cavitands, liquid crystals and antibodies: materials for integrated chem… · 2011. 5. 13. ·...

28
Cavitands, Liquid Crystals and Antibodies: Materials for Integrated Chem/Bio. Sensing Devanand K. Shenoy (PI), Elias Feresenbet, George Anderson and @ Enrico Dalcanale Center for Bio/Molecular Science and Engineering Naval Research Laboratory Washington, DC 20375 @ Department of Organic and Industrial Chemistry University of Parma, Italy 11/17/04

Upload: others

Post on 03-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Cavitands, Liquid Crystals and Antibodies: Materials for Integrated Chem/Bio. Sensing

    Devanand K. Shenoy (PI), Elias Feresenbet, George Anderson and @Enrico Dalcanale

    Center for Bio/Molecular Science and EngineeringNaval Research Laboratory

    Washington, DC 20375

    @ Department of Organic and Industrial ChemistryUniversity of Parma, Italy

    11/17/04

  • Report Documentation Page Form ApprovedOMB No. 0704-0188Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering andmaintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, ArlingtonVA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if itdoes not display a currently valid OMB control number.

    1. REPORT DATE 17 NOV 2004

    2. REPORT TYPE N/A

    3. DATES COVERED -

    4. TITLE AND SUBTITLE Cavitands, Liquid Crystals and Antibodies: Materials for IntegratedChem/Bio. Sensing

    5a. CONTRACT NUMBER

    5b. GRANT NUMBER

    5c. PROGRAM ELEMENT NUMBER

    6. AUTHOR(S) 5d. PROJECT NUMBER

    5e. TASK NUMBER

    5f. WORK UNIT NUMBER

    7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Center for Bio/Molecular Science and Engineering Naval ResearchLaboratory Washington, DC 20375

    8. PERFORMING ORGANIZATIONREPORT NUMBER

    9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

    11. SPONSOR/MONITOR’S REPORT NUMBER(S)

    12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited

    13. SUPPLEMENTARY NOTES See also ADM001849, 2004 Scientific Conference on Chemical and Biological Defense Research. Held inHunt Valley, Maryland on 15-17 November 2004 . , The original document contains color images.

    14. ABSTRACT

    15. SUBJECT TERMS

    16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

    UU

    18. NUMBEROF PAGES

    27

    19a. NAME OFRESPONSIBLE PERSON

    a. REPORT unclassified

    b. ABSTRACT unclassified

    c. THIS PAGE unclassified

    Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

  • Outline

    Technology Gaps

    Goal, approach

    Cavitands for chemical vapor sensing

    Liquid Crystals for sensitivity amplification

    Label-free antibodies for SPR biosensing

    Conclusions

  • Technology Gaps

    Chemical detectors - limited sensitivity - still use canines for bomb detection- high false alarm rates – limited specificity- slow response time – due to sensing material used

    Biological Detectors- need reagents, labels, not real time

    Separate Detectors- for chem. and bio. threats increase logistical burden/cost

  • Goal

    Develop an integrated SPR chem/bio detector with

    False Alarm Rate < 10-3 for chem. and < 10-8 for bio.Sensitivity – below permissible exposure level (PEL) for chem.

    - LOD of 100 organisms/liter of air for bacteria/viruses- LOD of 10 nanograms/liter of air for toxins

    Response time - < 1 minute for chem. and < 10 min for bio.

    Military and civilian need

    Chem/Bio detectors with high sensitivity, specificity, stability, and speed in portable format for airborne threats

  • Technique - SPR spectroscopy

    Inputfiber

    Outputfiber

    Collimatinglens

    Polarizer

    Prism

    Focusinglens

    LC layerGold layerSubstrate

    FlowcellSensitive optical transduction

    technique – part in 10^7 refractive index changes can be measured

    AuCrCover glassSubstrate for SPR

    oo o

    o o o oo

    S S S S

    oo o

    o o o oo

    S S S S

    oo o

    o o o oo

    S S S S

    oo o

    o o o oo

    S S S S

    Cavitand sensing layer

    Sensing with - Cavitands for chem. threats

    - Liquid Crystals for chem. threats

    - Antibodies for bio. threats

    Approach

    oo o

    o o o oo

    S S S S

  • Integration of chem/bio.

    Common optical and data processing platformDifferent front ends for chem. and bio. samplesIsolated channels for chem. and bio. sensing layers

    Cavitand 1 layer

    Liquid crystal layer

    Antibody

    Cavitand 2 layer

    Top View of SPR substrate

    Chem. analyte

    Bio. analyte Sensing layers separated

    Different front ends

  • Sensor Components: TI Spreeta 2000 (3-channel)

    Spreeta 2000 SPR components developed in collaboration with UWMiniaturized, robust, high performance devices Inexpensive: ~$4 in large quantityExcellent manufacturing capabilities and quality control.

    Spreeta 2000 SPR sensing chip

  • CBW Agents Detectable with SPR

    Antibodies tested atECBC

    50 nM (15 ppb)750 pM (271 ppt)~1 uM (340 ppb)

    VXSomanSarintabunDPMP(stimulantDomoateCortisolDNP

    CW (organics)

    YesNot yet doneYes

    In progress~5x104 cfu/ml (prelim)In progress

    Y. pestisF. tularensisE. Coli

    Microbial cells

    Yes (prelim)~109 pfu (prelim expts)

    Small pox, Marburg, Ebola, Encephalitis, Hemorrhagic fever Flu (as a model system)

    Viruses

    Not yet done~105 cfu/ml (prelim)B. Anthracis, BG spores (simulant)

    Spores

    Yes (2.8ppt)Not yet doneYes

    100 pM (2.8 ppb)20 nM (64 ppb; current level)

  • Cavitand Selectivity

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    MeCav PzCav QxCav PIB PECHSensing Layer

    ∆θ

    p, D

    egre

    e

    TOLUENE

    Cavitand with deepest cavity shows largest response

    Selectivity for aromatic vapors confirmed

    PECH and PIB polymers for comparison

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    MeCav PzCav QxCav PIB PECH

    Sensing layers

    ∆θ

    P, D

    egre

    e

    BENZENE

    Feresenbet, E.; Dalcanale, E.; Dulcey, C.; Shenoy, D.K.,Sensors and Actuators B, 97, 211 (2003)

    100 ppm

    100 ppm

    A B

    C

    polymers

    A B C

    A B

    Cpolymers

    R RRR

    NN

    OOO OOO O O

    N NN NN N

    O

    R RRR

    OO OOO O O

    R RRR

    NN

    OOO OOO O O

    N NN NN N

    8.3 Å

    4.6 Å

    3.3 Å

    MeCav PzCav QxCav

  • 0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 200 400 600Benzene, ppm

    ∆θp

    , Deg

    rees

    Concentration Dependence of Signal

    Saturation due to analyte “filling” of cavitands

    QxCav completely encloses benzene molecule within cavity

    QxCav-Benzene complex

  • 0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    Perch

    loroe

    thylen

    e

    Tolue

    neNi

    trome

    thane

    Aceto

    nitrile

    Benz

    ene

    n-Hex

    ane

    Analyte Vapors

    ∆θP

    (arb

    . uni

    ts)

    MeCavMeCav-thioether

    MeCavMeCav-thioether

    Devanand K. Shenoy, Elias B. Feresenbet, Roberta Pinalli, Enrico Dalcanale;Langmuir 2003, 19, 10454

    Spin coated Self-assembled

    Materials Processing:Spin Coated vs Self-Assembled Cavitands

    Cavitand Morphology does not effect signal response

    Signal response normalized for thickness

  • 13 14 15 16 17

    704.76

    704.78

    704.80

    704.82

    704.84

    704.86

    Res

    onan

    cew

    avel

    engt

    h, n

    m

    Time. min.

    COOH OUT

    Cavitands for DMMP

    OO

    CH2Cl

    CH2Cl

    Cavitand shows high selectivity for DMMP

    Cavitand shows good reversibility

    O

    O

    O

    O CF3

    CF3

    CF3

    CF3

    HO

    CF3

    CF3

    CF3

    CF3

    HO

    9 12 15 18 21

    659.70

    659.72

    659.74

    659.76

    659.78

    659.80

    Res

    onan

    ce

    Wav

    elen

    gth,

    nm

    Time, min.

    FPOL

    7 8 9 10

    650.42

    650.44

    650.46

    650.48

    650.50

    650.52

    Res

    onan

    ce

    Wav

    elen

    gth,

    nm

    Time, min.

    PECH

    1 2 3 4 5

    713.24

    713.26

    713.28

    713.30

    713.32

    713.34

    Res

    onan

    ce

    wav

    elen

    gth,

    nm

    Time, min.

    MHDA

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    FPOL PECH MHDA CAVITAND

    Sensing Layers

    Resonance wavelength

    shift, nm

    2 ppb

  • Polymer Sensing layer

    Liquid CrystalSensing layer

    Liquid Crystal-based Sensing

    Analyte

    Local perturbation Global perturbation

    Liquid Crystal (LC) perturbation causes signal amplification

    Nematic order probed by optical method

    Optical signal directly proportional to amount of vapor

  • One side Adhesive Mylar punch

    Liquid crystalDrop (1ul)

    LC film deposition

    Cover Glass

    Polyimidecoated on gold

    5mm

    100um

    Liquid crystal molecule

  • LC alignment

    Cover glass

    PI2556

    5CB liquid crystal

    Gold (Polyimide)

    A uniform planar orientation achieved

    A B

  • LC exposure to benzene vapors

    Wavelength shift due to vapor exposure and resulting decrease in LC order

    Shift is reversible

    E. Feresenbet, F. Taylor, T. M. Chinowsky. S. S. Yee, D.K Shenoy, Sensor Letters 2, 145-152, 2004

    0 20 40 60

    623.4

    623.6

    623.8

    624.0

    624.2

    624.4

    624.6

    624.8

    vapor on

    vapor off / purge

    Res

    onan

    ce w

    avel

    engt

    h, n

    m

    Time, min.

    0 5 10 15 20

    623.58

    623.60

    623.62

    623.64

    vapor on

    vapor off / purge

    Res

    onan

    ce w

    avel

    engt

    h, n

    m

    Time, min.

    0 1500 3000 4500 6000 7500

    623.7

    624.0

    624.3

    624.6

    624.9

    Res

    onan

    ce

    Wav

    elen

    gth,

    nm

    Concentration, ppm

  • Selectivity pattern of LC towards vapors

    LC shows differential response to chemical vapors

    Selectivity between isomers observed

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    Benzene Toluene m-Xylene p-Xylene Acetonitril Ethylacetate

    Analyte Vapors

    Res

    onan

    ce W

    avel

    engt

    h Sh

    ift (n

    m)

  • Sensivity enhanced by two orders closer to phase transition

    Shift is reversible

    LC exposure closer to phase transition

    8504

    6803

    3802

    2701

    ppb

    60 80 100 120 140 160 180 200 220

    683.6

    683.8

    684.0

    684.2

    684.4

    684.6

    684.8

    4321

    Vapor on

    Vapor off / purge

    Res

    onan

    ce

    Wav

    elen

    gth,

    nm

    Time, min.

    nematic isotropic35.1°c

    m-xylene

  • 623.59

    623.595

    623.6

    623.605

    623.61

    623.615

    623.62

    623.625

    0 0.1 0.2 0.3 0.4 0.5 0.6

    Time, min

    Res

    onan

    ce w

    avel

    engt

    h, n

    m

    626.52

    626.53

    626.54

    626.55

    626.56

    626.57

    626.58

    626.59

    626.6

    626.61

    0 0.5 1 1.5 2 2.5 3

    Time, min

    Res

    onan

    ce w

    avel

    engt

    h, n

    m

    Second order kinetics describes data for vapor diffusion into LC

    Time response additional selectivity parameter

    Kinetics of Response

    m-Xylene0.0012 (p/ps)

    Benzene0.0012 (p/ps)

    dλ/dt =kλ2λ = resonance wavelength (nm)t = time (min)k = rate constant

    E. B. Feresenbet, F. Taylor, T. M. Chinowsky, S. S. Yee, and D. K. Shenoy, Sensor Letters, 2, 145-152, 2004

  • -1

    0

    1

    2

    3

    4

    5

    6

    0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

    Time (min)

    SPR

    Shi

    ft (n

    m)

    Biotin-Blocked NeutrAvidinNeutrAvidin

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0.0 1.0 2.0 3.0 3.9 4.9 5.9 6.9 7.9 8.9 9.8

    Time (min)

    SPR

    Shi

    ft (n

    m)

    Biotin-blocked NeutrAvidinNeutrAvidin

    NeutrAvidin blocked by biotin bindspoorly to the thiol biotin surface

    Subsequent binding of the biotinylated antibody is also poor

    • Neutravidin-Biotin mediated antibody immobilizationEffect of blocking binding to

    thiol-biotin coated gold surfaceEffect on binding of biotinylated

    antibody

    SPR Biosensing

  • 0

    1

    2

    3

    4

    5

    6

    7

    8

    0.01

    0.91

    1.81

    2.71

    3.61

    4.51

    5.41

    6.31

    7.21

    8.11

    9.01

    9.91

    10.8

    11.7

    12.6

    13.5

    14.4

    15.3

    16.2

    Time (min)

    SPR

    Shi

    ft (n

    m)

    Reused Thiol-Biotin Treated Chip

    Reused gold Chip

    Re-cycling the sensor surface

    Neutravidin binds as well after cleaning of the gold surface and re-application of the thiol biotin layer

    Neutravidin binding to different sensor surfaces

  • Bt-Rabbit anti-Goat IgG binding Goat-IgG

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    0.0

    1.1

    2.2

    3.4

    4.5

    5.6

    6.7

    7.8

    8.9

    10.1

    11.2

    Time (min)

    SPR

    Shi

    ft (n

    m)

    0.01 0.1 1.0 10 ug/ml

    Amplifier Donkey anti-Goat IgG binding

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    0.0

    0.5

    0.9

    1.4

    1.9

    2.3

    2.8

    3.3

    3.7

    4.2

    4.7

    Time (min)

    SPR

    Shi

    ft (n

    m)

    0 0.01 0.1 1.0 10 ug/ml

    SPR model immunoassay

  • SEB Direct Detection

    -0.10

    0.10.20.30.4

    0.50.60.7

    0.80.9

    0.0 2.0 4.0 6.0 8.0 10.0 12.0Time (min)

    SPR

    Shi

    ft (n

    m)

    2.5 ng/ml

    25 ng/ml

    100 ng/ml

    1000 ng/ml

    Amplifier Sheep anti-SEB Binding (10 ug/ml)

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0.0

    0.5

    0.9

    1.4

    1.9

    2.3

    2.8

    3.3

    3.7

    4.2

    4.7

    5.1

    5.6

    Time (min)SP

    R S

    hift

    (nm

    )

    02.5251001000 ng/ml SEB

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.0

    0.5

    0.9

    1.4

    1.9

    2.3

    2.8

    3.3

    3.7

    4.2

    4.7

    5.1

    5.6

    Time

    SPR

    Shi

    ft (n

    m) 0

    2.5 ng/ml25 ng/ml

    Staphylococcal Enterotoxin B detection by SPR

    Amplified Detection

  • Direct Detection of Ricin

    -0.3

    -0.1

    0.1

    0.3

    0.5

    0.7

    0.9

    0.0

    0.8

    1.7

    2.5

    3.3

    4.2

    5.0

    5.8

    6.7

    7.5

    8.3

    9.2

    10.0

    10.8

    11.7

    Time (min)

    SPR

    shi

    ft (n

    m)

    0 ng/ml10 ng/ml100 ng/ml1000 ng/ml

    Ab-Amplified Detection of Ricin

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2

    Time (min)SP

    R s

    hift

    (nm

    )

    0 ng/ml10 ng/ml100 ng/ml1000 ng/ml

    Ricin detection by SPR

  • Ab-Amplifed Detection of B. globigii

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0.0 0.5 0.9 1.3 1.7 2.1 2.6 3.0 3.4 3.8 4.2 4.6

    Time (min)SP

    R s

    hift

    (nm

    )

    0 spores/ml10^5 spores/ml10^6 spores/ml10^7 spores/ml

    Direct detection of B. globigii

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    6.9

    7.9

    8.9

    9.9

    10.9

    11.9

    12.8

    13.8

    Time (min)

    SPR

    shi

    ft (n

    m)

    0 spores/ml

    10^5 spores/ml

    10^6 spores/ml

    10^7 spores/ml

    Bacterial spore detection by SPR

  • Conclusions

    Cavitands show high selectivity for chemical vapors Cavitand film morphology does not affect signal responseLiquid Crystal materials for sensitivity amplificationLabel-free, real-time SPR biosensingIntegration of chem. and bio. approaches appears feasible

  • Mr. Marco Busi, U. Parma, Italy

    Prof. Enrico Dalcanale, U. Parma, Italy

    Mr. Francis Taylor, U. Washington, Seattle

    Prof. Tim Chinowsky, U. Washington, Seattle

    Prof. Sinclair Yee, U. Washington, Seattle

    Dr. T. Yu, UC Berkeley, CA

    Dr. Francois Lagugne, UC Berkeley, CA

    Prof. Y. Ron Shen, UC Berkeley, CA

    Dr. Elias Feresenbet, formerly at NRL, Washington, DC

    Dr. Charles Dulcey, NRL, Washington, DC

    Dr. George Anderson, NRL, Washington, DC

    Dr. William Barger, NRL, Washington, DC

    Team Members

    Funding: Naval Research Laboratory, Joint Services