneChrisUrmson CMU/GMCynthiaBreazeal MITMichaelO’Connor NovariantPaulJames AdeptEricWhinnem Boeing‐MfrTechCharlieKemp GeorgiaTechTrevorBlackwell AnybotsDanMiller AnybotsBrianCarlisle PreciseAutomationParagBatavia Foster‐MillerAndreasHoffman VecnaJamesKuffner CMUAlexFoessel DeereOliverBrock UMassAmherstBillThomasmeyer TechCollaborativeHenrikChristensen GeorgiaTechJakeHuckaby GeorgiaTech